Baucom RS, Estill JC, Chaparro C, Upshaw N, Jogi A, Deragon JM, et al. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet. 2009;5:e1000732.
Article
PubMed
PubMed Central
CAS
Google Scholar
Galindo-González L, Mhiri C, Deyholos MK, Grandbastien MA. LTR-retrotransposons in plants: engines of evolution. Gene. 2017;626:14–25.
Article
PubMed
CAS
Google Scholar
Grover CE, Wendel JF. Recent insights into mechanisms of genome size change in plants. J Bot. 2010;2010:1–8.
Article
Google Scholar
Vitte C, Panaud O. LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res. 2005;110:91–107.
Article
CAS
PubMed
Google Scholar
Wicker T, Gundlach H, Spannagl M, Uauy C, Borrill P, Ramírez-González RH, et al. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol. 2018;19:103.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kelly LJ, Renny-Byfield S, Pellicer J, Macas J, Novák P, Neumann P, et al. Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size. New Phytol. 2015;208:596–607.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirsch CD, Springer NM. Transposable element influences on gene expression in plants. Biochim Biophys Acta. 2017;1860:157–65.
Article
CAS
Google Scholar
Brunner S. Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell. 2005;17:343–60.
Zhang Q-J, Gao L-Z. Rapid and recent evolution of LTR retrotransposons drives rice genome evolution during the speciation of AA-genome Oryza species. G3-Genes Genomes Genet. 2017;7:1875–85.
Liu Z, Yue W, Li D, Wang RRC, Kong X, Lu K, et al. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma. 2008;117:445–56.
Article
CAS
PubMed
Google Scholar
Neumann P, Navrátilová A, Koblížková A, Kejnovský E, Hřibová E, Hobza R, et al. Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA. 2011;2:4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007;8:973–82.
Article
CAS
PubMed
Google Scholar
Krupovic M, Blomberg J, Coffin JM, Dasgupta I, Fan H, Geering AD, et al. Ortervirales : new virus order unifying five families of reverse-transcribing viruses. J Virol. 2018;92:1–5.
Article
Google Scholar
Gifford RJ, Blomberg J, Coffin JM, Fan H, Heidmann T, Mayer J, et al. Nomenclature for endogenous retrovirus (ERV) loci. Retrovirology. 2018;15:59.
Article
PubMed
PubMed Central
Google Scholar
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110:462–7.
Article
CAS
PubMed
Google Scholar
McCarthy EM, Liu J, Lizhi G, JF MD. Long terminal repeat retrotransposons of Oryza sativa. Genome Biol. 2002;3:RESEARCH0053.
Kumekawa N, Ohmido N, Fukui K, Ohtsubo E, Ohtsubo H. A new gypsy-type retrotransposon, RIRE7: preferential insertion into the tandem repeat sequence TrsD in pericentromeric heterochromatin regions of rice chromosomes. Mol Gen Genomics. 2001;265:480–8.
Article
CAS
Google Scholar
Nagaki K, Neumann P, Zhang D, Ouyang S, Buell CR, Cheng Z, et al. Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Mol Biol Evol. 2005;22:845–55.
Article
CAS
PubMed
Google Scholar
Eickbush TH, Jamburuthugoda VK. The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res. 2008;134:221–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Llorens C, Futami R, Covelli L, Domínguez-Escribá L, Viu JM, Tamarit D, et al. The gypsy database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. 2011;39(SUPPL. 1):D70–4.
Llorens C, Muñoz-Pomer A, Bernad L, Botella H, Moya A. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biol Direct. 2009;4:41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Malik HS. Ribonuclease H evolution in retrotransposable elements. Cytogenet Genome Res. 2005;110:392–401.
Article
CAS
PubMed
Google Scholar
Malik HS, Eickbush TH. Modular evolution of the integrase domain in the Ty3/gypsy class of LTR retrotransposons. J Virol. 1999;73:5186–90.
CAS
PubMed
PubMed Central
Google Scholar
Wicker T, Keller B. Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res. 2007;17:1072–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Macas J, Neumann P, Navrátilová A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics. 2007;8:427.
Article
PubMed
PubMed Central
Google Scholar
Macas J, Kejnovský E, Neumann P, Novák P, Koblížková A, Vyskot B. Next generation sequencing-based analysis of repetitive DNA in the model dioecious plant Silene latifolia. PLoS One. 2011;6:e27335.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorinšek B, Gubenšek F, Kordiš D. Evolutionary genomics of chromoviruses in eukaryotes. Mol Biol Evol. 2004;21:781–98.
Kordiš D. A genomic perspective on the chromodomain-containing retrotransposons: Chromoviruses. Gene. 2005;347:161–73.
Article
PubMed
CAS
Google Scholar
Novikov A, Smyshlyaev G, Novikova O. Evolutionary history of LTR retrotransposon chromodomains in plants. Int J Plant Genomics. 2012;2012:874743.
Article
PubMed
PubMed Central
CAS
Google Scholar
Novikova O. Chromodomains and LTR retrotransposons in plants. Commun Integr Biol. 2009;2:158–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Novikova O, Smyshlyaev G, Blinov A. Evolutionary genomics revealed interkingdom distribution of Tcn1-like chromodomain-containing gypsy LTR retrotransposons among fungi and plants. BMC Genomics. 2010;11:231.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wright DA, Voytas DF. Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res. 2002;12:122–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Macas J, Neumann P. Ogre elements - a distinct group of plant Ty3/gypsy-like retrotransposons. Gene. 2007;390:108–16.
Article
CAS
PubMed
Google Scholar
Ustyantsev K, Novikova O, Blinov A, Smyshlyaev G. Convergent evolution of ribonuclease H in LTR retrotransposons and retroviruses. Mol Biol Evol. 2015;32:1197–207.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bousios A, Darzentas N. Sirevirus LTR retrotransposons: phylogenetic misconceptions in the plant world. Mob DNA. 2013;4:9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bousios A, Minga E, Kalitsou N, Pantermali M, Tsaballa A, Darzentas N. MASiVEdb: the Sirevirus plant retrotransposon database. BMC Genomics. 2012;13:158.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bousios A, Kourmpetis YAI, Pavlidis P, Minga E, Tsaftaris A, Darzentas N. The turbulent life of Sirevirus retrotransposons and the evolution of the maize genome: more than ten thousand elements tell the story. Plant J. 2012;69:475–88.
Article
CAS
PubMed
Google Scholar
Xu Z, Wang H. LTR-FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35:265–8.
Article
Google Scholar
Gypsy Database. 2017. http://gydb.uv.es/. Accessed 14 Sept 2017.
FlyBase. 2017. http://flybase.org/. Accessed 14 Sept 2017.
The Saccharomyces Genome Database. 2017. http://www.yeastgenome.org/. Accessed 14 Sept 2017.
Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, et al. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 2011;39:D225–9.
Article
CAS
PubMed
Google Scholar
Das D, Georgiadis MM. The crystal structure of the monomeric reverse transcriptase from moloney murine leukemia virus. Structure. 2004;12:819–29.
Article
CAS
PubMed
Google Scholar
Xiong Y, Eickbush TH. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990;9:3353–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skalka AM. Retroviral proteases: first glimpses at the anatomy of a processing machine. Cell. 1989;56:911–3.
Article
CAS
PubMed
Google Scholar
Maignan S, Guilloteau JP, Zhou-Liu Q, Clément-Mella C, Mikol V. Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases. J Mol Biol. 1998;282:359–68.
Article
CAS
PubMed
Google Scholar
Malik HS, Eickbush TH. Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res. 2001;11:1187–97.
Article
CAS
PubMed
Google Scholar
Gorinšek B, Gubenšek F, Kordiš D. Phylogenomic analysis of chromoviruses. Cytogenet Genome Res. 2005;110:543–52.
Article
PubMed
Google Scholar
Gao X, Hou Y, Ebina H, Levin HL, Voytas DF. Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res. 2008;18:359–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yap KL, Zhou MM. Structure and mechanisms of lysine methylation recognition by the chromodomain in gene transcription. Biochemistry. 2011;50:1966–80.
Article
CAS
PubMed
Google Scholar
Wright DA, Voytas DF. Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. Genetics. 1998;149:703–15.
CAS
PubMed
PubMed Central
Google Scholar
Paris Z, Fleming IMC, Alfonzo JD. Determinants of tRNA editing and modification: avoiding conundrums, affecting function. Semin Cell Dev Biol. 2012;23:269–74.
Article
CAS
PubMed
Google Scholar
Torres AG, Piñeyro D, Filonava L, Stracker TH, Batlle E, Ribas De Pouplana L. A-to-I editing on tRNAs: biochemical, biological and evolutionary implications. FEBS Lett. 2014;588:4279–86.
Article
CAS
PubMed
Google Scholar
RepeatExplorer: discover repeats in your next generation sequencing data. 2018. https://repeatexplorer-elixir.cerit-sc.cz/. Accessed 23 Oct 2018.
Novák P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–3.
Article
PubMed
CAS
Google Scholar
RepeatExplorer : discover repeats in your next generation sequencing data. 2018. http://repeatexplorer.org/. Accessed 23 Oct 2018.
Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG. From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol. 2014;14:23.
Article
PubMed
PubMed Central
Google Scholar
Le Grice SFJ. “In the beginning”: initiation of minus strand DNA synthesis in retroviruses and LTR-containing retrotransposons. Biochemistry. 2003;42:14349–55.
Butler M, Goodwin T, Simpson M, Singh M, Poulter R. Vertebrate LTR retrotransposons of the Tf1/sushi group. J Mol Evol. 2001;52:260–74.
Article
CAS
PubMed
Google Scholar
Lin JH, Levin HL. Self-primed reverse transcription is a mechanism shared by several LTR-containing retrotransposons. RNA. 1997;3:952–3.
CAS
PubMed
PubMed Central
Google Scholar
Atwood-Moore A, Yan K, Judson RL, Levin HL. The self primer of the long terminal repeat retrotransposon Tf1 is not removed during reverse transcription. J Virol. 2006;80:8267–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capy P. Classification and nomenclature of retrotransposable elements. Cytogenet Genome Res. 2005;110:457–61.
Article
CAS
PubMed
Google Scholar
Sanz-Alferez S, SanMiguel P, Jin Y-K, Springer PS, Bennetzen JL. Structure and evolution of the Cinful retrotransposon family of maize. Genome. 2003;46:745–52.
Article
CAS
PubMed
Google Scholar
Martínez-Izquierdo JA, García-Martínez J, Vicient CM. What makes Grande1 retrotransposon different? Genetica. 1997;100:15–28.
Article
PubMed
Google Scholar
Kejnovský E, Kubát Z, Macas J, Hobza R, Mráček J, Vyskot B. Retand: a novel family of gypsy-like retrotransposons harboring an amplified tandem repeat. Mol Gen Genomics. 2006;276:254–63.
Article
CAS
Google Scholar
Macas J, Koblížková A, Navrátilová A, Neumann P. Hypervariable 3′ UTR region of plant LTR-retrotransposons as a source of novel satellite repeats. Gene. 2009;448:198–206.
Article
CAS
PubMed
Google Scholar
Gao X, Havecker ER, Baranov PV, Atkins JF, Voytas DF. Translational recoding signals between gag and pol in diverse LTR retrotransposons. RNA. 2003;9:1422–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neumann P, Požárková D, Macas J. Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced. Plant Mol Biol. 2003;53:399–410.
Article
CAS
PubMed
Google Scholar
Steinbauerová V, Neumann P, Macas J. Experimental evidence for splicing of intron-containing transcripts of plant LTR retrotransposon Ogre. Mol Gen Genomics. 2008;280:427–36.
Article
CAS
Google Scholar
Laten HM, Morris RO. SIRE-1, a long interspersed repetitive DNA element from soybean with weak sequence similarity to retrotransposons: initial characterization and partial sequence. Gene. 1993;134:153–9.
Article
CAS
PubMed
Google Scholar
Laten HM. Phylogenetic evidence for Ty1-copia-like endogenous retroviruses in plant genomes. Genetica. 1999;107:87–93.
Article
CAS
PubMed
Google Scholar
Laten HM, Havecker ER, Farmer LM, Voytas DF. SIRE1, an endogenous retrovirus family from Glycine max, is highly homogeneous and evolutionarily young. Mol Biol Evol. 2003;20:1222–30.
Article
CAS
PubMed
Google Scholar
Havecker ER. The Sireviruses, a plant-specific lineage of the Ty1/copia retrotransposons, interact with a family of proteins related to dynein light chain 8. Plant Physiol. 2005;139:857–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peterson-Burch BD, Voytas DF. Genes of the Pseudoviridae (Ty1/copia retrotransposons). Mol Biol Evol. 2002;19:1832–45.
Article
CAS
PubMed
Google Scholar
Virus Taxonomy: 2018 Release. 2018. https://talk.ictvonline.org/taxonomy/. Accessed 10 Dec 2018.
Hua SST, Tarun AS, Pandey SN, Chang L, Chang PK. Characterization of AFLAV, a Tf1/sushi retrotransposon from Aspergillus flavus. Mycopathologia. 2007;163:97–104.
Article
CAS
PubMed
Google Scholar
Goodwin TJD, Poulter RTM. The diversity of retrotransposons in the yeast Cryptococcus neoformans. Yeast. 2001;18:865–80.
Article
CAS
PubMed
Google Scholar
Phytozome. 2017. https://phytozome.jgi.doe.gov/pz/portal.html. Accessed 14 Sept 2017.
Dendrome. 2015. https://treegenesdb.org/. Accessed 22 Apr 2015.
The Conserved Domain Database (CDD). 2017. https://www.ncbi.nlm.nih.gov/cdd. Accessed 14 Sept 2017.
Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017;45:D200–3.
Article
CAS
PubMed
Google Scholar
Pearson WR, Wood T, Zhang Z, Miller W. Comparison of DNA sequences with protein sequences. Genomics. 1997;46:24–36.
Article
CAS
PubMed
Google Scholar
Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci. 1988;85:2444–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame genomic sequence comparison. Genome Res. 2011;21:487–93.
Article
PubMed
PubMed Central
CAS
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article
CAS
PubMed
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gascuel O, Gouy M, Lyon D. SeaView version 4 : a multiplatform graphical user Interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27:221–4.
Article
PubMed
CAS
Google Scholar
RepeatExplorer2 with TAREAN (Tandem Repeat Analyzer). 2018. https://bitbucket.org/petrnovak/repex_tarean. Accessed 23 Oct 2018.
BioPerl. 2018. https://bioperl.org/. Accessed 23 Oct 2018.
The R project for statistical computing. 2018. http://www.r-project.org. Accessed 23 Oct 2018.
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1996;25:955–64.
GtRNAdb. 2017. http://gtrnadb.ucsc.edu/. Accessed 14 Sept 2017.
Prüfer K, Stenzel U, Dannemann M, Green RE, Lachmann M, Kelso J. PatMaN: rapid alignment of short sequences to large databases. Bioinformatics. 2008;24:1530–1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rice P, Longden L, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet. 2000;16:276–7.
Article
CAS
PubMed
Google Scholar
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galtier N, Gouy M, Gautier C. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Bioinformatics. 1996;12:543–8.
Article
CAS
Google Scholar
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.
Article
CAS
PubMed
Google Scholar
PhyML 3.0: new algorithms, methods and utilities. 2017. http://www.atgc-montpellier.fr/phyml/. Accessed 14 Sept 2017.
Lefort V, Longueville JE, Gascuel O. SMS: smart model selection in PhyML. Mol Biol Evol. 2017;34:2422–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gascuel O. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol. 1997;14:685–95.
Article
CAS
PubMed
Google Scholar
FigTree. 2017. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 14 Sept 2017.
Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol. 2012;61:1061–7.
Article
PubMed
Google Scholar