Gorbunova V, Seluanov A, Kennedy BK. The world goes bats: living longer and tolerating viruses. Cell Metab. 2020;32:31–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luis AD, Hayman DTS, O’Shea TJ, Cryan PM, Gilbert AT, Pulliam JRC, et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc Biol Sci. 2013;280:20122753.
PubMed
PubMed Central
Google Scholar
Schuh AJ, Amman BR, Sealy TK, Spengler JR, Nichol ST, Towner JS. Egyptian rousette bats maintain long-term protective immunity against Marburg virus infection despite diminished antibody levels. Sci Rep. 2017;7:8763.
Article
PubMed
PubMed Central
CAS
Google Scholar
Halpin K, Hyatt AD, Fogarty R, Middleton D, Bingham J, Epstein JH, et al. Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission. Am J Trop Med Hyg. 2011;85:946–51.
Article
PubMed
PubMed Central
Google Scholar
Swanepoel R, Leman PA, Burt FJ, Zachariades NA, Braack LE, Ksiazek TG, et al. Experimental inoculation of plants and animals with Ebola virus. Emerg Infect Dis. 1996;2:321–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Munster VJ, Adney DR, van Doremalen N, Brown VR, Miazgowicz KL, Milne-Price S, et al. Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis). Sci Rep. 2016;6:21878.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou P, Tachedjian M, Wynne JW, Boyd V, Cui J, Smith I, et al. Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats. Proc Natl Acad Sci U S A. 2016;113:2696–701.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaw AE, Hughes J, Gu Q, Behdenna A, Singer JB, Dennis T, et al. Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses. PLoS Biol. 2017;15:e2004086.
Article
PubMed
PubMed Central
CAS
Google Scholar
De La Cruz-Rivera PC, Kanchwala M, Liang H, Kumar A, Wang L-F, Xing C, et al. The IFN response in bats displays distinctive IFN-stimulated gene expression kinetics with atypical RNASEL induction. J Immunol. 2018;200:209–17.
Article
CAS
Google Scholar
Escalera-Zamudio M, Zepeda-Mendoza ML, Loza-Rubio E, Rojas-Anaya E, Méndez-Ojeda ML, Arias CF, et al. The evolution of bat nucleic acid-sensing toll-like receptors. Mol Ecol. 2015;24:5899–909.
Article
CAS
PubMed
Google Scholar
Ahn M, Cui J, Irving AT, Wang L-F. Unique loss of the PYHIN gene family in bats amongst mammals: implications for Inflammasome sensing. Sci Rep. 2016;6:21722.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahn M, Anderson DE, Zhang Q, Tan CW, Lim BL, Luko K, et al. Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nat Microbiol. 2019;4:789–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie J, Li Y, Shen X, Goh G, Zhu Y, Cui J, et al. Dampened STING-dependent interferon activation in bats. Cell Host Microbe. 2018;23:297–301.e4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wickenhagen A, Sugrue E, Lytras S, Kuchi S, Noerenberg M, Turnbull ML, et al. A prenylated dsRNA sensor protects against severe COVID-19. Science. 2021;374:eabj3624.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ray DA, Feschotte C, Pagan HJT, Smith JD, Pritham EJ, Arensburger P, et al. Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. Genome Res. 2008;18:717–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabundzija I, Messing SA, Thomas J, Cosby RL, Bilic I, Miskey C, et al. A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes. Nat Commun. 2016;7:10716.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitra R, Li X, Kapusta A, Mayhew D, Mitra RD, Feschotte C, et al. Functional characterization of piggyBat from the bat Myotis lucifugus unveils an active mammalian DNA transposon. Proc Natl Acad Sci U S A. 2013;110:234–9.
Article
CAS
PubMed
Google Scholar
Pritham EJ, Feschotte C. Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus. Proc Natl Acad Sci U S A. 2007;104:1895–900.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cosby RL, Judd J, Zhang R, Zhong A, Garry N, Pritham EJ, et al. Recurrent evolution of vertebrate transcription factors by transposase capture. Science. 2021;371. https://doi.org/10.1126/science.abc6405.
Skirmuntt EC, Escalera-Zamudio M, Teeling EC, Smith A, Katzourakis A. The potential role of endogenous viral elements in the evolution of bats as reservoirs for zoonotic viruses. Annu Rev. 2020; Available from: https://www.annualreviews.org/doi/abs/10.1146/annurev-virology-092818-015613.
Skirmuntt EC, Katzourakis A. The evolution of endogenous retroviral envelope genes in bats and their potential contribution to host biology. Virus Res. 2019;270:197645.
Article
CAS
PubMed
Google Scholar
Frank JA, Feschotte C. Co-option of endogenous viral sequences for host cell function. Curr Opin Virol. 2017;25:81–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mura M, Murcia P, Caporale M, Spencer TE, Nagashima K, Rein A, et al. Late viral interference induced by transdominant gag of an endogenous retrovirus. Proc Natl Acad Sci U S A. 2004;101:11117–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Young GR, Yap MW, Michaux JR, Steppan SJ, Stoye JP. Evolutionary journey of the retroviral restriction gene Fv1. Proc Natl Acad Sci U S A. 2018;115:10130–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanco-Melo D, Gifford RJ, Bieniasz PD. Co-option of an endogenous retrovirus envelope for host defense in hominid ancestors. Elife. 2017;6. https://doi.org/10.7554/eLife.22519.
Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2015;162:974–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY, et al. DNA-Demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell. 2015;162:961–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt N, Domingues P, Golebiowski F, Patzina C, Tatham MH, Hay RT, et al. An influenza virus-triggered SUMO switch orchestrates co-opted endogenous retroviruses to stimulate host antiviral immunity. Proc Natl Acad Sci U S A. 2019;116:17399–408.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelly CJ, Chitko-McKown C, Chuong EB. Ruminant-specific retrotransposons shape regulatory evolution of bovine immunity. bioRxiv. 2021:2021.10.01.462810 Available from: https://www.biorxiv.org/content/10.1101/2021.10.01.462810. Cited 2022 Feb 25.
Chuong EB, Elde NC, Feschotte C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science. 2016;351:1083–7 American Association for the Advancement of Science.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srinivasachar Badarinarayan S, Shcherbakova I, Langer S, Koepke L, Preising A, Hotter D, et al. HIV-1 infection activates endogenous retroviral promoters regulating antiviral gene expression. Nucleic Acids Res. 2020;48:10890–908.
Article
PubMed
PubMed Central
CAS
Google Scholar
van de Lagemaat LN, Landry J-R, Mager DL, Medstrand P. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 2003;19:530–6.
Article
PubMed
CAS
Google Scholar
Bogdan L, Barreiro L, Bourque G. Transposable elements have contributed human regulatory regions that are activated upon bacterial infection. Philos Trans R Soc Lond Ser B Biol Sci. 2020;375:20190332.
Article
CAS
Google Scholar
Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356:92–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Myotis_lucifugus. DNA Zoo. Available from: https://www.dnazoo.org/assemblies/Myotis_lucifugus. Cited 2022 Jun 7.
Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci U S A. 2020;117:9451–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong W, He L, Lai J, Dooner HK, Du C. HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes. Proc Natl Acad Sci U S A. 2014;111:10263–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tempel S. Using and understanding RepeatMasker. Methods Mol Biol. 2012;859:29–51.
Article
CAS
PubMed
Google Scholar
RepeatMasker Home Page. Available from: http://www.repeatmasker.org. Cited 2022 Apr 12.
Ray DA, Pagan HJT, Thompson ML, Stevens RD. Bats with hATs: evidence for recent DNA transposon activity in genus Myotis. Mol Biol Evol. 2007;24:632–9.
Article
CAS
PubMed
Google Scholar
Zhu A, Ibrahim JG, Love MI. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics. 2019;35:2084–92.
Article
CAS
PubMed
Google Scholar
Jin Y, Tam OH, Paniagua E, Hammell M. TEtranscripts: a package for including transposable elements in differential expression analysis of RNA-seq datasets. Bioinformatics. 2015;31:3593–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pasquesi GIM, Perry BW, Vandewege MW, Ruggiero RP, Schield DR, Castoe TA. Vertebrate lineages exhibit diverse patterns of transposable element regulation and expression across tissues. Genome Biol Evol. 2020;12:506–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xue AT, Ruggiero RP, Hickerson MJ, Boissinot S. Differential effect of selection against LINE retrotransposons among vertebrates inferred from whole-genome data and demographic modeling. Genome Biol Evol. 2018;10:1265–81.
Article
PubMed
PubMed Central
Google Scholar
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.
Article
CAS
Google Scholar
Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 2019;20:278.
Article
CAS
PubMed
PubMed Central
Google Scholar
Böhne A, Zhou Q, Darras A, Schmidt C, Schartl M, Galiana-Arnoux D, et al. Zisupton - a novel superfamily of DNA transposable elements recently active in fish. Mol Biol Evol. 2011;29:631–45 Oxford Academic.
Article
PubMed
CAS
Google Scholar
Bao W, Kojima KK, Kohany O. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015;6:11.
Article
PubMed
PubMed Central
Google Scholar
Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature. 2000;403:785–9.
Article
CAS
PubMed
Google Scholar
Horie M, Kobayashi Y, Honda T, Fujino K, Akasaka T, Kohl C, et al. An RNA-dependent RNA polymerase gene in bat genomes derived from an ancient negative-strand RNA virus. Sci Rep. 2016;6:25873.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X, et al. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science. 2013;339:456–60.
Article
CAS
PubMed
Google Scholar
Pavlovich SS, Lovett SP, Koroleva G, Guito JC, Arnold CE, Nagle ER, et al. The Egyptian Rousette genome reveals unexpected features of bat antiviral immunity. Cell. 2018;173:1098–110.e18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kobayashi KS, van den Elsen PJ. NLRC5: a key regulator of MHC class I-dependent immune responses. Nat Rev Immunol. 2012;12:813–20.
Article
CAS
PubMed
Google Scholar
Benkő S, Kovács EG, Hezel F, Kufer TA. NLRC5 functions beyond MHC I regulation-what do we know so far? Front Immunol. 2017;8:150.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ostuni R, Piccolo V, Barozzi I, Polletti S, Termanini A, Bonifacio S, et al. Latent enhancers activated by stimulation in differentiated cells. Cell. 2013;152:157–71 Elsevier.
Article
CAS
PubMed
Google Scholar
Qiao Y, Giannopoulou EG, Chan CH, Park S-H, Gong S, Chen J, et al. Synergistic activation of inflammatory cytokine genes by interferon-γ-induced chromatin remodeling and toll-like receptor signaling. Immunity. 2013;39:454–69.
Article
CAS
PubMed
Google Scholar
Bondet V, Le Baut M, Le Poder S, Lécu A, Petit T, Wedlarski R, et al. Constitutive IFNα protein production in bats. Front Immunol. 2021;12:735866.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kepler TB, Sample C, Hudak K, Roach J, Haines A, Walsh A, et al. Chiropteran types I and II interferon genes inferred from genome sequencing traces by a statistical gene-family assembler. BMC Genomics. 2010;11:444.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S, et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature. 2011;478:476–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dudchenko O, Shamim MS, Batra SS, Durand NC, Musial NT, Mostofa R, et al. The Juicebox Assembly Tools module facilitates de novo assembly of mammalian genomes with chromosome-length scaffolds for under $1000. bioRxiv. 2018:254797 Available from: https://www.biorxiv.org/content/10.1101/254797v1. Cited 2022 Apr 18.
Belton J-M, McCord RP, Gibcus JH, Naumova N, Zhan Y, Dekker J. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods. 2012;58:268–76.
Article
CAS
PubMed
Google Scholar
Pasquesi GIM, Adams RH, Card DC, Schield DR, Corbin AB, Perry BW, et al. Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals. Nat Commun. 2018;9:2774.
Article
PubMed
PubMed Central
CAS
Google Scholar
Janssens D, Henikoff S. CUT&RUN: targeted in situ genome-wide profiling with high efficiency for low cell numbers v3. protocols.io: ZappyLab, Inc.; 2019. Available from: https://www.protocols.io/view/cut-amp-run-targeted-in-situ-genome-wide-profiling-zcpf2vn
Google Scholar
Meers MP, Bryson TD, Henikoff JG, Henikoff S. Improved CUT&RUN chromatin profiling tools. Elife. 2019;8. https://doi.org/10.7554/eLife.46314.
BBMap. SourceForge. Available from: https://www.sourceforge.net/projects/bbmap/. Accessed Feb 2019
Babraham bioinformatics - FastQC A quality control tool for high throughput sequence data Available from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Version 0.11.08 - 2018/04/10
Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
Article
CAS
PubMed
Google Scholar
CCGB: Miller Lab, LASTZ. Available from: https://www.bx.psu.edu/~rsharris/lastz/. Accessed Feb 2021.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019;47:W199–205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pertea G, Pertea M. GFF utilities: GffRead and GffCompare. F1000Res. 2020;9. https://doi.org/10.12688/f1000research.23297.2.
Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 2000;28:45–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.
Article
PubMed
PubMed Central
CAS
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakagawa S, Takahashi MU. gEVE: a genome-based endogenous viral element database provides comprehensive viral protein-coding sequences in mammalian genomes. Database. 2016;2016. https://doi.org/10.1093/database/baw087.
Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022;50:D20–6.
Article
CAS
PubMed
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
Article
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramírez F, Dündar F, Diehl S, Grüning BA, Manke T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 2014;42:W187–91.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44:W160–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu T. Use model-based analysis of ChIP-Seq (MACS) to analyze short reads generated by sequencing protein–DNA interactions in embryonic stem cells. In: Kidder BL, editor. Stem cell transcriptional networks: methods and protocols. New York: Springer New York; 2014. p. 81–95.
Chapter
Google Scholar
Grant CE, Bailey TL. XSTREME: comprehensive motif analysis of biological sequence datasets. bioRxiv. 2021; Available from: https://www.biorxiv.org/content/10.1101/2021.09.02.458722v1.
Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48:D87–92.
Article
CAS
PubMed
Google Scholar
Layer RM, Pedersen BS, DiSera T, Marth GT, Gertz J, Quinlan AR. GIGGLE: a search engine for large-scale integrated genome analysis. Nat Methods. 2018;15:123–6.
Article
CAS
PubMed
PubMed Central
Google Scholar