Skip to main content

Articles

Page 7 of 8

  1. Transposable elements (TEs) have the potential to impact genome structure, function and evolution in profound ways. In order to understand the contribution of transposable elements (TEs) to Heliconius melpomene, ...

    Authors: Christine A Lavoie, Roy N Platt II, Peter A Novick, Brian A Counterman and David A Ray
    Citation: Mobile DNA 2013 4:21
  2. Only a few transposable elements are known to exhibit site-specific insertion patterns, including the well-studied R-element retrotransposons that insert into specific sites within the multigene rDNA. The only...

    Authors: Tyler A Elliott, Deborah E Stage, Teresa J Crease and Thomas H Eickbush
    Citation: Mobile DNA 2013 4:20
  3. Penelope-like elements (PLEs) are an enigmatic group of retroelements sharing a common ancestor with telomerase reverse transcriptases. In our previous studies, we identified endonuclease-deficient PLEs that are ...

    Authors: Irina R Arkhipova, Irina A Yushenova and Fernando Rodriguez
    Citation: Mobile DNA 2013 4:19
  4. Telomere maintenance in Drosophila relies on the targeted transposition of three very special non-LTR retrotransposons, HeT-A, TART, and TAHRE (HTT). The sequences of the retrotransposon array build up the telome...

    Authors: Rute Silva-Sousa, Míriam Díaz Varela and Elena Casacuberta
    Citation: Mobile DNA 2013 4:18
  5. Group I introns are a distinct class of RNA self-splicing introns with an ancient origin. All known group I introns present in eukaryote nuclei interrupt functional ribosomal RNA genes located in ribosomal DNA...

    Authors: Annica Hedberg and Steinar D Johansen
    Citation: Mobile DNA 2013 4:17
  6. The non-long terminal repeat (non-LTR) retrotransposons, long interspersed element-1 (LINE-1) and Alu are currently active retroelements in humans. We, and others, have observed that different populations of H...

    Authors: Vincent A Streva, Zachary J Faber and Prescott L Deininger
    Citation: Mobile DNA 2013 4:16
  7. Long interspersed element type one (L1) actively modifies the human genome by inserting new copies of itself. This process, termed retrotransposition, requires the formation of an L1 ribonucleoprotein (RNP) co...

    Authors: Yi Xie, Lajos Mates, Zoltán Ivics, Zsuzsanna Izsvák, Sandra L Martin and Wenfeng An
    Citation: Mobile DNA 2013 4:10
  8. Chromoviruses are one of the three genera of Ty3-gypsy long terminal repeat (LTR) retrotransposons, and are present in high copy numbers in plant genomes. They are widely distributed within the plant kingdom, wit...

    Authors: Beatrice Weber, Tony Heitkam, Daniela Holtgräwe, Bernd Weisshaar, André E Minoche, Juliane C Dohm, Heinz Himmelbauer and Thomas Schmidt
    Citation: Mobile DNA 2013 4:8
  9. The editors of Mobile DNA would like to thank all our reviewers who have contributed to the journal in volume 3 (2012).

    Authors: Nancy L Craig, Thomas H Eikbush and Daniel F Voytas
    Citation: Mobile DNA 2013 4:4
  10. Transposable elements play a major role in genome evolution. Their capacity to move and/or multiply in the genome of their host may have profound impacts on phenotypes, and may have dramatic consequences on ge...

    Authors: Roland Vergilino, Tyler A Elliott, Philippe Desjardins-Proulx, Teresa J Crease and France Dufresne
    Citation: Mobile DNA 2013 4:7
  11. Galileo is a transposable element responsible for the generation of three chromosomal inversions in natural populations of Drosophila buzzatii. Although the most characteristic feature of Galileo is the long inte...

    Authors: Mar Marzo, Xabier Bello, Marta Puig, Xulio Maside and Alfredo Ruiz
    Citation: Mobile DNA 2013 4:6
  12. LINE-1 (L1) is the dominant category of transposable elements in placental mammals. L1 has significantly affected the size and structure of all mammalian genomes and understanding the nature of the interaction...

    Authors: Akash Sookdeo, Crystal M Hepp, Marcella A McClure and Stéphane Boissinot
    Citation: Mobile DNA 2013 4:3
  13. A large subfamily of serine recombinases contains long polypeptide segments appended to the C-terminal end of the conserved catalytic domain. Members of this subfamily often function as phage integrases but al...

    Authors: Sridhar Mandali, Gautam Dhar, Nuraly K Avliyakulov, Michael J Haykinson and Reid C Johnson
    Citation: Mobile DNA 2013 4:2
  14. High-throughput deep-sequencing technology has generated an unprecedented number of expressed sequence reads that offer the opportunity to get insight into biological systems. Several databases report the sequ...

    Authors: Jeremy Dufourt, Pierre Pouchin, Pierre Peyret, Emilie Brasset and Chantal Vaury
    Citation: Mobile DNA 2013 4:1
  15. Over the years, a number of reports have revealed that Ty1 integration occurs in a 1-kb window upstream of Pol III-transcribed genes with an approximate 80-bp periodicity between each integration hotspot and t...

    Authors: Antoine Bridier-Nahmias and Pascale Lesage
    Citation: Mobile DNA 2012 3:22
  16. Endogenous retroviruses (ERVs) are remnants of exogenous retroviruses that have integrated into the nuclear DNA of a germ-line cell. Here we present the results of a survey into the ERV complement of Crocodylus p...

    Authors: Amanda Yoon-Yee Chong, Sarah Jane Atkinson, Sally Isberg and Jaime Gongora
    Citation: Mobile DNA 2012 3:20
  17. The third international conference on the genomic impact of eukaryotic transposable elements (TEs) was held 24 to 28 February 2012 at the Asilomar Conference Center, Pacific Grove, CA, USA. Sponsored in part b...

    Authors: Irina R Arkhipova, Mark A Batzer, Juergen Brosius, Cédric Feschotte, John V Moran, Jürgen Schmitz and Jerzy Jurka
    Citation: Mobile DNA 2012 3:19
  18. Long terminal repeat (LTR) retrotransposons are a class of eukaryotic mobile elements characterized by a distinctive sequence similarity-based structure. Hence they are well suited for computational identifica...

    Authors: Sascha Steinbiss, Sascha Kastens and Stefan Kurtz
    Citation: Mobile DNA 2012 3:18
  19. An international conference on Transposable Elements (TEs) was held 21–24 April 2012 in Saint Malo, France. Organized by the French Transposition Community (GDR Elements Génétiques Mobiles et Génomes, CNRS) an...

    Authors: Abdelkader Ainouche, Mireille Bétermier, Mick Chandler, Richard Cordaux, Gaël Cristofari, Jean-Marc Deragon, Pascale Lesage, Olivier Panaud, Hadi Quesneville, Chantal Vaury, Cristina Vieira and Clémentine Vitte
    Citation: Mobile DNA 2012 3:17
  20. Miniature inverted-repeat transposable elements (MITEs) are short, nonautonomous DNA elements flanked by subterminal or terminal inverted repeats (TIRs) with no coding capacity. MITEs were originally recognize...

    Authors: Maríndia Deprá, Adriana Ludwig, Vera LS Valente and Elgion LS Loreto
    Citation: Mobile DNA 2012 3:13
  21. Long-terminal repeat (LTR) retrotransposons have complex modes of mobility involving reverse transcription of their RNA genomes in cytoplasmic virus-like particles (VLPs) and integration of the cDNA copies int...

    Authors: Jenni K Risler, Alison E Kenny, Ryan J Palumbo, Eric R Gamache and M Joan Curcio
    Citation: Mobile DNA 2012 3:12
  22. The vast majority of the 1.1 million Alu elements are retrotranspositionally inactive, where only a few loci referred to as ‘source elements’ can generate new Alu insertions. The first step in identifying the ...

    Authors: Andrew J Oler, Stephen Traina-Dorge, Rebecca S Derbes, Donatella Canella, Brad R Cairns and Astrid M Roy-Engel
    Citation: Mobile DNA 2012 3:11
  23. Functional regulatory sequences are present in many transposable element (TE) copies, resulting in TEs being frequently exapted by host genes. Today, many examples of TEs impacting host gene expression can be ...

    Authors: Rita Rebollo, Sharareh Farivar and Dixie L Mager
    Citation: Mobile DNA 2012 3:9
  24. Sequence analysis of the orangutan genome revealed that recent proliferative activity of Alu elements has been uncharacteristically quiescent in the Pongo (orangutan) lineage, compared with all previously studied...

    Authors: Jerilyn A Walker, Miriam K Konkel, Brygg Ullmer, Christopher P Monceaux, Oliver A Ryder, Robert Hubley, Arian FA Smit and Mark A Batzer
    Citation: Mobile DNA 2012 3:8
  25. The H-NS protein is a global regulator of gene expression in bacteria and can also bind transposition complexes (transpososomes). In Tn5 transposition H-NS promotes transpososome assembly in vitro and disruption ...

    Authors: Crystal R Whitfield, Brian H Shilton and David B Haniford
    Citation: Mobile DNA 2012 3:7
  26. Tyrosine-based site-specific recombinases (TBSSRs) are DNA breaking-rejoining enzymes. In bacterial genomes, they play a major role in the comings and goings of mobile genetic elements (MGEs), such as temperat...

    Authors: Rob Van Houdt, Raphael Leplae, Gipsi Lima-Mendez, Max Mergeay and Ariane Toussaint
    Citation: Mobile DNA 2012 3:6
  27. Transposons, segments of DNA that can mobilize to other locations in a genome, are often used for insertion mutagenesis or to generate priming sites for sequencing of large DNA molecules. For both of these use...

    Authors: Brian Green, Christiane Bouchier, Cécile Fairhead, Nancy L Craig and Brendan P Cormack
    Citation: Mobile DNA 2012 3:3
  28. Transposable elements (TEs) are major contributors to genome evolution. One factor that influences their evolutionary dynamics is whether their host reproduces through selfing or through outcrossing. According...

    Authors: Nicole de la Chaux, Takashi Tsuchimatsu, Kentaro K Shimizu and Andreas Wagner
    Citation: Mobile DNA 2012 3:2
  29. Transposition in IS3, IS30, IS21 and IS256 insertion sequence (IS) families utilizes an unconventional two-step pathway. A figure-of-eight intermediate in Step I, from asymmetric single-strand cleavage and joinin...

    Authors: Leslie A Lewis, Mekbib Astatke, Peter T Umekubo, Shaheen Alvi, Robert Saby, Jehan Afrose, Pedro H Oliveira, Gabriel A Monteiro and Duarte MF Prazeres
    Citation: Mobile DNA 2012 3:1
  30. The Sleeping Beauty (SB) transposon system has been used for germline transgenesis of the diploid frog, Xenopus tropicalis. Injecting one-cell embryos with plasmid DNA harboring an SB transposon substrate togethe...

    Authors: Donald A Yergeau, Clair M Kelley, Emin Kuliyev, Haiqing Zhu, Michelle R Johnson Hamlet, Amy K Sater, Dan E Wells and Paul E Mead
    Citation: Mobile DNA 2011 2:15
  31. The two-step transposition pathway of insertion sequences of the IS3 family, and several other families, involves first the formation of a branched figure-of-eight (F-8) structure by an asymmetric single strand c...

    Authors: Leslie A Lewis, Mekbib Astatke, Peter T Umekubo, Shaheen Alvi, Robert Saby and Jehan Afrose
    Citation: Mobile DNA 2011 2:14
  32. The human genome contains approximately one million Alu elements which comprise more than 10% of human DNA by mass. Alu elements possess direction, and are distributed almost equally in positive and negative stra...

    Authors: George W Cook, Miriam K Konkel, James D Major III, Jerilyn A Walker, Kyudong Han and Mark A Batzer
    Citation: Mobile DNA 2011 2:10

Annual Journal Metrics