Carr VR, Shkoporov A, Hill C, Mullany P, Moyes DL. Probing the Mobilome: Discoveries in the Dynamic Microbiome. Trends Microbiol. 2021;29(2):158–70.
Article
CAS
PubMed
Google Scholar
Ghaly TM, Gillings MR. Mobile DNAs as Ecologically and Evolutionarily Independent Units of Life. Trends Microbiol. 2018;26(11):904–12.
Article
CAS
PubMed
Google Scholar
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev. 2018;31(4). [cited 2021 Aug 26] Available from: https://doi.org/10.1128/CMR.00088-17.
Gyles C, Boerlin P. Horizontally Transferred Genetic Elements and Their Role in Pathogenesis of Bacterial Disease. Vet Pathol. 2014;51(2)(1):328–40.
Article
CAS
PubMed
Google Scholar
Botelho J, Schulenburg H. The Role of Integrative and Conjugative Elements in Antibiotic Resistance Evolution. Trends Microbiol. 2021;29(1):8–18.
Article
CAS
PubMed
Google Scholar
Jørgensen TS, Kiil AS, Hansen MA, Sørensen SJ, Hansen LH. Current strategies for mobilome research. Front Microbiol. 2015;5:750.
PubMed
PubMed Central
Google Scholar
Lee K, Kim D-W, Cha C-J. Overview of bioinformatic methods for analysis of antibiotic resistome from genome and metagenome data. J Microbiol. 2021;59(3):270–80.
Article
CAS
PubMed
Google Scholar
Saak CC, Dinh CB, Dutton RJ. Experimental approaches to tracking mobile genetic elements in microbial communities. FEMS Microbiol Rev. 2020;44(5)(1):606–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bellanger X, Payot S, Leblond-Bourget N, Guédon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev. 2014;38(4):720–60.
Article
CAS
PubMed
Google Scholar
Paulsen IT. Role of Mobile DNA in the Evolution of Vancomycin-Resistant Enterococcus faecalis. Science. 2003;28(5615):2071–4. 299(.
Article
Google Scholar
Burrus V, Waldor MK. Shaping bacterial genomes with integrative and conjugative elements. Res Microbiol. 2004;155(5):376–86.
Article
CAS
PubMed
Google Scholar
Wozniak RAF, Waldor MK. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol. 2010;8(8):552–63.
Article
CAS
PubMed
Google Scholar
Johnson CM, Grossman AD. Integrative and Conjugative Elements (ICEs): What They Do and How They Work. Annu Rev Genet. 2015;49:577–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Santoro F, Iannelli F, Pozzi G. Genomics and Genetics of Streptococcus pneumoniae. Microbiol Spectr. 2019;7(3).
Franke AE, Clewell DB. Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of ‘conjugal’ transfer in the absence of a conjugative plasmid. J Bacteriol. 1981;145(1):494–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rice LB. Tn916 Family Conjugative Transposons and Dissemination of Antimicrobial Resistance Determinants. Antimicrob Agents Chemother. 1998;42(8):1871–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roberts AP, Mullany P. A modular master on the move: the Tn916 family of mobile genetic elements. Trends Microbiol. 2009;17(6):251–8.
Article
CAS
PubMed
Google Scholar
Mullany P, Williams R, Langridge GC, Turner DJ, Whalan R, Clayton C, Lawley T, Hussain H, McCurrie K, Morden N, Allan E, Roberts AP. Behavior and Target Site Selection of Conjugative Transposon Tn916 in Two Different Strains of Toxigenic Clostridium difficile. Appl Environ Microbiol. 2012;78(7):2147–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Santoro F, Vianna ME, Roberts AP. Variation on a theme; an overview of the Tn916/Tn1545 family of mobile genetic elements in the oral and nasopharyngeal streptococci. Front Microbiol. 2014;5:535.
Article
PubMed
PubMed Central
Google Scholar
Gawron-Burke C, Clewell DB. A transposon in Streptococcus faecalis with fertility properties. Nature. 1982;300(5889):281–4.
Article
CAS
PubMed
Google Scholar
Hochhut B, Waldor MK. Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol Microbiol. 1999;32(1):99–110.
Article
CAS
PubMed
Google Scholar
Burrus V, Roussel Y, Decaris B, Guédon G. Characterization of a Novel Integrative Element, ICESt1, in the Lactic Acid Bacterium Streptococcus thermophilus. Appl Environ Microbiol. 2000;66(4):1749–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burrus V, Pavlovic G, Decaris B, Guédon G. The ICESt1 element of Streptococcus thermophilus belongs to a large family of integrative and conjugative elements that exchange modules and change their specificity of integration. Plasmid. 2002;48(2):77–97.
Article
CAS
PubMed
Google Scholar
Burrus V, Waldor MK. Control of SXT Integration and Excision. J Bacteriol. 2003;185(17):5045–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Smith MCM, Mullany P. The Conjugative Transposon Tn5397 Has a Strong Preference for Integration into Its Clostridium difficile Target Site. J Bacteriol. 2006;188(13):4871–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Santoro F, Romeo A, Pozzi G, Iannelli F. Excision and Circularization of Integrative Conjugative Element Tn5253 of Streptococcus pneumoniae. Front Microbiol. 2018;31:9:1779.
Article
Google Scholar
Provvedi R, Manganelli R, Pozzi G. Characterization of conjugative transposon Tn5251 of Streptococcus pneumoniae. FEMS Microbiol Lett. 1996;135(2–3):231–6.
Article
CAS
PubMed
Google Scholar
Iannelli F, Santoro F, Oggioni MR, Pozzi G. Nucleotide sequence analysis of integrative conjugative element Tn5253 of Streptococcus pneumoniae. Antimicrob Agents Chemother. 2013/12/02 ed. 2014;58(2):1235–9.
Santoro F, Oggioni MR, Pozzi G, Iannelli F. Nucleotide sequence and functional analysis of the tet(M)-carrying conjugative transposon Tn5251 of Streptococcus pneumoniae. FEMS Microbiol Lett. 2010;308(2):150–8.
CAS
PubMed
Google Scholar
Vijayakumar A. Nucleotide sequence analysis of the termini and chromosomal locus involved in site-specific integration of the streptococcal conjugative transposon Tn5252. J Bacteriol. 1993;175(9).
Croucher NJ, Walker D, Romero P, Lennard N, Paterson GK, Bason NC, Mitchell AM, Quail MA, Andrew PW, Parkhill J, Bentley SD, Mitchell TJ. Role of conjugative elements in the evolution of the multidrug-resistant pandemic clone Streptococcus pneumoniae Spain23FST81. J Bacteriol. 2009;191(5):1480–9.
Article
CAS
PubMed
Google Scholar
Henderson-Begg SK, Roberts AP, Hall LMC. Diversity of putative Tn5253-like elements in Streptococcus pneumoniae. Int J Antimicrob Agents. 2009;33(4):364–7.
Article
CAS
PubMed
Google Scholar
Mingoia M, Tili E, Manso E, Varaldo PE, Montanari MP. Heterogeneity of Tn5253-like composite elements in clinical Streptococcus pneumoniae isolates. Antimicrob Agents Chemother. 2011;55(4):1453–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, McGee L, von Gottberg A, Song JH, Ko KS, Pichon B, Baker S, Parry CM, Lambertsen LM, Shahinas D, Pillai DR, Mitchell TJ, Dougan G, Tomasz A, Klugman KP, Parkhill J, Hanage WP, Bentley SD. Rapid pneumococcal evolution in response to clinical interventions. Science. 2011;28(6016):430–4. 331(.
Article
Google Scholar
Smith MD, Hazum S, Guild WR. Homology among tet determinants in conjugative elements of streptococci. J Bacteriol. 1981;148(1):232–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uicker WC, Schaefer L, Britton RA. The essential GTPase RbgA (YlqF) is required for 50S ribosome assembly in Bacillus subtilis. Mol Microbiol. 2006;59(2):528–40.
Article
CAS
PubMed
Google Scholar
Dahmane N, Robert E, Deschamps J, Meylheuc T, Delorme C, Briandet R, Leblond-Bourget N, Guédon E, Payot S. Impact of Cell Surface Molecules on Conjugative Transfer of the Integrative and Conjugative Element ICESt3 of Streptococcus thermophilus. Kivisaar M, editor. Appl Environ Microbiol. 2018;84(5).
Iannelli F, Santoro F, Fox V, Pozzi G. A Mating Procedure for Genetic Transfer of Integrative and Conjugative Elements (ICEs) of Streptococci and Enterococci. Methods Protoc. 2021;4(3):59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iannelli F, Chiavolini D, Ricci S, Oggioni MR, Pozzi G. Pneumococcal Surface Protein C Contributes to Sepsis Caused by Streptococcus pneumoniae in Mice. Infect Immun. 2004;72(5):3077–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pearce BJ, Iannelli F, Pozzi G. Construction of new unencapsulated (rough) strains of Streptococcus pneumoniae. Res Microbiol. 2002;5.
Hahn C, Harrison EM, Parkhill J, Holmes MA, Paterson GK. Draft Genome Sequence of the Streptococcus pneumoniae Avery Strain A66. Genome Announc. 2015;3(3).
RAVIN AW. Reciprocal capsular transformations of pneumococci. J Bacteriol. 1959;77(3):296–309.
Article
PubMed
PubMed Central
Google Scholar
Bernheimer HP, Wermundsen IE. Unstable Binary Capsulated Transformants in Pneumococcus. J Bacteriol. 1969;98(3):1073–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, Peterson S, Heidelberg J, DeBoy RT, Haft DH, Dodson RJ, Durkin AS, Gwinn M, Kolonay JF, Nelson WC, Peterson JD, Umayam LA, White O, Salzberg SL, Lewis MR, Radune D, Holtzapple E, Khouri H, Wolf AM, Utterback TR, Hansen CL, McDonald LA, Feldblyum TV, Angiuoli S, Dickinson T, Hickey EK, Holt IE, Loftus BJ, Yang F, Smith HO, Venter JC, Dougherty BA, Morrison DA, Hollingshead SK, Fraser CM. Complete Genome Sequence of a Virulent Isolate of Streptococcus pneumoniae. Science. 2001;293(5529):498–506.
Article
CAS
PubMed
Google Scholar
Hiller NL, Janto B, Hogg JS, Boissy R, Yu S, Powell E, Keefe R, Ehrlich NE, Shen K, Hayes J, Barbadora K, Klimke W, Dernovoy D, Tatusova T, Parkhill J, Bentley SD, Post JC, Ehrlich GD, Hu FZ. Comparative Genomic Analyses of Seventeen Streptococcus pneumoniae Strains: Insights into the Pneumococcal Supragenome. J Bacteriol. 2007;15(22):8186–95. 189(.
Article
Google Scholar
Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, DeBoy RT, Davidsen TM, Mora M, Scarselli M, Margarit y Ros I, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O’Connor KJB, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial ‘pan-genome’. Proc Natl Acad Sci. 2005;27(39):13950–5. 102(.
Article
Google Scholar
Ferretti JJ, McShan WM, Ajdic D, Savic DJ, Savic G, Lyon K, Primeaux C, Sezate S, Suvorov AN, Kenton S, Lai HS, Lin SP, Qian Y, Jia HG, Najar FZ, Ren Q, Zhu H, Song L, White J, Yuan X, Clifton SW, Roe BA, McLaughlin R. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci. 2001;10(8):4658–63. 98(.
Article
Google Scholar
Vickerman MM, Iobst S, Jesionowski AM, Gill SR. Genome-Wide Transcriptional Changes in Streptococcus gordonii in Response to Competence Signaling Peptide. J Bacteriol. 2007;189(21):7799–807.
Article
CAS
PubMed
PubMed Central
Google Scholar
Macrina FL, Jones KR, Wood PH. Chimeric streptococcal plasmids and their use as molecular cloning vehicles in Streptococcus sanguis (Challis). J Bacteriol. 1980;143(3):1425–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pozzi G, Musmanno RA, Renzoni EA, Oggioni MR, Cusi MG. Host-vector system for integration of recombinant DNA into chromosomes of transformable and nontransformable streptococci. J Bacteriol. 1988;170(4):1969–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gold OG, Jordan HV, van Houte J. The prevalence of enterococci in the human mouth and their pathogenicity in animal models. Arch Oral Biol. 1975;20(7):473-IN15.
Article
Google Scholar
Dunny GM, Brown BL, Clewell DB. Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc Natl Acad Sci. 1978;75(7):3479–83.
Bourgogne A, Garsin DA, Qin X, Singh KV, Sillanpaa J, Yerrapragada S, Ding Y, Dugan-Rocha S, Buhay C, Shen H, Chen G, Williams G, Muzny D, Maadani A, Fox KA, Gioia J, Chen L, Shang Y, Arias CA, Nallapareddy SR, Zhao M, Prakash VP, Chowdhury S, Jiang H, Gibbs RA, Murray BE, Highlander SK, Weinstock GM. Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF. Genome Biol. 2008;9(7):R110.
Article
PubMed
PubMed Central
Google Scholar
Dunny GM, Craig RA, Carron RL, Clewell DB. Plasmid transfer in Streptococcus faecalis: production of multiple sex pheromones by recipients. Plasmid. 1979;2(3):454–65.
Article
CAS
PubMed
Google Scholar
Jacob AE, Hobbs SJ. Conjugal Transfer of Plasmid-Borne Multiple Antibiotic Resistance in Streptococcus faecalis var. zymogenes. J Bacteriol. 1974;117(2):360–72.
Article
CAS
PubMed
PubMed Central
Google Scholar