Skip to main content

Articles

Page 1 of 7

  1. Molecular markers based on retrotransposon insertion polymorphisms (RIPs) have been developed and are widely used in plants and animals. Short interspersed nuclear elements (SINEs) exert wide impacts on gene a...

    Authors: Cai Chen, Enrico D’Alessandro, Eduard Murani, Yao Zheng, Domenico Giosa, Naisu Yang, Xiaoyan Wang, Bo Gao, Kui Li, Klaus Wimmers and Chengyi Song

    Citation: Mobile DNA 2021 12:17

    Content type: Research

    Published on:

  2. Transposable elements (TEs) play powerful and varied evolutionary and functional roles, and are widespread in most eukaryotic genomes. Research into their unique biology has driven the creation of a large coll...

    Authors: Tyler A. Elliott, Tony Heitkam, Robert Hubley, Hadi Quesneville, Alexander Suh and Travis J. Wheeler

    Citation: Mobile DNA 2021 12:16

    Content type: Commentary

    Published on:

  3. Transposable elements (TEs) are repetitive sequences of viral origin that compose almost half of the human genome. These elements are tightly controlled within cells, and if activated, they can cause changes i...

    Authors: Mahboubeh R. Rostami and Martina Bradic

    Citation: Mobile DNA 2021 12:14

    Content type: Research

    Published on:

  4. Transposons are mobile genetic elements that colonize genomes and drive their plasticity in all organisms. DNA transposon-encoded transposases bind to the ends of their cognate transposons and catalyze their m...

    Authors: Marc Guérineau, Luiza Bessa, Séverine Moriau, Ewen Lescop, François Bontems, Nathalie Mathy, Eric Guittet, Julien Bischerour, Mireille Bétermier and Nelly Morellet

    Citation: Mobile DNA 2021 12:12

    Content type: Research

    Published on:

  5. SINEs comprise a significant part of animal genomes and are used to study the evolution of diverse taxa. Despite significant advances in SINE studies in vertebrates and higher eukaryotes in general, their own ...

    Authors: Nikita S. Vassetzky, Sergei A. Kosushkin, Vitaly I. Korchagin and Alexey P. Ryskov

    Citation: Mobile DNA 2021 12:10

    Content type: Research

    Published on:

  6. Group II introns are mobile retroelements, capable of invading new sites in DNA. They are self-splicing ribozymes that complex with an intron-encoded protein to form a ribonucleoprotein that targets DNA after ...

    Authors: Justin M. Waldern, Dorie Smith, Carol Lyn Piazza, E. Jake Bailey, Nicholas J. Schiraldi, Reza Nemati, Dan Fabris, Marlene Belfort and Olga Novikova

    Citation: Mobile DNA 2021 12:9

    Content type: Research

    Published on:

  7. Plant genomes can respond rapidly to environmental changes and transposable elements (TEs) arise as important drivers contributing to genome dynamics. Although some elements were reported to be induced by vari...

    Authors: Guillaume Wos, Rimjhim Roy Choudhury, Filip Kolář and Christian Parisod

    Citation: Mobile DNA 2021 12:7

    Content type: Research

    Published on:

  8. Transposable elements (TEs) are enriched in cytosine methylation, preventing their mobility within the genome. We previously identified a genome-wide repertoire of candidate intracisternal A particle (IAP) TEs...

    Authors: Jessica L. Elmer, Amir D. Hay, Noah J. Kessler, Tessa M. Bertozzi, Eve A. C. Ainscough and Anne C. Ferguson-Smith

    Citation: Mobile DNA 2021 12:6

    Content type: Research

    Published on:

  9. Long INterspersed Element-1 (LINE-1) is an autonomous retroelement able to “copy-and-paste” itself into new loci of the host genome through a process called retrotransposition. The LINE-1 bicistronic mRNA code...

    Authors: Erica M. Briggs, Wilson McKerrow, Paolo Mita, Jef D. Boeke, Susan K. Logan and David Fenyö

    Citation: Mobile DNA 2021 12:5

    Content type: Research

    Published on:

  10. Transposable elements (TEs) are major components of all vertebrate genomes that can cause deleterious insertions and genomic instability. However, depending on the specific genomic context of their insertion s...

    Authors: Ema Etchegaray, Magali Naville, Jean-Nicolas Volff and Zofia Haftek-Terreau

    Citation: Mobile DNA 2021 12:1

    Content type: Review

    Published on:

  11. Retroelements (REs) occupy a significant part of all eukaryotic genomes including humans. The majority of retroelements in the human genome are inactive and unable to retrotranspose. Dozens of active copies ar...

    Authors: Alexander Y. Komkov, Shamil Z. Urazbakhtin, Maria V. Saliutina, Ekaterina A. Komech, Yuri A. Shelygin, Gaiaz A. Nugmanov, Vitaliy P. Shubin, Anastasia O. Smirnova, Mikhail Y. Bobrov, Alexey S. Tsukanov, Anastasia V. Snezhkina, Anna V. Kudryavtseva, Yuri B. Lebedev and Ilgar Z. Mamedov

    Citation: Mobile DNA 2020 11:33

    Content type: Methodology

    Published on:

  12. A family of Tc1/mariner transposons with a characteristic DD38E triad of catalytic amino acid residues, named Intruder (IT), was previously discovered in sturgeon genomes, but their evolutionary landscapes remain...

    Authors: Bo Gao, Wencheng Zong, Csaba Miskey, Numan Ullah, Mohamed Diaby, Cai Chen, Xiaoyan Wang, Zoltán Ivics and Chengyi Song

    Citation: Mobile DNA 2020 11:32

    Content type: Research

    Published on:

  13. An amendment to this paper has been published and can be accessed via the original article.

    Authors: Witold Tatkiewicz, James Dickie, Franchesca Bedford, Alexander Jones, Mark Atkin, Michele Kiernan, Emmanuel Atangana Maze, Bora Agit, Garry Farnham, Alexander Kanapin and Robert Belshaw

    Citation: Mobile DNA 2020 11:31

    Content type: Correction

    Published on:

    The original article was published in Mobile DNA 2020 11:9

  14. Mobile genetic elements are found in genomes throughout the microbial world, mediating genome plasticity and important prokaryotic phenotypes. Even the cell wall-less mycoplasmas, which are known to harbour a ...

    Authors: Birgit Henrich, Stephanie Hammerlage, Sebastian Scharf, Diana Haberhausen, Ursula Fürnkranz, Karl Köhrer, Lena Peitzmann, Pier Luigi Fiori, Joachim Spergser, Klaus Pfeffer and Alexander T. Dilthey

    Citation: Mobile DNA 2020 11:30

    Content type: Research

    Published on:

  15. Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections of mammalian germline cells. A large proportion of ERVs lose their open reading frames (ORFs), while others retain them and become e...

    Authors: Mahoko Takahashi Ueda, Kirill Kryukov, Satomi Mitsuhashi, Hiroaki Mitsuhashi, Tadashi Imanishi and So Nakagawa

    Citation: Mobile DNA 2020 11:29

    Content type: Research

    Published on:

  16. Tc1/mariner and Zator, as two superfamilies of IS630-Tc1-mariner (ITm) group, have been well-defined. However, the molecular evolution and domestication of pogo transposons, once designated as an important family...

    Authors: Bo Gao, Yali Wang, Mohamed Diaby, Wencheng Zong, Dan Shen, Saisai Wang, Cai Chen, Xiaoyan Wang and Chengyi Song

    Citation: Mobile DNA 2020 11:25

    Content type: Research

    Published on:

  17. The target capture protein MuB is responsible for the high efficiency of phage Mu transposition within the E. coli genome. However, some targets are off-limits, such as regions immediately outside the Mu ends (ci...

    Authors: David M. Walker and Rasika M. Harshey

    Citation: Mobile DNA 2020 11:26

    Content type: Research

    Published on:

  18. Insertion sequences (IS) are ubiquitous transposable elements with a very simple organization: two inverted repeats flanking a transposase coding gene. IS982 is one of 26 insertion sequence families known so far....

    Authors: Nancy Fayad, Mireille Kallassy Awad and Jacques Mahillon

    Citation: Mobile DNA 2020 11:24

    Content type: Review

    Published on:

  19. Drosophila has been studied as a biological model for many years and many discoveries in biology rely on this species. Research on transposable elements (TEs) is not an exception. Drosophila has contributed signi...

    Authors: Vincent Mérel, Matthieu Boulesteix, Marie Fablet and Cristina Vieira

    Citation: Mobile DNA 2020 11:23

    Content type: Review

    Published on:

  20. Endogenous retroviruses (ERVs) are the remnants of retroviral infections which can elicit prolonged genomic and immunological stress on their host organism. In chickens, endogenous Avian Leukosis Virus subgrou...

    Authors: Andrew S. Mason, Ashlee R. Lund, Paul M. Hocking, Janet E. Fulton and David W. Burt

    Citation: Mobile DNA 2020 11:22

    Content type: Research

    Published on:

  21. Tc1/mariner transposons are widespread DNA transposable elements (TEs) that have made important contributions to the evolution of host genomic complexity in metazoans. However, the evolution and diversity of the

    Authors: Mathilde Dupeyron, Tobias Baril, Chris Bass and Alexander Hayward

    Citation: Mobile DNA 2020 11:21

    Content type: Research

    Published on:

  22. Extensive and complex links exist between transposable elements (TEs) and satellite DNA (satDNA), which are the two largest fractions of eukaryotic genome. These relationships have a crucial effect on genome s...

    Authors: Alexander Belyayev, Jiřina Josefiová, Michaela Jandová, Václav Mahelka, Karol Krak and Bohumil Mandák

    Citation: Mobile DNA 2020 11:20

    Content type: Short report

    Published on:

  23. The extreme genome reduction and physiological simplicity of some microsporidia has been attributed to their intracellular, obligate parasitic lifestyle. Although not all microsporidian genomes are small (size...

    Authors: Nathalia Rammé Medeiros de Albuquerque, Dieter Ebert and Karen Luisa Haag

    Citation: Mobile DNA 2020 11:19

    Content type: Short report

    Published on:

  24. V(D) J recombination is essential for adaptive immunity in jawed vertebrates and is initiated by the RAG1-RAG2 endonuclease. The RAG1 and RAG2 genes are thought to have evolved from a RAGL (RAG-like) transposon c...

    Authors: Eliza C. Martin, Célia Vicari, Louis Tsakou-Ngouafo, Pierre Pontarotti, Andrei J. Petrescu and David G. Schatz

    Citation: Mobile DNA 2020 11:17

    Content type: Research

    Published on:

  25. Nearly half the human genome consists of repeat elements, most of which are retrotransposons, and many of which play important biological roles. However repeat elements pose several unique challenges to curren...

    Authors: Jason D. Fernandes, Armando Zamudio-Hurtado, Hiram Clawson, W. James Kent, David Haussler, Sofie R. Salama and Maximilian Haeussler

    Citation: Mobile DNA 2020 11:13

    Content type: Software

    Published on:

  26. Mobile elements are ubiquitous components of mammalian genomes and constitute more than half of the human genome. Polymorphic mobile element insertions (pMEIs) are a major source of human genomic variation and...

    Authors: Jui Wan Loh, Hongseok Ha, Timothy Lin, Nawei Sun, Kathleen H. Burns and Jinchuan Xing

    Citation: Mobile DNA 2020 11:12

    Content type: Methodology

    Published on:

  27. Previously, 3% of the human genome has been annotated as simple sequence repeats (SSRs), similar to the proportion annotated as protein coding. The origin of much of the genome is not well annotated, however, ...

    Authors: Jonathan A. Shortt, Robert P. Ruggiero, Corey Cox, Aaron C. Wacholder and David D. Pollock

    Citation: Mobile DNA 2020 11:11

    Content type: Research

    Published on:

  28. Transposable elements (TEs) are endogenous mutagens and their harmful effects are especially evident in syndromes of hybrid dysgenesis. In Drosophila virilis, hybrid dysgenesis is a syndrome of incomplete gonadal...

    Authors: Lucas W. Hemmer, Guilherme B. Dias, Brittny Smith, Kelley Van Vaerenberghe, Ashley Howard, Casey M. Bergman and Justin P. Blumenstiel

    Citation: Mobile DNA 2020 11:10

    Content type: Research

    Published on:

  29. The cell-surface attachment protein (Env) of the HERV-K(HML-2) lineage of endogenous retroviruses is a potentially attractive tumour-associated antigen for anti-cancer immunotherapy. The human genome contains ...

    Authors: Witold Tatkiewicz, James Dickie, Franchesca Bedford, Alexander Jones, Mark Atkin, Michele Kiernan, Emmanuel Atangana Maze, Bora Agit, Garry Farnham, Alexander Kanapin and Robert Belshaw

    Citation: Mobile DNA 2020 11:9

    Content type: Research

    Published on:

    The Correction to this article has been published in Mobile DNA 2020 11:31

  30. Chromosome organisation is increasingly recognised as an essential component of genome regulation, cell fate and cell health. Within the realm of transposable elements (TEs) however, the spatial information of...

    Authors: Alexandros Bousios, Hans-Wilhelm Nützmann, Dorothy Buck and Davide Michieletto

    Citation: Mobile DNA 2020 11:8

    Content type: Commentary

    Published on:

  31. Ligation-mediated PCR protocols have diverse uses including the identification of integration sites of insertional mutagens, integrating vectors and naturally occurring mobile genetic elements. For approaches ...

    Authors: Joanna C. Dawes, Philip Webster, Barbara Iadarola, Claudia Garcia-Diaz, Marian Dore, Bruce J. Bolt, Hamlata Dewchand, Gopuraja Dharmalingam, Alex P. McLatchie, Jakub Kaczor, Juan J. Caceres, Alberto Paccanaro, Laurence Game, Simona Parrinello and Anthony G. Uren

    Citation: Mobile DNA 2020 11:7

    Content type: Methodology

    Published on:

  32. Endogenous Retroviruses (ERVs) constitute approximately 8% of every human genome and are relics of ancestral infections that affected the germ line cells. The ERV-W group contributed to primate physiology by p...

    Authors: Nicole Grandi, Maria Paola Pisano, Martina Demurtas, Jonas Blomberg, Gkikas Magiorkinis, Jens Mayer and Enzo Tramontano

    Citation: Mobile DNA 2020 11:6

    Content type: Research

    Published on:

  33. SINEs are a type of nonautonomous retrotransposon that can transpose from one site to be integrated elsewhere in an organism genome. SINE insertion can give rise to genetic variants and regulate gene expressio...

    Authors: Dong Liu, Jinquan Yang, Wenqiao Tang, Xing Zhang, Clay Matthew Royster and Ming Zhang

    Citation: Mobile DNA 2020 11:4

    Content type: Research

    Published on:

  34. Following publication of the original article [1], the authors spotted an error in Table 2.

    Authors: Pavel Jedlicka, Matej Lexa, Ivan Vanat, Roman Hobza and Eduard Kejnovsky

    Citation: Mobile DNA 2020 11:3

    Content type: Correction

    Published on:

    The original article was published in Mobile DNA 2019 10:50

  35. Retrotransposons are one of the oldest evolutionary forces shaping mammalian genomes, with the ability to mobilize from one genomic location to another. This mobilization is also a significant factor in human ...

    Authors: Tiffany Kaul, Maria E. Morales, Alton O. Sartor, Victoria P. Belancio and Prescott Deininger

    Citation: Mobile DNA 2020 11:2

    Content type: Methodology

    Published on:

Annual Journal Metrics