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Blood from ‘junk’: the LTR chimeric transcript Pu.2
promotes erythropoiesis
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Abstract

Transposable elements (TEs) are a prominent feature of most eukaryotic genomes. Despite rapidly accumulating
evidence for the role of TE-driven insertional mutagenesis and structural variation in genome evolution, few clear
examples of individual TEs impacting biology via perturbed gene regulation are available. A recent report describes
the discovery of an alternative promoter for the murine erythroid transcription factor Pu.1. This promoter is located
in an ORR1A0 long terminal repeat (LTR) retrotransposon intronic to Pu.1 and is regulated by the Krüppel-like factors
KLF1 and KLF3. Expression of the resultant chimeric transcript, called Pu.2, spontaneously induces erythroid differentiation
in vitro. These experiments illustrate how transcription factor binding sites spread by retrotransposition have the potential
to impact networks encoding key biological processes in the host genome.

Keywords: LTR retrotransposon, Transposable element, ORR1A0, KLF1, KLF3, Erythroid, Pu.1, Pu.2
Background
Transposable elements (TEs) have in the past been mal-
igned as ‘junk’ [1], ‘selfish’, and ‘parasitic’ [2,3]. These
descriptions are likely apt for many if not most se-
quences derived from TEs. However, a more complete
view is that the majority of DNA generated by TE activ-
ity evolves neutrally under selection, while a small yet
important minority of TE-derived sequences continues
to drive genome evolution and innovation. The poten-
tial importance of TEs to the host is suggested by their
near ubiquitous presence in eukaryotes, often account-
ing for half or more of genome sequence content [4-6]
and, more convincingly, their provision of regulatory or
otherwise functional genetic elements [7]. In primates,
for example, most order-specific regulatory sequences
are derived from TEs [8]. Many of these regions are
dynamically regulated during development [9,10] and
incorporate internal binding sites for suppressor and ac-
tivator complexes [11].
As a TE proliferates in its host genome, the number of

loci subject to regulation by DNA binding proteins specific
to that TE, such as transcription factors, also increases.
During evolution, TEs have often contributed transcription
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factor binding sites to promoter, enhancer, and boundary
elements [9-14]. In some cases, entire developmental path-
ways have been rewired as a result of TE mobilization
[15-17]. Novel TE insertions can result in alternative
splicing [18], exonization [19,20], altered mRNA trans-
lational efficiency [21,22], as well as the provision of
distal enhancers [23]. Thus, an abundance of TE-derived
sequences, including ready-made promoters, enhancers,
and other regulatory units, points to a major role for TEs in
shaping the regulatory landscape of the eukaryotic genome
(see [24] for a recent review).
Discovery and characterization of Pu.2, an LTR-driven
chimeric mRNA
Despite extensive evidence for gene regulatory and struc-
tural innovation produced by TEs, examples of phenotypic
change due to this variation are comparatively limited in
mammals. TE-derived alternative promoters, which gener-
ate a chimeric mRNA with an adjacent gene, are arguably
one of the more straightforward scenarios to link a TE with
a functional product, particularly when that gene encodes a
protein of known function. In recent work, Mak et al. [25]
report the discovery and functional characterization of a
long terminal repeat (LTR) promoted chimeric mRNA of
Pu.1, regulated in turn by Krüppel-like factors 1 (KLF1)
and 3 (KLF3). PU.1, KLF1, and KLF3 are transcription
factors active during hematopoiesis, where PU.1 favors
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myeloid differentiation and KLF1 and KLF3 drive erythroid
maturation [26,27]. In wild-type mice, KLF1 and KLF3
recognize similar sequence motifs in an antagonistic man-
ner. KLF1 generally acts as a transcriptional activator [27],
while KLF3 recruits a repressive complex including epigen-
etic modifiers [28].
Analyzing a microarray screen of Klf3-/- knockout

mice, Mak et al. first identified major de-repression of
Pu.1 that, oddly, excluded the initial two exons of the
gene. To resolve this discrepancy, the authors performed
5′ RACE primed from the third exon of Pu.1. The re-
sults of this approach indicated an alternative promoter
in an ORR1A0 LTR [29] located in the second intron of
Pu.1 (Figure 1). Subsequent qRT-PCR assays confirmed
that the ORR1A0-Pu.1 chimeric transcript, named Pu.2,
was upregulated in Klf3-/- fetal liver tissue, while KLF1
and KLF3 were found to bind sequence motifs contained
in ORR1A0, based on electrophoretic mobility shift assay
(EMSA) and luciferase reporter experiments. Taken to-
gether, these data suggest opposing roles for KLF1 and
KLF3 in regulating Pu.2 expression.
Intriguingly, Pu.2 was predicted to encode an N-

terminal truncated isoform of PU.1 that retained a DNA
binding ETS domain (Figure 1). By EMSA, Mak et al.
demonstrated that PU.2 could bind to a predicted PU.1
target site. Moreover, PU.2 was found to counter the
activity of PU.1 in a dose-dependent manner, and pro-
moted spontaneous erythroid differentiation in human
K562 cells. These assays clearly demonstrated, in vitro,
an erythropoietic function for Pu.2. Extending their re-
sults to an in vivo setting, the authors detected Pu.2
mRNA and protein in wild-type fetal liver, with overex-
pression observed in Klf3-/- animals, and also found that
Figure 1 A potential role for Pu.2 in erythroid differentiation, as describ
KLF1 and KLF3, respectively, activate and repress an alternative promoter includ
suppression of this LTR is the norm in wild-type fetal liver cells, permitting cano
Mak et al. found the ORR1A0 LTR produced a chimeric mRNA with Pu.1 that, in
N-terminal activation domain of PU.1. PU.2 retained its DNA binding capacity, b
as a dominant negative isoform of PU.1 promoting erythroid maturation.
in vitro KLF1 overexpression activated PU.2. These experi-
ments provide evidence for PU.2 function in murine
erythroid differentiation, albeit heavily repressed by
KLF3 in vivo.
Finally, via RNA-seq and additional qRT-PCR, Mak et al.

identified several other ORR1A0 alternative promoters dif-
ferentially regulated by KLF3 and producing chimeric tran-
scripts with adjacent protein-coding genes. This important,
though preliminary, observation suggested that ORR1A0
may play a broader role in regulating erythroid differenti-
ation beyond the highlighted example of Pu.2, and provides
insight into the co-evolution of TE subfamilies, transcrip-
tion factors, and core biological processes, as discussed
elsewhere [30]. One reasonable conclusion from this work
is that the amplification of the ORR1A0 LTR family in ro-
dents generated a ready-made network of genetic material
subject to control by KLF1 and KLF3, and capable of
changing how erythroid maturation was regulated dur-
ing development. Notably, the ORR1A0 LTR family is
rodent-specific and almost certainly incapable of fur-
ther mobilization [29]. As such, Pu.2 is not found in human
cells, though it remains to be determined whether other
TEs present in the human Pu.1 locus generate mRNAs
functionally analogous to mouse Pu.2. Future experiments
involving genome-wide chromatin immunoprecipitation
sequencing (ChIP-seq) to elucidate KLF bound sites in vivo
may reveal human TE families dynamically regulated
hematopoiesis, in the Pu.1 locus and elsewhere.

Conclusions
Among a host of alternative promoters derived from mam-
malian TEs and driving protein-coding and non-coding
gene expression [9,31-33], we consider three reports as
ed by Mak et al. PU.1 is a master regulator of myeloid differentiation (top).
ed in an ORR1A0 LTR located in the second intron of Pu.1. KLF3-mediated
nical PU.1 expression and myeloid differentiation. In the absence of KLF3,
turn, encoded a truncated protein isoform called PU.2 (bottom) lacking the
ut did not interact with other transcription factors, leading to a putative role
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landmark examples of TE insertions having a clear func-
tional impact upon biology: an epigenetically regulated LTR
upstream of the Agouti gene in rodents [34], an LTR alter-
native promoter for the colony stimulating factor 1 receptor
(CSF1R) proto-oncogene in lymphoma [35], and the con-
vergent evolution of multiple LTRs to act as promoters for
the neuronal apoptosis inhibitory protein (NAIP) gene [36].
In each case, an LTR produces a chimeric mRNA with the
adjacent protein-coding gene. The discovery by Mak et al.
that the LTR-initiated Pu.2 transcript can promote eryth-
roid maturation in the absence of KLF3 is a valuable
addition to this literature, and will likely increase future at-
tention to the role of TEs in regulating various develop-
mental processes, including hematopoiesis.
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