McClintock B: Significance of responses of the genome to challenge. Science. 1984, 226: 792-801. 10.1126/science.15739260.
Article
CAS
PubMed
Google Scholar
Darwin C: Origin of species. 1859, London: John Russel
Google Scholar
Lyell C: Principles of geology. 1830, Edinburgh: John Murray
Google Scholar
Wikipedia.http://en.wikipedia.org/wiki/Modern_evolutionary_synthesis
Huxley J: Evolution: the modern synthesis. 1942, London: Allen & Unwin
Google Scholar
Craig NL, Craigie R, Gellert M, Lambowitz AM: Mobile DNA II. 2002, Washington, DC: American Society of Microbiology Press
Book
Google Scholar
McClintock B: A Correlation of ring-shaped chromosomes with variegation in Zea Mays. Proc Nat Acad Sci USA. 1932, 18: 677-681. 10.1073/pnas.18.12.677.
Article
PubMed Central
CAS
PubMed
Google Scholar
McClintock B: The Production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics. 1938, 23: 315-376.
PubMed Central
CAS
PubMed
Google Scholar
McClintock B: The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc Nat Acad Sci USA. 1939, 25: 405-416. 10.1073/pnas.25.8.405.
Article
PubMed Central
CAS
PubMed
Google Scholar
McClintock B: The stability of broken ends of chromosomes in Zea Mays. Genetics. 1941, 26: 234-282.
PubMed Central
CAS
PubMed
Google Scholar
McClintock B: The fusion of broken ends of chromosomes following nuclear fusion. Proc Nat Acad Sci USA. 1942, 28: 458-463. 10.1073/pnas.28.11.458.
Article
PubMed Central
CAS
PubMed
Google Scholar
McClintock B: Discovery and characterization of transposable elements: the collected papers of Barbara McClintock. 1987, New York: Garland
Google Scholar
Judson H: The eighth day of creation: makers of the revolution in biology. 1979, New York: Simon & Schuster
Google Scholar
Crick F: On protein synthesis. Symp Soc Exp Biol. 1958, 12: 138-163.
CAS
PubMed
Google Scholar
Temin H, Mizutani S: RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature. 1970, 226: 1211-1213. 10.1038/2261211a0.
Article
CAS
PubMed
Google Scholar
Crick F: Central dogma of molecular biology. Nature. 1970, 227: 561-563. 10.1038/227561a0.
Article
CAS
PubMed
Google Scholar
Shapiro JA: Genome informatics: The role of DNA in cellular computations. Biological Theory. 2006, 1: 288-301. 10.1162/biot.2006.1.3.288.
Article
Google Scholar
Shapiro JA: Revisiting the central dogma in the 21st Century. Ann NY Acad Sci. 2009, 1178: 6-28. 10.1111/j.1749-6632.2009.04990.x.
Article
CAS
PubMed
Google Scholar
Kunkel B, Losick R, Stragier P: The Bacillus subtilis gene for the development transcription factor sigma K is generated by excision of a dispensable DNA element containing a sporulation recombinase gene. Genes Dev. 1990, 4: 525-535. 10.1101/gad.4.4.525.
Article
CAS
PubMed
Google Scholar
Barbour AG, Restrepo BI: Antigenic variation in vector-borne pathogens. Emerg Infect Dis. 2000, 6: 449-457. 10.3201/eid0605.000502.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gellert M: V(D)J recombination: RAG proteins, repair factors, and regulation. Ann Rev Biochem. 2002, 71: 101-132. 10.1146/annurev.biochem.71.090501.150203.
Article
CAS
PubMed
Google Scholar
Garnier O, Serrano V, Duharcourt S, Meyer E: RNA-mediated programming of developmental genome rearrangements in Paramecium tetraurelia. Mol Cell Biol. 2004, 24: 7370-7379. 10.1128/MCB.24.17.7370-7379.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pabo C, Sauer RT, Sturtevant JM, Ptashne M: The lambda repressor contains two domains. Proc Nat Acad Sci USA. 1979, 76: 1608-1612. 10.1073/pnas.76.4.1608.
Article
PubMed Central
CAS
PubMed
Google Scholar
Doolittle RF: The multiplicity of domains in proteins. Annu Rev Biochem. 1995, 64: 287-314. 10.1146/annurev.bi.64.070195.001443.
Article
CAS
PubMed
Google Scholar
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W: Initial sequencing and analysis of the human genome. Nature. 2001, 409: 860-921. 10.1038/35057062.
Article
CAS
PubMed
Google Scholar
Nekrutenko A, Li WH: Transposable elements are found in a large number of human protein-coding genes. Trends Genet. 2001, 17: 619-621. 10.1016/S0168-9525(01)02445-3.
Article
CAS
PubMed
Google Scholar
Sorek R: The birth of new exons: mechanisms and evolutionary consequences. RNA. 2007, 13: 1603-1608. 10.1261/rna.682507.
Article
PubMed Central
CAS
PubMed
Google Scholar
Britten RJ: Transposable elements have contributed to thousands of human proteins. Proc Nat Acad Sci USA. 2006, 103: 1798-1803. 10.1073/pnas.0510007103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bowen NJ, Jordan IK: Exaptation of protein coding sequences from transposable elements. Genome Dyn. 2007, 3: 147-162. full_text.
Article
CAS
PubMed
Google Scholar
Cordaux R, Udit S, Batzer MA, Feschotte C: Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc Natl Acad Sci USA. 2006, 103: 8101-8106. 10.1073/pnas.0601161103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sternberg RV, Shapiro JA: How repeated retroelements format genome function. Cytogenet Genome Res. 2005, 110: 108-116. 10.1159/000084942.
Article
CAS
Google Scholar
Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR: Pack-MULE transposable elements mediate gene evolution in plants. Nature. 2004, 431: 569-573. 10.1038/nature02953.
Article
CAS
PubMed
Google Scholar
Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A: Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet. 2005, 37: 997-1002. 10.1038/ng1615.
Article
CAS
PubMed
Google Scholar
Sweredoski M, DeRose-Wilson L, Gaut BS: A comparative computational analysis of nonautonomous helitron elements between maize and rice. BMC Genomics. 2008, 9: 467-10.1186/1471-2164-9-467.
Article
PubMed Central
PubMed
CAS
Google Scholar
Pickeral OK, Makalowski W, Boguski MS, Boeke JD: Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res. 2000, 10: 411-415. 10.1101/gr.10.4.411.
Article
PubMed Central
CAS
PubMed
Google Scholar
Moran JV, DeBerardinis RJ, Kazazian HH: Exon shuffling by L1 retrotransposition. Science. 1999, 283: 1530-1534. 10.1126/science.283.5407.1530.
Article
CAS
PubMed
Google Scholar
Ejima Y, Yang L: Trans mobilization of genomic DNA as a mechanism for retrotransposon-mediated exon shuffling. Hum Mol Genet. 2003, 12: 1321-1328. 10.1093/hmg/ddg138.
Article
CAS
PubMed
Google Scholar
Wheelan SJ, Aizawa Y, Han JS, Boeke JD: Gene-breaking: a new paradigm for human retrotransposon-mediated gene evolution. Genome Res. 2005, 15: 1073-1078. 10.1101/gr.3688905.
Article
PubMed Central
CAS
PubMed
Google Scholar
Han K, Lee J, Meyer TJ, Remedios P, Goodwin L, Batzer MA: L1 recombination-associated deletions generate human genomic variation. Proc Natl Acad Sci USA. 2008, 105: 19366-19371. 10.1073/pnas.0807866105.
Article
PubMed Central
CAS
PubMed
Google Scholar
De Crombrugghe BAS, Gottesman M, Pastan I: Effect of Rho on transcription of bacterial operons. Nature New Biology. 1973, 241: 260-264. 10.1038/241260a0.
Article
CAS
PubMed
Google Scholar
Pilacinski W, Mosharrafa E, Edmundson R, Zissler J, Fiandt M, Szybalski W: Insertion sequence IS2 associated with int-constitutive mutants of bacteriophage lambda. Gene. 1977, 2: 61-74. 10.1016/0378-1119(77)90073-7.
Article
CAS
PubMed
Google Scholar
Errede B, Cardillo TS, Wever G, Sherman F, Stiles JI, Friedman LR, Sherman F: Studies on transposable elements in yeast. I. ROAM mutations causing increased expression of yeast genes: their activation by signals directed toward conjugation functions and their formation by insertion of Ty1 repetitive elements. II. deletions, duplications, and transpositions of the COR segment that encompasses the structural gene of yeast iso-1-cytochrome C. Cold Spring Harb Symp Quant Biol. 1981, 45 (Pt 2): 593-607.
Article
CAS
PubMed
Google Scholar
Romanish MT, Lock WM, Lagemaat van de LN, Dunn CA, Mager DL: Repeated recruitment of LTR retrotransposons as promoters by the anti-apoptotic locus NAIP during mammalian evolution. PLoS Genet. 2007, 3: e10-10.1371/journal.pgen.0030010.
Article
PubMed Central
PubMed
CAS
Google Scholar
Cui X, Hsia AP, Liu F, Ashlock DA, Wise RP, Schnable PS: Alternative transcription initiation sites and polyadenylation sites are recruited during Mu suppression at the rf2a locus of maize. Genetics. 2003, 163: 685-698.
PubMed Central
CAS
PubMed
Google Scholar
Chen C, Ara T, Gautheret D: Using Alu elements as polyadenylation sites: A case of retroposon exaptation. Mol Biol Evol. 2009, 26: 327-334. 10.1093/molbev/msn249.
Article
CAS
PubMed
Google Scholar
Britten RJ: Cases of ancient mobile element DNA insertions that now affect gene regulation. Mol Phylogenet Evol. 1996, 5: 13-17. 10.1006/mpev.1996.0003.
Article
CAS
PubMed
Google Scholar
Bourque G, Leong B, Vega VB, Chen X, Lee YL, Srinivasan KG, Chew JL, Ruan Y, Wei CL, Ng HH, Liu ET: Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 2008, 18: 1752-1762. 10.1101/gr.080663.108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Marino-Ramirez L, Lewis KC, Landsman D, Jordan IK: Transposable elements donate lineage-specific regulatory sequences to host genomes. Cytogenet Genome Res. 2005, 110: 333-341. 10.1159/000084965.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wessler SR, Baran G, Varagona M: The maize transposable element Ds is spliced from RNA. Science. 1987, 237: 916-918. 10.1126/science.3039661.
Article
CAS
PubMed
Google Scholar
Wessler SR: The maize transposable Ds1 element is alternatively spliced from exon sequences. Mol Cell Biol. 1991, 11: 6192-6196.
Article
PubMed Central
CAS
PubMed
Google Scholar
Varagona MJ, Purugganan M, Wessler SR: Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. Plant Cell. 1992, 4: 811-820. 10.1105/tpc.4.7.811.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zabala G, Vodkin L: Novel exon combinations generated by alternative splicing of gene fragments mobilized by a CACTA transposon in Glycine max. BMC Plant Biol. 2007, 7: 38-10.1186/1471-2229-7-38.
Article
PubMed Central
PubMed
CAS
Google Scholar
Lev-Maor G, Ram O, Kim E, Sela N, Goren A, Levanon EY, Ast G: Intronic Alus influence alternative splicing. PLoS Genet. 2008, 4: e1000204-10.1371/journal.pgen.1000204.
Article
PubMed Central
PubMed
CAS
Google Scholar
Gal-Mark N, Schwartz S, Ast G: Alternative splicing of Alu exons--two arms are better than one. Nucleic Acids Res. 2008, 36: 2012-2023. 10.1093/nar/gkn024.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schwartz S, Gal-Mark N, Kfir N, Oren R, Kim E, Ast G: Alu exonization events reveal features required for precise recognition of exons by the splicing machinery. PLoS Comput Biol. 2009, 5: e1000300-10.1371/journal.pcbi.1000300.
Article
PubMed Central
PubMed
CAS
Google Scholar
Girard A, Hannon GJ: Conserved themes in small-RNA-mediated transposon control. Trends Cell Biol. 2008, 18: 136-148. 10.1016/j.tcb.2008.01.004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R: Role of transposable elements in heterochromatin and epigenetic control. Nature. 2004, 430: 471-476. 10.1038/nature02651.
Article
CAS
PubMed
Google Scholar
Gerasimova TI, Byrd K, Corces VG: A chromatin insulator determines the nuclear localization of DNA. Mol Cell. 2000, 6: 1025-1035. 10.1016/S1097-2765(00)00101-5.
Article
CAS
PubMed
Google Scholar
Kinoshita Y, Saze H, Kinoshita T, Miura A, Soppe WJ, Koornneef M, Kakutani T: Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J. 2007, 49: 38-45. 10.1111/j.1365-313X.2006.02936.x.
Article
CAS
PubMed
Google Scholar
Gehring M, Bubb KL, Henikoff S: Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science. 2009, 324: 1447-1451. 10.1126/science.1171609.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, Hino T, Suzuki-Migishima R, Ogonuki N, Miki H, Kohda T, Ogura A, Yokoyama M, Kaneko-Ishino T, Ishino F: Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet. 2006, 38: 101-106. 10.1038/ng1699.
Article
CAS
PubMed
Google Scholar
Sekita Y, Wagatsuma H, Nakamura K, Ono R, Kagami M, Wakisaka N, Hino T, Suzuki-Migishima R, Kohda T, Ogura A, Ogata T, Yokoyama M, Kaneko-Ishino T, Ishino F: Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nat Genet. 2008, 40: 243-248. 10.1038/ng.2007.51.
Article
CAS
PubMed
Google Scholar
Kuang H, Padmanabhan C, Li F, Kamei A, Bhaskar PB, Ouyang S, Jiang J, Buell CR, Baker B: Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: new functional implications for MITEs. Genome Res. 2009, 19: 42-56. 10.1101/gr.078196.108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Obbard DJ, Gordon KH, Buck AH, Jiggins FM: The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans R Soc Lond B Biol Sci. 2009, 364: 99-115. 10.1098/rstb.2008.0168.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hanada K, Vallejo V, Nobuta K, Slotkin RK, Lisch D, Meyers BC, Shiu SH, Jiang N: The functional role of pack-MULEs in rice inferred from purifying selection and expression profile. Plant Cell. 2009, 21: 25-38. 10.1105/tpc.108.063206.
Article
PubMed Central
CAS
PubMed
Google Scholar
Piriyapongsa J, Marino-Ramirez L, Jordan IK: Origin and evolution of human microRNAs from transposable elements. Genetics. 2007, 176: 1323-1337. 10.1534/genetics.107.072553.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lehnert S, Van Loo P, Thilakarathne PJ, Marynen P, Verbeke G, Schuit FC: Evidence for co-evolution between human microRNAs and Alu-repeats. PLoS One. 2009, 4: e4456-10.1371/journal.pone.0004456.
Article
PubMed Central
PubMed
CAS
Google Scholar
Zhang R, Wang YQ, Su B: Molecular evolution of a primate-specific microRNA family. Mol Biol Evol. 2008, 25: 1493-1502. 10.1093/molbev/msn094.
Article
CAS
PubMed
Google Scholar
Devor EJ, Peek AS, Lanier W, Samollow PB: Marsupial-specific microRNAs evolved from marsupial-specific transposable elements. Gene. 2009, 448: 187-91. 10.1016/j.gene.2009.06.019.
Article
PubMed Central
CAS
PubMed
Google Scholar
McClintock B: Intranuclear systems controlling gene action and mutation. Brookhaven Symp Biol. 1956, 58-74.
Google Scholar
Peaston AE, Evsikov AV, Graber JH, de Vries WN, Holbrook AE, Solter D, Knowles BB: Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell. 2004, 7: 597-606. 10.1016/j.devcel.2004.09.004.
Article
CAS
PubMed
Google Scholar
Johnson R, Gamblin RJ, Ooi L, Bruce AW, Donaldson IJ, Westhead DR, Wood IC, Jackson RM, Buckley NJ: Identification of the REST regulon reveals extensive transposable element-mediated binding site duplication. Nucleic Acids Res. 2006, 34: 3862-3877. 10.1093/nar/gkl525.
Article
PubMed Central
CAS
PubMed
Google Scholar
Avery OT, MacLeod CM, McCarty M: Studies on the chemical nature of the substance inducing transformation of Pneumococcal types: Induction of transformation by a desoxyribonucleic acid fraction isolated prom Pneumococcus Type III. J Exp Med. 1944, 79: 137-158. 10.1084/jem.79.2.137.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hayes W: The genetics of bacteria and their viruses. 1968, London: Blackwell, 2 edn
Google Scholar
Bukhari AI, Shapiro JA, Adhya SL, Eds: DNA insertion elements, plasmids and episomes. 1977, Cold Spring Harbor, New York: Cold Spring Harbor Press
Google Scholar
Koonin EV, Makarova KS, Aravind L: Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol. 2001, 55: 709-742. 10.1146/annurev.micro.55.1.709.
Article
CAS
PubMed
Google Scholar
Hacker J, Carniel E: Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep. 2001, 2: 376-381.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kado CI: Horizontal gene transfer: sustaining pathogenicity and optimizing host-pathogen interactions. Mol Plant Pathol. 2009, 10: 143-150. 10.1111/j.1364-3703.2008.00518.x.
Article
CAS
PubMed
Google Scholar
Young JP, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson AR, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J: The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol. 2006, 7: R34-10.1186/gb-2006-7-4-r34.
Article
PubMed Central
PubMed
CAS
Google Scholar
Fournier G: Horizontal gene transfer and the evolution of methanogenic pathways. Methods Mol Biol. 2009, 532: 163-179. full_text.
Article
CAS
PubMed
Google Scholar
Ullrich S, Kube M, Schubbe S, Reinhardt R, Schuler D: A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J Bacteriol. 2005, 187: 7176-7184. 10.1128/JB.187.21.7176-7184.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Doolittle WF: Phylogenetic classification and the universal tree. Science. 1999, 284: 2124-2129. 10.1126/science.284.5423.2124.
Article
CAS
PubMed
Google Scholar
Beiko RG, Doolittle WF, Charlebois RL: The impact of reticulate evolution on genome phylogeny. Syst Biol. 2008, 57: 844-856. 10.1080/10635150802559265.
Article
PubMed
Google Scholar
Keeling PJ, Palmer JD: Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet. 2008, 9: 605-618. 10.1038/nrg2386.
Article
CAS
PubMed
Google Scholar
Andersson JO: Lateral gene transfer in eukaryotes. Cell Mol Life Sci. 2005, 62: 1182-1197. 10.1007/s00018-005-4539-z.
Article
CAS
PubMed
Google Scholar
Bartolome C, Bello X, Maside X: Widespread evidence for horizontal transfer of transposable elements across Drosophila genomes. Genome Biol. 2009, 10: R22-10.1186/gb-2009-10-2-r22.
Article
PubMed Central
PubMed
CAS
Google Scholar
Pace JK, Gilbert C, Clark MS, Feschotte C: Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods. Proc Natl Acad Sci USA. 2008, 105: 17023-17028. 10.1073/pnas.0806548105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Roulin A, Piegu B, Fortune PM, Sabot F, D'Hont A, Manicacci D, Panaud O: Whole genome surveys of rice, maize and sorghum reveal multiple horizontal transfers of the LTR-retrotransposon Route66 in Poaceae. BMC Evol Biol. 2009, 9: 58-10.1186/1471-2148-9-58.
Article
PubMed Central
PubMed
CAS
Google Scholar
Hotopp JC, Clark ME, Oliveira DC, Foster JM, Fischer P, Torres MC, Giebel JD, Kumar N, Ishmael N, Wang S, Ingram J, Nene RV, Shepard J, Tomkins J, Richards S, Spiro DJ, Ghedin E, Slatko BE, Tettelin H, Werren JH: Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science. 2007, 317: 1753-1756. 10.1126/science.1142490.
Article
CAS
Google Scholar
Mower JP, Stefanovic S, Young GJ, Palmer JD: Plant genetics: gene transfer from parasitic to host plants. Nature. 2004, 432: 165-166. 10.1038/432165b.
Article
CAS
PubMed
Google Scholar
Davis CC, Wurdack KJ: Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science. 2004, 305: 676-678. 10.1126/science.1100671.
Article
CAS
PubMed
Google Scholar
Ricard G, McEwan NR, Dutilh BE, Jouany JP, Macheboeuf D, Mitsumori M, McIntosh FM, Michalowski T, Nagamine T, Nelson N, Newbold CJ, Nsabimana E, Takenaka A, Thomas NA, Ushida K, Hackstein JH, Huynen MA: Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment. BMC Genomics. 2006, 7: 22-10.1186/1471-2164-7-22.
Article
PubMed Central
PubMed
CAS
Google Scholar
Bergthorsson U, Adams KL, Thomason B, Palmer JD: Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature. 2003, 424: 197-201. 10.1038/nature01743.
Article
CAS
PubMed
Google Scholar
Keeling PJ: Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids. Methods Mol Biol. 2009, 532: 501-515. full_text.
Article
CAS
PubMed
Google Scholar
Koulintchenko M, Konstantinov Y, Dietrich A: Plant mitochondria actively import DNA via the permeability transition pore complex. Embo J. 2003, 22: 1245-1254. 10.1093/emboj/cdg128.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rogers M, Keeling PJ: Lateral transfer and recompartmentalization of Calvin cycle enzymes of plants and algae. J Mol Evol. 2004, 58: 367-375. 10.1007/s00239-003-2558-7.
Article
CAS
PubMed
Google Scholar
Richards TA, Dacks JB, Jenkinson JM, Thornton CR, Talbot NJ: Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms. Curr Biol. 2006, 16: 1857-1864. 10.1016/j.cub.2006.07.052.
Article
CAS
PubMed
Google Scholar
Alsmark UC, Sicheritz-Ponten T, Foster PG, Hirt RP, Embley TM: Horizontal gene transfer in eukaryotic parasites: a case study of Entamoeba histolytica and Trichomonas vaginalis. Methods Mol Biol. 2009, 532: 489-500. full_text.
Article
CAS
PubMed
Google Scholar
Mitreva M, Smant G, Helder J: Role of horizontal gene transfer in the evolution of plant parasitism among nematodes. Methods Mol Biol. 2009, 532: 517-535. full_text.
Article
CAS
PubMed
Google Scholar
Gray MW: Origin and evolution of organelle genomes. Curr Opin Genet Dev. 1993, 3: 884-890. 10.1016/0959-437X(93)90009-E.
Article
CAS
PubMed
Google Scholar
Embley TM: Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Philos Trans R Soc Lond B Biol Sci. 2006, 361: 1055-1067. 10.1098/rstb.2006.1844.
Article
CAS
PubMed
Google Scholar
Embley TM, Martin W: Eukaryotic evolution, changes and challenges. Nature. 2006, 440: 623-630. 10.1038/nature04546.
Article
CAS
PubMed
Google Scholar
Lane CE, Archibald JM: The eukaryotic tree of life: endosymbiosis takes its TOL. Trends Ecol Evol. 2008, 23: 268-275. 10.1016/j.tree.2008.02.004.
Article
PubMed
Google Scholar
Pfanzagl B, Zenker A, Pittenauer E, Allmaier G, Martinez-Torrecuadrada J, Schmid ER, De Pedro MA, Loffelhardt W: Primary structure of cyanelle peptidoglycan of Cyanophora paradoxa: a prokaryotic cell wall as part of an organelle envelope. J Bacteriol. 1996, 178: 332-339.
PubMed Central
CAS
PubMed
Google Scholar
Kleine T, Maier UG, Leister D: DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Annu Rev Plant Biol. 2009, 60: 115-138. 10.1146/annurev.arplant.043008.092119.
Article
CAS
PubMed
Google Scholar
Martin W: Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc Natl Acad Sci USA. 2003, 100: 8612-8614. 10.1073/pnas.1633606100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Burger G, Gray MW, Lang BF: Mitochondrial genomes: anything goes. Trends Genet. 2003, 19: 709-716. 10.1016/j.tig.2003.10.012.
Article
CAS
PubMed
Google Scholar
Krause K: From chloroplasts to "cryptic" plastids: evolution of plastid genomes in parasitic plants. Curr Genet. 2008, 54: 111-121. 10.1007/s00294-008-0208-8.
Article
CAS
PubMed
Google Scholar
Lopez-Juez E, Pyke KA: Plastids unleashed: their development and their integration in plant development. Int J Dev Biol. 2005, 49: 557-577. 10.1387/ijdb.051997el.
Article
CAS
PubMed
Google Scholar
de Koning AP, Keeling PJ: The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured. BMC Biol. 2006, 4: 12-10.1186/1741-7007-4-12.
Article
PubMed Central
PubMed
CAS
Google Scholar
Barbrook AC, Howe CJ, Purton S: Why are plastid genomes retained in non-photosynthetic organisms?. Trends Plant Sci. 2006, 11: 101-108. 10.1016/j.tplants.2005.12.004.
Article
CAS
PubMed
Google Scholar
Archibald JM: Nucleomorph genomes: structure, function, origin and evolution. Bioessays. 2007, 29: 392-402. 10.1002/bies.20551.
Article
CAS
PubMed
Google Scholar
Gould SB, Sommer MS, Kroth PG, Gile GH, Keeling PJ, Maier UG: Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms. Mol Biol Evol. 2006, 23: 2413-2422. 10.1093/molbev/msl113.
Article
CAS
PubMed
Google Scholar
Hackett J, Anderson DM, Erdner DL, Bhattacharya D: Dinoflagellates: A remarkable evolutionary experiment. Am J Bot. 2004, 91: 1523-1534. 10.3732/ajb.91.10.1523.
Article
CAS
PubMed
Google Scholar
Nosenko T, Lidie KL, Van Dolah FM, Lindquist E, Cheng JF, Bhattacharya D: Chimeric plastid proteome in the Florida "red tide" dinoflagellate Karenia brevis. Mol Biol Evol. 2006, 23: 2026-2038. 10.1093/molbev/msl074.
Article
CAS
PubMed
Google Scholar
Wolfe KH, Shields DC: Molecular evidence for an ancient duplication of the entire yeast genome. Nature. 1997, 387: 708-713. 10.1038/42711.
Article
CAS
PubMed
Google Scholar
Scannell DR, Butler G, Wolfe KH: Yeast genome evolution--the origin of the species. Yeast. 2007, 24: 929-942. 10.1002/yea.1515.
Article
CAS
PubMed
Google Scholar
Aury JM, Jaillon O, Duret L, Noel B, Jubin C, Porcel BM, Segurens B, Daubin V, Anthouard V, Aiach N: Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature. 2006, 444: 171-178. 10.1038/nature05230.
Article
CAS
PubMed
Google Scholar
Cui L, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE, Doyle JJ, Soltis PS, Carlson JE, Arumuganathan K, Barakat A, Albert VA, Ma H, dePamphilis CW: Widespread genome duplications throughout the history of flowering plants. Genome Res. 2006, 16: 738-749. 10.1101/gr.4825606.
Article
PubMed Central
CAS
PubMed
Google Scholar
Darwin F, Seward AC, eds: More Letters of Charles Darwin. 1903, London: John Murray
Google Scholar
Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C: The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007, 449: 463-467. 10.1038/nature06148.
Article
CAS
PubMed
Google Scholar
Nakatani Y, Takeda H, Kohara Y, Morishita S: Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res. 2007, 17: 1254-1265. 10.1101/gr.6316407.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ohno S: Evolution by Gene Duplication. 1970, London: George Allen and Unwin
Book
Google Scholar
Semon M, Wolfe KH: Rearrangement rate following the whole-genome duplication in teleosts. Mol Biol Evol. 2007, 24: 860-867. 10.1093/molbev/msm003.
Article
CAS
PubMed
Google Scholar
Zhang G, Cohn MJ: Genome duplication and the origin of the vertebrate skeleton. Curr Opin Genet Dev. 2008, 18: 387-393. 10.1016/j.gde.2008.07.009.
Article
PubMed
CAS
Google Scholar
Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, Durphy JL, Schwarzbach AE, Donovan LA, Lexer C: Major ecological transitions in wild sunflowers facilitated by hybridization. Science. 2003, 301: 1211-1216. 10.1126/science.1086949.
Article
CAS
PubMed
Google Scholar
Veron AS, Kaufmann K, Bornberg-Bauer E: Evidence of interaction network evolution by whole-genome duplications: a case study in MADS-box proteins. Mol Biol Evol. 2007, 24: 670-678. 10.1093/molbev/msl197.
Article
CAS
PubMed
Google Scholar
Soltis PS, Soltis DE: The role of hybridization in plant speciation. Annu Rev Plant Biol. 2009, 60: 561-588. 10.1146/annurev.arplant.043008.092039.
Article
CAS
PubMed
Google Scholar
Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF: Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet. 2008, 42: 443-461. 10.1146/annurev.genet.42.110807.091524.
Article
CAS
PubMed
Google Scholar
Wilson A: Wheat and rye hybrids. Edinburgh Botanical Society Transactions. 1876, 12: 286-288.
Article
Google Scholar
Meister G: Natural hybridization of wheat and rye in Russia. J Heredity. 1921, 12: 467-470.
Google Scholar
Ma XF, Gustafson JP: Allopolyploidization-accommodated genomic sequence changes in triticale. Ann Bot (Lond). 2008, 101: 825-832. 10.1093/aob/mcm331.
Article
Google Scholar
Hegarty MJ, Barker GL, Brennan AC, Edwards KJ, Abbott RJ, Hiscock SJ: Changes to gene expression associated with hybrid speciation in plants: further insights from transcriptomic studies in Senecio. Philos Trans R Soc Lond B Biol Sci. 2008, 363: 3055-3069. 10.1098/rstb.2008.0080.
Article
PubMed Central
CAS
PubMed
Google Scholar
Thompson J, Lumaret R: The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends Ecol Evol. 1992, 7: 302-307. 10.1016/0169-5347(92)90228-4.
Article
CAS
PubMed
Google Scholar
Eakin GS, Behringer RR: Tetraploid development in the mouse. Dev Dyn. 2003, 228: 751-766. 10.1002/dvdy.10363.
Article
PubMed
Google Scholar
Anderson E, Stebbins GL: Hybridization as an evolutionary stimulus. Evolution. 1954, 8: 378-388. 10.2307/2405784.
Article
Google Scholar
Arnold ML: Transfer and origin of adaptations through natural hybridization: were Anderson and Stebbins right?. Plant Cell. 2004, 16: 562-570. 10.1105/tpc.160370.
Article
PubMed Central
CAS
PubMed
Google Scholar
Otto SP, Whitton J: Polyploid incidence and evolution. Annu Rev Genet. 2000, 34: 401-437. 10.1146/annurev.genet.34.1.401.
Article
CAS
PubMed
Google Scholar
Dowling TE, Secour CL: The role of hybridization and introgression in the diversification of animals. Annu Rev Ecol Syst . 1997, 28: 593-619. 10.1146/annurev.ecolsys.28.1.593.
Article
Google Scholar
Arnold ML: Natural hybridization and the evolution of domesticated, pest and disease organisms. Mol Ecol. 2004, 13: 997-1007. 10.1111/j.1365-294X.2004.02145.x.
Article
CAS
PubMed
Google Scholar
Grant P, Grant BR: Hybridization of bird species. Science. 1992, 256: 193-197. 10.1126/science.256.5054.193.
Article
CAS
PubMed
Google Scholar
Grant PR, Grant BR: Unpredictable evolution in a 30-year study of Darwin's finches. Science. 2002, 296: 707-711. 10.1126/science.1070315.
Article
CAS
PubMed
Google Scholar
Frank O, Jones-Brando L, Leib-Mosch C, Yolken R, Seifarth W: Altered transcriptional activity of human endogenous retroviruses in neuroepithelial cells after infection with Toxoplasma gondii. J Infect Dis. 2006, 194: 1447-1449. 10.1086/508496.
Article
CAS
PubMed
Google Scholar
Kimura Y, Tosa Y, Shimada S, Sogo R, Kusaba M, Sunaga T, Betsuyaku S, Eto Y, Nakayashiki H, Mayama S: OARE-1, a Ty1-copia retrotransposon in oat activated by abiotic and biotic stresses. Plant Cell Physiol. 2001, 42: 1345-1354. 10.1093/pcp/pce171.
Article
CAS
PubMed
Google Scholar
Bregliano J, Kidwell M: Hybrid dysgenesis. Mobile Genetic Elements. Edited by: Shapiro J. 1983, New York: Academic Press, 363-410.
Google Scholar
Bucheton A: I transposable elements and I-R hybrid dysgenesis in Drosophila. Trends Genet. 1990, 6: 16-21. 10.1016/0168-9525(90)90044-7.
Article
CAS
PubMed
Google Scholar
Periquet G, Lemeunier F, Bigot Y, Hamelin MH, Bazin C, Ladeveze V, Eeken J, Galindo MI, Pascual L, Boussy I: The evolutionary genetics of the hobo transposable element in the Drosophila melanogaster complex. Genetica. 1994, 93: 79-90. 10.1007/BF01435241.
Article
CAS
PubMed
Google Scholar
Vrana PB, Fossella JA, Matteson P, del Rio T, O'Neill MJ, Tilghman SM: Genetic and epigenetic incompatibilities underlie hybrid dysgenesis in Peromyscus. Nat Genet. 2000, 25: 120-124. 10.1038/75518.
Article
CAS
PubMed
Google Scholar
Wang H, Chai Y, Chu X, Zhao Y, Wu Y, Zhao J, Ngezahayo F, Xu C, Liu B: Molecular characterization of a rice mutator-phenotype derived from an incompatible cross-pollination reveals transgenerational mobilization of multiple transposable elements and extensive epigenetic instability. BMC Plant Biol. 2009, 9: 63-10.1186/1471-2229-9-63.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ma XF, Gustafson JP: Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenet Genome Res. 2005, 109: 236-249. 10.1159/000082406.
Article
CAS
PubMed
Google Scholar
Vrana PB, Guan XJ, Ingram RS, Tilghman SM: Genomic imprinting is disrupted in interspecific Peromyscus hybrids. Nat Genet. 1998, 20: 362-365. 10.1038/3833.
Article
CAS
PubMed
Google Scholar
Madlung A, Masuelli RW, Watson B, Reynolds SH, Davison J, Comai L: Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol. 2002, 129: 733-746. 10.1104/pp.003095.
Article
PubMed Central
CAS
PubMed
Google Scholar
Josefsson C, Dilkes B, Comai L: Parent-dependent loss of gene silencing during interspecies hybridization. Curr Biol. 2006, 16: 1322-1328. 10.1016/j.cub.2006.05.045.
Article
CAS
PubMed
Google Scholar
Brown JD, Golden D, O'Neill RJ: Methylation perturbations in retroelements within the genome of a Mus interspecific hybrid correlate with double minute chromosome formation. Genomics. 2008, 91: 267-273. 10.1016/j.ygeno.2007.12.001.
Article
CAS
PubMed
Google Scholar
Moorhead P, Kaplan MM, Brown PW, eds: Mathematical challenges to the neo-darwinian interpretation of evolution. 1967, Philadelphia: Wistar Institute Press
Google Scholar
Shapiro JA: Genome system architecture and natural genetic engineering in evolution. Ann N Y Acad Sci. 1999, 870: 23-35. 10.1111/j.1749-6632.1999.tb08862.x.
Article
CAS
PubMed
Google Scholar
Shapiro JA: A 21st century view of evolution: genome system architecture, repetitive DNA, and natural genetic engineering. Gene. 2005, 345: 91-100. 10.1016/j.gene.2004.11.020.
Article
CAS
PubMed
Google Scholar
Jacob F: Evolution and tinkering. Science. 1977, 196: 1161-1166. 10.1126/science.860134.
Article
CAS
PubMed
Google Scholar
Jacob F: Complexity and tinkering. Ann N Y Acad Sci. 2001, 929: 71-73. 10.1111/j.1749-6632.2001.tb05708.x.
Article
CAS
PubMed
Google Scholar
Comai L, Madlung A, Josefsson C, Tyagi A: Do the different parental 'heteromes' cause genomic shock in newly formed allopolyploids?. Philos Trans R Soc Lond B Biol Sci. 2003, 358: 1149-1155. 10.1098/rstb.2003.1305.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gould SJ, Eldredge N: Punctuated equilibrium comes of age. Nature. 1993, 366: 223-227. 10.1038/366223a0.
Article
CAS
PubMed
Google Scholar
Kirchner J, Connolly CM, Sandmeyer SB: Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element. Science. 1995, 267: 1488-1491. 10.1126/science.7878467.
Article
CAS
PubMed
Google Scholar
Xie W, Gai X, Zhu Y, Zappulla DC, Sternglanz R, Voytas DF: Targeting of the yeast Ty5 retrotransposon to silent chromatin is mediated by interactions between integrase and Sir4p. Mol Cell Biol. 2001, 21: 6606-6614. 10.1128/MCB.21.19.6606-6614.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kassis JA: Pairing-sensitive silencing, polycomb group response elements, and transposon homing in Drosophila. Adv Genet. 2002, 46: 421-438. full_text.
Article
CAS
PubMed
Google Scholar
Peters JE, Craig NL: Tn7 recognizes transposition target structures associated with DNA replication using the DNA-binding protein TnsE. Genes Dev. 2001, 15: 737-747. 10.1101/gad.870201.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kinoshita K, Honjo T: Linking class-switch recombination with somatic hypermutation. Nat Rev Mol Cell Biol. 2001, 2: 493-503. 10.1038/35080033.
Article
CAS
PubMed
Google Scholar
Lisch D: Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol. 2009, 60: 43-66. 10.1146/annurev.arplant.59.032607.092744.
Article
CAS
PubMed
Google Scholar
Averhoff B, Friedrich A: Type IV pili-related natural transformation systems: DNA transport in mesophilic and thermophilic bacteria. Arch Microbiol. 2003, 180: 385-393. 10.1007/s00203-003-0616-6.
Article
CAS
PubMed
Google Scholar
Claverys JP, Prudhomme M, Martin B: Induction of competence regulons as a general response to stress in gram-positive bacteria. Annu Rev Microbiol. 2006, 60: 451-475. 10.1146/annurev.micro.60.080805.142139.
Article
CAS
PubMed
Google Scholar
Kay E, Vogel TM, Bertolla F, Nalin R, Simonet P: In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl Environ Microbiol. 2002, 68: 3345-3351. 10.1128/AEM.68.7.3345-3351.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
de Vries J, Herzfeld T, Wackernagel W: Transfer of plastid DNA from tobacco to the soil bacterium Acinetobacter sp. by natural transformation. Mol Microbiol. 2004, 53: 323-334. 10.1111/j.1365-2958.2004.04132.x.
Article
CAS
PubMed
Google Scholar
O'Neill C, Horvath GV, Horvath E, Dix PJ, Medgyesy P: Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. Plant J. 1993, 3: 729-738. 10.1111/j.1365-313X.1993.00729.x.
Article
PubMed
Google Scholar
Wolff JA, Budker V: The mechanism of naked DNA uptake and expression. Adv Genet. 2005, 54: 3-20.
CAS
PubMed
Google Scholar
Khalil IA, Kogure K, Akita H, Harashima H: Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 2006, 58: 32-45. 10.1124/pr.58.1.8.
Article
CAS
PubMed
Google Scholar
Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M: Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Nat Acad Sci USA. 1987, 84: 7413-7417. 10.1073/pnas.84.21.7413.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zuhorn IS, Kalicharan R, Hoekstra D: Lipoplex-mediated transfection of mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway of endocytosis. J Biol Chem. 2002, 277: 18021-18028. 10.1074/jbc.M111257200.
Article
CAS
PubMed
Google Scholar
Heinemann JA, Sprague GF: Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature. 1989, 340: 205-209. 10.1038/340205a0.
Article
CAS
PubMed
Google Scholar
Winans SC: Two-way chemical signaling in Agrobacterium-plant interactions. Microbiol Rev. 1992, 56: 12-31.
PubMed Central
CAS
PubMed
Google Scholar
Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LM, Yang W, Mayer JE, Roa-Rodriguez C, Jefferson RA: Gene transfer to plants by diverse species of bacteria. Nature. 2005, 433: 629-633. 10.1038/nature03309.
Article
CAS
PubMed
Google Scholar
Stanton TB: Prophage-like gene transfer agents-novel mechanisms of gene exchange for Methanococcus, Desulfovibrio, Brachyspira, and Rhodobacter species. Anaerobe. 2007, 13: 43-49. 10.1016/j.anaerobe.2007.03.004.
Article
CAS
PubMed
Google Scholar
Chung SM, Vaidya M, Tzfira T: Agrobacterium is not alone: gene transfer to plants by viruses and other bacteria. Trends Plant Sci. 2006, 11: 1-4. 10.1016/j.tplants.2005.11.001.
Article
CAS
PubMed
Google Scholar
El-Aneed A: An overview of current delivery systems in cancer gene therapy. J Control Release. 2004, 94: 1-14. 10.1016/j.jconrel.2003.09.013.
Article
CAS
PubMed
Google Scholar
Filee J, Pouget N, Chandler M: Phylogenetic evidence for extensive lateral acquisition of cellular genes by Nucleocytoplasmic large DNA viruses. BMC Evol Biol. 2008, 8: 320-10.1186/1471-2148-8-320.
Article
PubMed Central
PubMed
CAS
Google Scholar
Davis CC, Anderson WR, Wurdack KJ: Gene transfer from a parasitic flowering plant to a fern. Proc Biol Sci. 2005, 272: 2237-2242. 10.1098/rspb.2005.3226.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ungerer MC, Strakosh SC, Stimpson KM: Proliferation of Ty3/gypsy-like retrotransposons in hybrid sunflower taxa inferred from phylogenetic data. BMC Biol. 2009, 7: 40-10.1186/1741-7007-7-40.
Article
PubMed Central
PubMed
CAS
Google Scholar
Lai Z, Nakazato T, Salmaso M, Burke JM, Tang S, Knapp SJ, Rieseberg LH: Extensive chromosomal repatterning and the evolution of sterility barriers in hybrid sunflower species. Genetics. 2005, 171: 291-303. 10.1534/genetics.105.042242.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lim KY, Soltis DE, Soltis PS, Tate J, Matyasek R, Srubarova H, Kovarik A, Pires JC, Xiong Z, Leitch AR: Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae). PLoS One. 2008, 3: e3353-10.1371/journal.pone.0003353.
Article
PubMed Central
PubMed
CAS
Google Scholar
Salmon A, Ainouche ML, Wendel JF: Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol. 2005, 14: 1163-1175. 10.1111/j.1365-294X.2005.02488.x.
Article
CAS
PubMed
Google Scholar
Marfil CF, Masuelli RW, Davison J, Comai L: Genomic instability in Solanum tuberosum × Solanum kurtzianum interspecific hybrids. Genome. 2006, 49: 104-113.
CAS
PubMed
Google Scholar
Marfil CF, Camadro EL, Masuelli RW: Phenotypic instability and epigenetic variability in a diploid potato of hybrid origin, Solanum ruiz-lealii. BMC Plant Biol. 2009, 9: 21-10.1186/1471-2229-9-21.
Article
PubMed Central
PubMed
CAS
Google Scholar
Skalicka K, Lim KY, Matyasek R, Matzke M, Leitch AR, Kovarik A: Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomentosiformis genome donor of a synthetic, allotetraploid tobacco. New Phytol. 2005, 166: 291-303. 10.1111/j.1469-8137.2004.01297.x.
Article
CAS
PubMed
Google Scholar
Wang YM, Dong ZY, Zhang ZJ, Lin XY, Shen Y, Zhou D, Liu B: Extensive de Novo genomic variation in rice induced by introgression from wild rice (Zizania latifolia Griseb.). Genetics. 2005, 170: 1945-1956. 10.1534/genetics.105.040964.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shen YLX, Shan X: Genomic rearrangement in endogenous long terminal repeat retrotransposons of rice lines introgressed by wild rice (Zizania latifolia Griseb.). JOURNAL OF INTEGRATIVE PLANT BIOLOGY. 2005, 47: 998-1008. 10.1111/j.1744-7909.2005.00103.x.
Article
CAS
Google Scholar
Liu B, Wendel JF: Retrotransposon activation followed by rapid repression in introgressed rice plants. Genome. 2000, 43: 874-880. 10.1139/gen-43-5-874.
Article
CAS
PubMed
Google Scholar
Song K, Lu P, Tang K, Osborn TC: Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA. 1995, 92: 7719-7723. 10.1073/pnas.92.17.7719.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kantama L, Sharbel TF, Schranz ME, Mitchell-Olds T, de Vries S, de Jong H: Diploid apomicts of the Boechera holboellii complex display large-scale chromosome substitutions and aberrant chromosomes. Proc Natl Acad Sci USA. 2007, 104: 14026-14031. 10.1073/pnas.0706647104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Feldman M, Levy AA: Allopolyploidy--a shaping force in the evolution of wheat genomes. Cytogenet Genome Res. 2005, 109: 250-258. 10.1159/000082407.
Article
CAS
PubMed
Google Scholar
Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA: Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell. 2001, 13: 1749-1759. 10.1105/tpc.13.8.1749.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ozkan H, Levy AA, Feldman M: Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell. 2001, 13: 1735-1747. 10.1105/tpc.13.8.1735.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dong YZ, Liu ZL, Shan XH, Qiu T, He MY, Liu B: Allopolyploidy in wheat induces rapid and heritable alterations in DNA methylation patterns of cellular genes and mobile elements. Genetika. 2005, 41: 1089-1095.
CAS
PubMed
Google Scholar
Han F, Fedak G, Guo W, Liu B: Rapid and repeatable elimination of a parental genome-specific DNA repeat (pGc1R-1a) in newly synthesized wheat allopolyploids. Genetics. 2005, 170: 1239-1245. 10.1534/genetics.104.039263.
Article
PubMed Central
CAS
PubMed
Google Scholar
Han FP, Fedak G, Ouellet T, Liu B: Rapid genomic changes in interspecific and intergeneric hybrids and allopolyploids of Triticeae. Genome. 2003, 46: 716-723. 10.1139/g03-049.
Article
CAS
PubMed
Google Scholar
Madlung A, Tyagi AP, Watson B, Jiang H, Kagochi T, Doerge RW, Martienssen R, Comai L: Genomic changes in synthetic Arabidopsis polyploids. Plant J. 2005, 41: 221-230. 10.1111/j.1365-313X.2004.02297.x.
Article
CAS
PubMed
Google Scholar
Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS: Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci USA. 2004, 101: 18240-18245. 10.1073/pnas.0407258102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Labrador M, Farre M, Utzet F, Fontdevila A: Interspecific hybridization increases transposition rates of Osvaldo. Mol Biol Evol. 1999, 16: 931-937.
Article
CAS
PubMed
Google Scholar
Metcalfe CJ, Bulazel KV, Ferreri GC, Schroeder-Reiter E, Wanner G, Rens W, Obergfell C, Eldridge MD, O'Neill RJ: Genomic instability within centromeres of interspecific marsupial hybrids. Genetics. 2007, 177: 2507-2517. 10.1534/genetics.107.082313.
Article
PubMed Central
CAS
PubMed
Google Scholar
O'Neill RJ, O'Neill MJ, Graves JA: Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature. 1998, 393: 68-72. 10.1038/29985.
Article
PubMed
Google Scholar
Brown JD, Strbuncelj M, Giardina C, O'Neill RJ: Interspecific hybridization induced amplification of Mdm2 on double minutes in a Mus hybrid. Cytogenet Genome Res. 2002, 98: 184-188. 10.1159/000069806.
Article
CAS
PubMed
Google Scholar
Sakai C, Konno F, Nakano O, Iwai T, Yokota T, Lee J, Nishida-Umehara C, Kuroiwa A, Matsuda Y, Yamashita M: Chromosome elimination in the interspecific hybrid medaka between Oryzias latipes and O. hubbsi. Chromosome Res. 2007, 15: 697-709. 10.1007/s10577-007-1155-9.
Article
CAS
PubMed
Google Scholar