Havecker ER, Gao X, Voytas DF: The diversity of LTR retrotransposons. Genome Biol. 2004, 5: 225-10.1186/gb-2004-5-6-225.
Article
PubMed Central
PubMed
Google Scholar
Curcio MJ, Hedge AM, Boeke JD, Garfinkel DJ: Ty RNA levels determine the spectrum of retrotransposition events that activate gene expression in Saccharomyces cerevisiae. Mol Gen Genet. 1990, 220: 213-221. 10.1007/BF00260484.
Article
CAS
PubMed
Google Scholar
Lawler JF, Haeusser DP, Dull A, Boeke JD, Keeney JB: Ty1 defect in proteolysis at high temperature. J Virol. 2002, 76: 4233-4240. 10.1128/JVI.76.9.4233-4240.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Curcio MJ, Garfinkel DJ: Regulation of retrotransposition in Saccharomyces cerevisiae. Molecular microbiology. 1991, 5: 1823-1829. 10.1111/j.1365-2958.1991.tb00806.x.
Article
CAS
PubMed
Google Scholar
Griffith JL, Coleman LE, Raymond AS, Goodson SG, Pittard WS, Tsui C, Devine SE: Functional genomics reveals relationships between the retrovirus-like Ty1 element and its host Saccharomyces cerevisiae. Genetics. 2003, 164: 867-879.
PubMed Central
CAS
PubMed
Google Scholar
Irwin B, Aye M, Baldi P, Beliakova-Bethell N, Cheng H, Dou Y, Liou W, Sandmeyer S: Retroviruses and yeast retrotransposons use overlapping sets of host genes. Genome research. 2005, 15: 641-654. 10.1101/gr.3739005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Scholes DT, Banerjee M, Bowen B, Curcio MJ: Multiple regulators of Ty1 transposition in Saccharomyces cerevisiae have conserved roles in genome maintenance. Genetics. 2001, 159: 1449-1465.
PubMed Central
CAS
PubMed
Google Scholar
Radford SJ, Boyle M, Sheely CJ, Graham J, Haeusser DP, Keeney JB: Increase in Ty1 cDNA recombination in yeast sir4 mutant strains at high temperature. Genetics. 2004, 168: 89-101. 10.1534/genetics.102.012708.
Article
PubMed Central
CAS
PubMed
Google Scholar
Beauregard A, Curcio MJ, Belfort M: The take and give between retrotransposable elements and their hosts. Annual review of genetics. 2008, 42: 587-617. 10.1146/annurev.genet.42.110807.091549.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maxwell PH, Curcio MJ: Host factors that control long terminal repeat retrotransposons in Saccharomyces cerevisiae: implications for regulation of mammalian retroviruses. Eukaryot Cell. 2007, 6: 1069-1080. 10.1128/EC.00092-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huang M, Zhou Z, Elledge SJ: The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell. 1998, 94: 595-605. 10.1016/S0092-8674(00)81601-3.
Article
CAS
PubMed
Google Scholar
Zhang Z, Reese JC: Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism. Mol Cell Biol. 2005, 25: 7399-7411. 10.1128/MCB.25.17.7399-7411.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zaim J, Speina E, Kierzek AM: Identification of new genes regulated by the Crt1 transcription factor, an effector of the DNA damage checkpoint pathway in Saccharomyces cerevisiae. J Biol Chem. 2005, 280: 28-37.
Article
CAS
PubMed
Google Scholar
Andreson BL, Gupta A, Georgieva BP, Rothstein R: The ribonucleotide reductase inhibitor, Sml1, is sequentially phosphorylated, ubiquitylated and degraded in response to DNA damage. Nucl Acids Res. gkq552-
Zhang Z, Yang K, Chen CC, Feser J, Huang M: Role of the C terminus of the ribonucleotide reductase large subunit in enzyme regeneration and its inhibition by Sml1. Proc Natl Acad Sci USA. 2007, 104: 2217-2222. 10.1073/pnas.0611095104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tang H-MV, Siu KL, Wong CM, Jin DY: Loss of yeast peroxiredoxin Tsa1p induces genome instability through activation of the DNA damage checkpoint and elevation of dNTP levels. PLoS Genet. 2009, 5: e1000697-10.1371/journal.pgen.1000697.
Article
PubMed Central
PubMed
Google Scholar
Fasullo M, Tsaponina O, Sun M, Chabes A: Elevated dNTP levels suppress hyper-recombination in Saccharomyces cerevisiae S-phase checkpoint mutants. Nucleic Acids Res. 2010, 38: 1195-1203. 10.1093/nar/gkp1064.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhao X, Muller EG, Rothstein R: A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol Cell. 1998, 2: 329-340. 10.1016/S1097-2765(00)80277-4.
Article
CAS
PubMed
Google Scholar
Chabes A, Georgieva B, Domkin V, Zhao X, Rothstein R, Thelander L: Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell. 2003, 112: 391-401. 10.1016/S0092-8674(03)00075-8.
Article
CAS
PubMed
Google Scholar
Zhao X, Chabes A, Domkin V, Thelander L, Rothstein R: The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. Embo J. 2001, 20: 3544-3553. 10.1093/emboj/20.13.3544.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kondo T, Wakayama T, Naiki T, Matsumoto K, Sugimoto K: Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science. 2001, 294: 867-870. 10.1126/science.1063827.
Article
CAS
PubMed
Google Scholar
Melo JA, Cohen J, Toczyski DP: Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev. 2001, 15: 2809-2821.
PubMed Central
CAS
PubMed
Google Scholar
Bellaoui M, Chang M, Ou J, Xu H, Boone C, Brown GW: Elg1 forms an alternative RFC complex important for DNA replication and genome integrity. EMBO J. 2003, 22: 4304-4313. 10.1093/emboj/cdg406.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ben-Aroya S, Koren A, Liefshitz B, Steinlauf R, Kupiec M: ELG1, a yeast gene required for genome stability, forms a complex related to replication factor C. Proc Natl Acad Sci USA. 2003, 100: 9906-9911. 10.1073/pnas.1633757100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kanellis P, Agyei R, Durocher D: Elg1 forms an alternative PCNA-interacting RFC complex required to maintain genome stability. Curr Biol. 2003, 13: 1583-1595. 10.1016/S0960-9822(03)00578-5.
Article
CAS
PubMed
Google Scholar
Sanchez Y, Bachant J, Wang H, Hu F, Liu D, Tetzlaff M, Elledge SJ: Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science. 1999, 286: 1166-1171. 10.1126/science.286.5442.1166.
Article
CAS
PubMed
Google Scholar
Sun Z, Hsiao J, Fay DS, Stern DF: Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science. 1998, 281: 272-274. 10.1126/science.281.5374.272.
Article
CAS
PubMed
Google Scholar
Zhao X, Rothstein R: The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proc Natl Acad Sci USA. 2002, 99: 3746-3751. 10.1073/pnas.062502299.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhou Z, Elledge SJ: DUN1 encodes a protein kinase that controls the DNA damage response in yeast. Cell. 1993, 75: 1119-1127. 10.1016/0092-8674(93)90321-G.
Article
CAS
PubMed
Google Scholar
Segurado M, Tercero JA: The S-phase checkpoint: targeting the replication fork. Biol Cell. 2009, 101: 617-627. 10.1042/BC20090053.
Article
CAS
PubMed
Google Scholar
Curcio MJ, Kenny AE, Moore S, Garfinkel DJ, Weintraub M, Gamache ER, Scholes DT: S-Phase checkpoint pathways stimulate the mobility of the retrovirus-like transposon Ty1. Mol Cell Biol. 2007, 27: 8874-8885. 10.1128/MCB.01095-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Scholes DT, Kenny AE, Gamache ER, Mou Z, Curcio MJ: Activation of a LTR-retrotransposon by telomere erosion. Proc Natl Acad Sci USA. 2003, 100: 15736-15741. 10.1073/pnas.2136609100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Teng SC, Kim B, Gabriel A: Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature. 1996, 383: 641-644. 10.1038/383641a0.
Article
PubMed
Google Scholar
Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999, 285: 901-906. 10.1126/science.285.5429.901.
Article
CAS
PubMed
Google Scholar
Curcio MJ, Garfinkel DJ: Single-step selection for Ty1 element retrotransposition. Proc Natl Acad Sci USA. 1991, 88: 936-940. 10.1073/pnas.88.3.936.
Article
PubMed Central
CAS
PubMed
Google Scholar
Levi SK, Bhattacharyya D, Strack RL, II JRA, Glick BS: The yeast GRASP Grh1 colocalizes with COPII and Is dispensable for organizing the secretory pathway. Traffic. 2010, 11: 1168-79. 10.1111/j.1600-0854.2010.01089.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lehner KR, Stone MM, Farber RA, Petes TD: ninety-six haploid yeast strains with individual disruptions of open reading frames between YOR097C and YOR192C, constructed for the Saccharomyces Genome Deletion Project, have an additional mutation in the mismatch repair gene MSH3. Genetics. 2007, 177: 1951-1953. 10.1534/genetics.107.079368.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chabes A, Stillman B: Constitutively high dNTP concentration inhibits cell cycle progression and the DNA damage checkpoint in yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2007, 104: 1183-1188. 10.1073/pnas.0610585104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Merkulov GV, Lawler JF, Eby Y, Boeke JD: Ty1 proteolytic cleavage sites are required for transposition: all sites are not created equal. J Virol. 2001, 75: 638-644. 10.1128/JVI.75.2.638-644.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sharon G, Burkett TJ, Garfinkel DJ: Efficient homologous recombination of Ty1 element cDNA when integration is blocked. Mol Cell Biol. 1994, 14: 6540-6551.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aguilera J, Randez-Gil F, Prieto JA: Cold response in Saccharomyces cerevisiae: new functions for old mechanisms. FEMS microbiology reviews. 2007, 31: 327-341. 10.1111/j.1574-6976.2007.00066.x.
Article
CAS
PubMed
Google Scholar
Koc A, Wheeler LJ, Mathews CK, Merrill GF: Hydroxyurea arrests dna replication by a mechanism that preserves basal dNTP pools. J Biol Chem. 2004, 279: 223-230. 10.1074/jbc.M303952200.
Article
CAS
PubMed
Google Scholar
Diamond TL, Roshal M, Jamburuthugoda VK, Reynolds HM, Merriam AR, Lee KY, Balakrishnan M, Bambara RA, Planelles V, Dewhurst S, Kim B: Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase. J Biol Chem. 2004, 279: 51545-51553. 10.1074/jbc.M408573200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Coic E, Feldman T, Landman AS, Haber JE: Mechanisms of Rad52-independent spontaneous and UV-induced mitotic recombination in Saccharomyces cerevisiae. Genetics. 2008, 179: 199-211. 10.1534/genetics.108.087189.
Article
PubMed Central
CAS
PubMed
Google Scholar
Burkhalter MD, Roberts SA, Havener JM, Ramsden DA: Activity of ribonucleotide reductase helps determine how cells repair DNA double strand breaks. DNA Repair. 2009, 8: 1258-1263. 10.1016/j.dnarep.2009.07.009.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee SE, Paques F, Sylvan J, Haber JE: Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr Biol. 1999, 9: 767-770. 10.1016/S0960-9822(99)80339-X.
Article
CAS
PubMed
Google Scholar
Santocanale C, Diffley JF: A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature. 1998, 395: 615-618. 10.1038/27001.
Article
CAS
PubMed
Google Scholar
Koc A, Wheeler LJ, Mathews CK, Merrill GF: Replication-independent MCB gene induction and deoxyribonucleotide accumulation at G1/S in Saccharomyces cerevisiae. J Biol Chem. 2003, 278: 9345-9352. 10.1074/jbc.M213013200.
Article
CAS
PubMed
Google Scholar
Sun Z, Fay DS, Marini F, Foiani M, Stern DF: Spk1/Rad53 is regulated by Mec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways. Genes Dev. 1996, 10: 395-406. 10.1101/gad.10.4.395.
Article
CAS
PubMed
Google Scholar
Sanchez Y, Desany BA, Jones WJ, Liu Q, Wang B, Elledge SJ: Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science. 1996, 271: 357-360. 10.1126/science.271.5247.357.
Article
CAS
PubMed
Google Scholar
Rose MD, Winston F, Hieter P: Methods in Yeast Genetics: a Laboratory Course Manual. 1990, Cold Spring Harbor, N.Y.: Cold Spring Harbor, Laboratory
Google Scholar
Schiestl RH, Gietz RD: High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet. 1989, 16: 339-346. 10.1007/BF00340712.
Article
CAS
PubMed
Google Scholar
Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD: Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998, 14: 115-132. 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2.
Article
CAS
PubMed
Google Scholar
Eichinger DJ, Boeke JD: The DNA intermediate in yeast Ty1 element transposition copurifies with virus-like particles: cell-free Ty1 transposition. Cell. 1988, 54: 955-966. 10.1016/0092-8674(88)90110-9.
Article
CAS
PubMed
Google Scholar
Monokian GM, Braiterman LT, Boeke JD: In-frame linker insertion mutagenesis of yeast transposon Ty1: mutations, transposition and dominance. Gene. 1994, 139: 9-18. 10.1016/0378-1119(94)90517-7.
Article
CAS
PubMed
Google Scholar
Keeney JB, Boeke JD: Efficient targeted integration at leu1-32 and ura4-294 in Schizosaccharomyces pombe. Genetics. 1994, 136: 849-856.
PubMed Central
CAS
PubMed
Google Scholar