
Chen et al. Mobile DNA            (2023) 14:8  
https://doi.org/10.1186/s13100-023-00296-4

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Mobile DNA

Reproducible evaluation of transposable 
element detectors with McClintock 2 guides 
accurate inference of Ty insertion patterns 
in yeast
Jingxuan Chen1, Preston J. Basting1, Shunhua Han1, David J. Garfinkel2 and Casey M. Bergman1,3* 

Abstract 

Background Many computational methods have been developed to detect non-reference transposable element 
(TE) insertions using short-read whole genome sequencing data. The diversity and complexity of such methods often 
present challenges to new users seeking to reproducibly install, execute, or evaluate multiple TE insertion detectors.

Results We previously developed the McClintock meta-pipeline to facilitate the installation, execution, and evalua-
tion of six first-generation short-read TE detectors. Here, we report a completely re-implemented version of McClin-
tock written in Python using Snakemake and Conda that improves its installation, error handling, speed, stability, 
and extensibility. McClintock 2 now includes 12 short-read TE detectors, auxiliary pre-processing and analysis mod-
ules, interactive HTML reports, and a simulation framework to reproducibly evaluate the accuracy of component TE 
detectors. When applied to the model microbial eukaryote Saccharomyces cerevisiae, we find substantial variation 
in the ability of McClintock 2 components to identify the precise locations of non-reference TE insertions, with Relo-
caTE2 showing the highest recall and precision in simulated data. We find that RelocaTE2, TEMP, TEMP2 and TEBreak 
provide consistent estimates of ∼ 50 non-reference TE insertions per strain and that Ty2 has the highest number 
of non-reference TE insertions in a species-wide panel of ∼1000 yeast genomes. Finally, we show that best-in-class 
predictors for yeast applied to resequencing data have sufficient resolution to reveal a dyad pattern of integration 
in nucleosome-bound regions upstream of yeast tRNA genes for Ty1, Ty2, and Ty4, allowing us to extend knowledge 
about fine-scale target preferences revealed previously for experimentally-induced Ty1 insertions to spontaneous 
insertions for other copia-superfamily retrotransposons in yeast.

Conclusion McClintock (https:// github. com/ bergm anlab/ mccli ntock/) provides a user-friendly pipeline for the iden-
tification of TEs in short-read WGS data using multiple TE detectors, which should benefit researchers studying 
TE insertion variation in a wide range of different organisms. Application of the improved McClintock system 
to simulated and empirical yeast genome data reveals best-in-class methods and novel biological insights for one 
of the most widely-studied model eukaryotes and provides a paradigm for evaluating and selecting non-reference TE 
detectors in other species.
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Background
Transposable elements (TEs) are mobile, repetitive DNA 
sequences that occupy large fractions of most eukary-
otic genomes and can cause mutations of large effect [1]. 
Since their discovery, a variety of cytological, molecu-
lar and genomic techniques have been developed to 
identify TE insertions in genomes at varying levels of 
resolution [2–8]. In principle, the most comprehensive 
method for detecting new TE insertions in a genome is 
whole genome sequencing (WGS) followed by de novo 
genome assembly and systematic genome-wide annota-
tion of TEs. However, the difficulty of accurately assem-
bling repetitive DNA sequences using short reads [9, 10] 
and the challenges of generating high-quality long-read 
genome sequencing data hinder using assembly-based 
methods for genome-wide detection of TE insertions, 
especially for large population samples [11].

Currently, the most widely-used approach for detec-
tion of new TE insertions involves mapping unassembled 
short-read WGS data to a reference genome and infer-
ring the location and family using split-read or read-pair 
information [8]. Over the last decade, many bioinfor-
matic methods have been developed for the reference-
based detection of TE insertions using short-read WGS 
data (https:// tehub. org/ en/ resou rces/ repeat_ tools) [12]. 
Most of these methods were initially developed for a spe-
cific organism with its unique TE composition, and thus 
have different design goals and features. The general per-
formance of short-read TE detectors is typically unknown 
because of the “self-assessment trap” and limited num-
ber of methods compared in primary studies [13]. A few 
independent performance evaluation studies have been 
conducted comparing subsets of short-read TE detectors, 
but these studies differ in their evaluation frameworks, 
selection of tools, and focal organisms [14–16]. Crucially, 
no study to date has provided a reproducible evaluation 
of multiple TE detectors, making it difficult to validate 
published results or extend findings beyond the context 
of the initial evaluation study. Despite these issues, one 
emerging theme from current evaluation studies is that 
considerable variation in performance exists among dif-
ferent short-read TE detectors, across organisms and 
evaluation frameworks [8, 14–16]. As such, there is not 
yet any clear basis to select the best short-read TE detec-
tor for a new organism, and thus researchers must base 
tool choice by extrapolation from performance on other 
taxa or employ multiple methods to ensure robust bio-
logical conclusions [17–19].

Previously, we developed a meta-pipeline called 
McClintock [15] to facilitate the installation and execu-
tion of six first-generation short-read TE detectors 
(ngs_te_mapper [20], PoPoolationTE [21], RelocaTE 
[22], RetroSeq [23], TE-locate [24], and TEMP [25]). The 

original McClintock system automated installation of 
these six “component” TE detection methods, provided 
a common interface to run all components, reduced the 
number of shared input files, and generated a standard 
set of output files [15]. Since its initial development, the 
McClintock system has been used to support detection 
of TE insertions and enable biological discoveries in a 
variety of organisms and biological contexts [15–19, 26–
44] and to facilitate comparative evaluation of multiple 
TE detectors [15, 16, 45].

A long-term aim of the McClintock project was to 
develop a flexible framework to incorporate additional 
TE detectors as they were published, allowing research-
ers to run the most relevant set of methods and com-
pare performance on their genomes of interest. While 
the original pipeline made it easier to install and run 
multiple TE detectors and compare their output, its ini-
tial design had several limitations that made it difficult 
to achieve this long-term aim. Most importantly, the 
original McClintock pipeline was implemented in Bash 
with minimal use of functions or classes to encapsulate, 
abstract, or modularize the code, and most variables were 
defined in the global scope. These shortcomings made 
it difficult to modify and expand the original codebase 
without compromising existing functionality, and thus 
hindered the addition of new TE detectors to the original 
framework.

The original McClintock system also had several limita-
tions related to its installation. Component TE detectors 
were installed automatically by McClintock, however 
the software dependencies for each component had to 
be installed manually, which required substantial effort 
on the part of the user. Moreover, all components in the 
original McClintock system ran in a single computing 
environment, which necessitated a mutually-compatible 
set of software dependencies to be installed. This fragile 
configuration also caused compromises in the versions 
of software dependencies that were used and, in some 
cases, locked the original system to increasingly out-of-
date versions of software dependencies.

Even after successful installation, the original 
McClintock system had a number of limitations regard-
ing its usability. Notably, error handling was largely 
absent from the original codebase. Thus, when fail-
ures occurred during the execution of component TE 
detectors or their software dependencies, McClintock 
would continue to run, often producing a cascade of 
error messages from downstream processes that made 
it difficult for users to know how and why the pipeline 
failed. Similarly, the original pipeline had strict input 
file formatting requirements (e.g., requiring unzipped 
fastq files), but which would provide no warnings or 
messages if the input files did not comply to required 

https://tehub.org/en/resources/repeat_tools
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specifications. Moreover, the original McClintock 
system hard-coded some input and post-processing 
parameters that were not easily modified by users but 
impacted the performance of component methods. The 
original McClintock pipeline also output TE insertion 
predictions only in Browser Extensible Data (BED) for-
mat (https:// samto ols. github. io/ hts- specs/ BEDv1. pdf ), 
rather than the Variant Call Format (VCF) [46] that is 
standard for reporting genetic variation relative to a 
reference genome. Finally, the original pipeline also did 
not produce plots or tables to facilitate comparison of 
predictions across component methods.

To address these limitations, we completely re-
implemented McClintock in Python leveraging Conda 
(https:// github. com/ conda/ conda) and Snakemake [47] 
to improve the installation, error handling, speed, sta-
bility, and extensibility of the pipeline. We also incor-
porated six new TE detectors (ngs_te_mapper2 [35], 
PoPoolationTE2 [48], RelocaTE2 [49], TEBreak [50], 
TEFLoN [51], and TEMP2 [52]), doubling the total 
number of components available in the new McClin-
tock system. In addition, the updated McClintock 
system now includes new modules to automate read 
trimming, provide estimates of TE family abundance 
from depth of coverage, and produce an integrated 
HTML report summarizing predictions made by all 
components. Importantly, McClintock now also pro-
vides a new reproducible simulation framework that 
allows users to evaluate the performance of compo-
nent TE detectors in a flexible manner across differ-
ent organismal contexts. In this report, we describe 
the structure and function of the updated McClintock 
system, highlight its improvements and new features, 
evaluate component TE detector performance using 
simulated and empirical yeast genome data, and use the 
updated McClintock system to provide new biological 
insights into the pattern of TE insertion in S. cerevisiae.

Implementation
Re‑implementation of McClintock in Python using Conda 
and Snakemake
Here we describe the major features distinguishing the 
re-implemented McClintock 2 system from the original 
version reported in Nelson et al. [15] (Table 1). We ini-
tially sought to further develop the original Bash-based 
McClintock system reported in Nelson et  al. [15] by 
improving its installation using the Conda package and 
environment management system (https:// github. com/ 
conda/ conda). The use of Conda allows the creation of 
distinct environments (both for McClintock itself and 
for the component methods wrapped in McClintock) 
that can be reproducibly generated on different comput-
ing systems without the need for root privileges. This 
modification to the original McClintock system permit-
ted external software dependencies to be automatically 
installed separately for each component, and each com-
ponent to be executed in its own isolated environment. 
While solving some of the problems with the installation 
and versioning of external dependencies in the origi-
nal system, this development work led to an endpoint 
because it did not solve most of the software engineer-
ing and usability limitations described above. Therefore, 
the final version of the Bash-based McClintock system 
extended to use Conda (referred to in this report as 
McClintock 1) was retired.

We next completely rewrote the McClintock system 
in Python 3 using Conda and Snakemake [47], with the 
initial aim of recapitulating the general functionality in 
McClintock 1. The new McClintock 2 codebase is heav-
ily modularized and leverages the native error handling 
functions in Python. Snakemake was used to simplify 
and fully automate installation of all components and 
their software dependencies (either from Conda chan-
nels like Bioconda [53] or directly from project reposi-
tories), and to automatically create independent Conda 

Table 1 Major features that distinguish the original McClintock version reported in Nelson et al. [15] and the McClintock 2 system 
reported in the current study

N.A. indicates that the feature is not available

Nelson et al. [15] McClintock 2

McClintock implementation Bash Python

Workflow management N.A. Snakemake

Dependency installation Manual Conda (automated)

# Component methods 6 12 (with extensibility)

Read trimming and QC N.A. trimgalore module

TE copy number estimation N.A. coverage module

Output format .BED .VCF and .BED

Summary report .CSV .CSV and .HTML (interactive)

Reproducible simulation system N.A. Built-in (with documentation)

https://samtools.github.io/hts-specs/BEDv1.pdf
https://github.com/conda/conda
https://github.com/conda/conda
https://github.com/conda/conda
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environments for each component. Additionally, because 
the “meta-pipeline” architecture of McClintock is natu-
rally suited to a rule-based workflow, we encapsulated of 
each component as an individual rule in a Snakefile that 
is executed by Snakemake inside a specific Conda envi-
ronment whose dependencies do not conflict with any 
other component/rule.

Using the Snakemake workflow manager to underpin 
the McClintock 2 meta-pipeline provided several advan-
tages. Since the Snakemake engine determines the rules 
that are run to create the requested outputs, no addi-
tional coding logic is required in McClintock itself to 
manage the complexities of which components were run 
and in which order, or how files shared by multiple com-
ponents are created and used (e.g., reference genomes, 
trimmed read files, BAM files, etc.). Importantly, this vir-
tue of Snakemake applies regardless of how many com-
ponents are executed at run time or incorporated into 
McClintock 2 in the future, permitting flexible execu-
tion of various components by users and easy addition of 
new components by developers. Finally, the Snakemake 
engine can run multiple independent rules simultane-
ously if enough central processing unit (CPU) cores are 
available, potentially allowing for multiple rules to be 
run in parallel on multi-core systems. In the re-imple-
mented system, if n>1 cores are requested, McClintock 
2 by default now allocates a maximum of n/2 (for an 
even number of cores) or (n−1)/2 (for an odd number 
of cores) to each rule which allows multiple rules to be 
executed in parallel. Optionally, users can specify the “–
serial” flag which prevents multiple rules from being run 
in parallel and allows rules that use multiple cores to have 
access to maximal number of cores requested.

After integrating the original six components (ngs_
te_mapper [20], PoPoolationTE [21], RelocaTE [22], 
RetroSeq [23], TE-locate [24], and TEMP [25]) into the 
McClintock 2 system, we cross-validated its accuracy 
versus the original McClintock 1 system using simulated 
genomes generated by our new reproducible simulation 
platform (see below and Supplemental Text). We then 
incorporated six more recently-developed TE detec-
tors that fulfilled our original inclusion criteria [15] into 
the re-engineered McClintock system: ngs_te_mapper2 
[35], PoPoolationTE2 [48], RelocaTE2 [49], TEBreak [50], 
TEFLoN [51], and TEMP2 [52].

In addition to providing a full re-implementation and 
additional TE detectors, McClintock 2 has new func-
tionality not present in the original system (Table  1). 
First, McClintock 2 now has a preprocessing module to 
perform read trimming and quality control (QC) using 
TrimGalore (https:// github. com/ Felix Krueg er/ TrimG 
alore) and produce a read QC report using MultiQC 
[54]. If the read trimming option is set (either optionally 

in conjunction with user-specified components, or in 
a default run that executes all 12 components), then 
trimmed reads are used as input for other components in 
McClintock 2. Second, McClintock 2 has a new “cover-
age module” that can generate estimates of TE copy num-
ber by computing relative depth-of-coverage for each 
query TE sequence normalized by depth-of-coverage in 
non-repetitive regions of the genome. The coverage mod-
ule also produces plots for each query that allow users 
to inspect variation in read depth across TE sequences, 
which may be caused by the existence of multiple TE 
sub-families that differ by structural variants (e.g., [17, 
55]). Third, McClintock 2 reports non-reference TE 
insertion variants predicted by each component in VCF 
format [46] in addition to BED files containing standard-
ized information about reference and non-reference TE 
insertions. Finally, McClintock 2 is able to generate an 
interactive HTML report for each run that allows users 
to view, sort, and filter results for each component and 
TE family (Fig. 1).

A reproducible simulation system for evaluating 
McClintock component performance
In addition to improvements in the meta-pipeline itself, 
McClintock 2 now also provides code to automatically 
simulate TE insertions in any user-supplied genome and 
generate synthetic WGS datasets that can be used as 
input to evaluate component TE detector performance. 
Previously, we developed a “single synthetic insertion” 
framework for evaluating the performance of McClin-
tock components to detect non-reference TE insertions 
and used this framework to evaluate the performance of 
the six TE detectors in McClintock 1 [15]. This evaluation 
framework created a synthetic genome comprised of a 
single non-reference TE and its corresponding target site 
duplication (TSD) inserted into in an otherwise-unmod-
ified reference genome, then simulated a corresponding 
paired-end WGS dataset that could be used as input for 
McClintock. The Bash code for this simulation frame-
work was not released as part of the original McClintock 
1 system, did not run inside a controlled environment, 
was hard-coded to simulate TE insertion preferences for 
only one species (S. cerevisiae), only evaluated only one 
WGS fold-coverage (100× ), and did not generate stand-
ard performance metrics like precision and recall.

To overcome these limitations, we re-implemented 
a flexible and fully-reproducible version of this single 
synthetic insertion simulation framework in Python 3 
using Conda and Snakemake. The new simulation frame-
work in McClintock 2 allows customization for different 
organisms, and consists of three major parts that run 
under controlled Conda environments: 

https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
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 (i) A Python 3 script that creates a configuration file 
with information about the simulation experiment 
to be run in JavaScript Object Notation (JSON) 
format. Required inputs to the configuration script 
include user-supplied files containing the reference 
genome, TE library, and permissible locations for 
TE insertions. The configuration script also allows 
users to modify the number of replicates in the 
experiment, properties of the synthetic genomes 

(e.g., TSD length and strand of the TE insertion), 
properties of the simulated WGS datasets (e.g., 
read length, single or paired end reads, insertion 
sizes for paired-end reads, read error rates, fold-
coverage), the read simulator used to generate 
WGS datasets (ART [56] or wgsim [57]), and com-
puting resources for each cluster job (e.g., number 
of threads, amount of memory).

Fig. 1 Sample screenshots from the new interactive HTML report in McClintock 2. The HTML report generates summary information 
for the McClintock run including interactive bar plots for: (A) the number of reference, non-reference, and total number of predictions made 
across all TE families by all 12 component methods; and (B) the number of reference, non-reference, and total number of predictions made 
for a specific component method (e.g., RelocaTE2). Barplots from the report shown were generated by a complete McClintock run (commit SHA 
d2b819a) applied to Illumina 101-bp paired-end sequences for S. cerevisiae strain YJM1460 (SRA: SRR800842) down-sampled to 50× fold-coverage
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 (ii) A primary Snakemake workflow that reads input 
parameters from the JSON file created by the con-
figuration script, then submits and manages jobs 
on a high-performance computing (HPC) cluster. 
Currently our simulation framework is designed 
for use with cluster systems running the SLURM 
workload manager, but it can be adapted to other 
HPC systems using alternative Snakemake clus-
ter profiles (https:// github. com/ Snake make- Profi 
les/). Each submitted job runs a Python script that 
creates a new synthetic genome with one addi-
tional insertion, simulates a corresponding WGS 
dataset from this synthetic genome, then runs the 
McClintock pipeline on the simulated WGS data-
set. Replicates for each combination of parameters 
are submitted as individual cluster jobs to maxi-
mize available cluster resources, and any potential 
failed jobs are automatically re-submitted by the 
workflow to minimize effort needed to monitor the 
simulation experiment.

 (iii) A secondary Snakemake workflow that is automati-
cally executed after all cluster jobs submitted by the 
primary workflow are completed, which summa-
rizes results and generates preliminary plots from 
all replicates of the overall simulation experiment. 
This workflow runs several scripts to calculate 
performance metrics (e.g., mean numbers of non-
reference TE predictions, precision, recall) across 
replicates, generate precision/recall curves as a 
function of fold-coverage, and generate positional 
accuracy and predicted TSD length plots for each 
fold-coverage level. Performance metrics are auto-
matically generated by the simulation system and 
calculated as follows. Non-reference TE predic-
tions with the identical family, chromosome, and 
strand, with start and end locations falling within 
an N bp window from the synthetic insertion (N=0, 
5, 100, 300, or 500) are labeled as “within-N” pre-
dictions. Within-0 bp predictions have the identical 
start and end coordinates as the synthetic inser-
tion in that simulated sample and are considered 
“exact” predictions. The mean number of reference 
and non-reference TE predictions (overall and at 
various window sizes) per synthetic genome are 
then calculated across all replicates. To calculate 
precision and recall, non-reference TE predictions 
within-N bp from the insertion site that match the 
TE family and strand of the synthetic insertion are 
regarded as true positives (TP), while all other pre-
dictions are regarded as false positives (FP). If more 
than one non-reference prediction for the correct 
TE family and strand was made within-N bp from 
the synthetic insertion, only one was considered a 

TP and all others are considered FPs. If a replicate 
had zero non-reference TE predictions within-N 
bp from the synthetic insertion, it was regarded as 
a false-negative (FN). For each N bp window size, 
recall was calculated as TP/(TP+FN) and precision 
was calculated as TP/(TP+FP).

Materials and methods
Evaluation of McClintock component performance 
on simulated data
We conducted a series of four simulation experiments to 
validate aspects of the McClintock re-implementation, 
demonstrate the utility of our new reproducible simula-
tion framework, and evaluate the ability of McClintock 
components to predict non-reference TE insertions in S. 
cerevisiae. The different simulation experiments varied in 
the version of McClintock used, which component meth-
ods were run, their placement of synthetic insertions, the 
read simulator used to generate WGS datasets, and per-
formance metrics used (See Additional file 1 for details). 
Simulations 1 and 2 were designed to cross-validate the 
McClintock 2 meta-pipeline and simulation system at 
a fixed coverage (100× ), while Simulations 3 and 4 were 
designed to evaluate component method performance at 
range of fold-coverages (3× , 6 × , 12× , 25× , 50× , 100× ). In 
all cases, synthetic genomes were created with the new 
reproducible simulation framework available in McClin-
tock 2 (see Implementation above), the UCSC sacCer2 
version of the S. cerevisiae S288c reference genome (to 
allow cross-validation with results in Nelson et al. [15]), 
and 5-bp TSDs for all Ty families [15, 58–61]. All simu-
lations and McClintock jobs run on simulated data used 
the following input files (provided in https:// github. com/ 
bergm anlab/ mccli ntock/ blob/ master/ test/): the UCSC 
sacCer2 version of the S. cerevisiae S288c reference 
genome (sacCer2.fasta, commit SHA 53a5e8f ); refer-
ence TE annotations (reference_TE_locations.gff, com-
mit SHA 571ef0e), taxonomy files (sac_cer_te_families.
tsv, commit SHA 571ef0e), and canonical sequences for 
S. cerevisiae Ty elements (sac_cer_TE_seqs.fasta, com-
mit SHA d649713) from [62]. Quantitative results from 
all simulations can be found in Additional file 2 (average 
numbers of TEs) and Additional file 3 (recall and preci-
sion). UpSet plots [63] visualizing overlaps among com-
ponent methods for true positive predictions at different 
window sizes and fold-coverages for Simulations 3 and 4 
can be found in Additional file 4.

Evaluation of McClintock CPU efficiency and run time 
on empirical data
To test whether Snakemake’s ability to run multiple rules 
simultaneously could improve run-time performance 

https://github.com/Snakemake-Profiles/
https://github.com/Snakemake-Profiles/
https://github.com/bergmanlab/mcclintock/blob/master/test/
https://github.com/bergmanlab/mcclintock/blob/master/test/
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in the new McClintock system, we applied the origi-
nal McClintock 1 (commit SHA 714fe6d) and the new 
McClintock 2 (commit SHA f766e73) systems to a 101-
bp paired-end Illumina HiSeq 2000 dataset for S. cer-
evisiae strain YJM1460 [64] that was down-sampled to 
50× and 100× coverage using seqtk (v1.3) [65]. To com-
pare run times for McClintock 1 and McClintock 2, 
we invoked both versions of the system only with the 
original six components present in McClintock 1 (“-m 
ngs_te_mapper,relocate,temp,retroseq,popoolationte
,te-locate”). To evaluate the impact on run time caused 
by addition of the six new components in McClintock 2, 
we also invoked McClintock 2 using all 12 components 
(“-m ngs_te_mapper,ngs_te_mapper2,relocate, relocate2
,temp,temp2,retroseq,popoolationte, popoolationte2,te-
locate,teflon,tebreak”). In both cases, we varied the num-
ber of cores requested (1, 5, 10, 15, 20, 25, 30) but kept 
the amount of RAM constant (20 Gb). For all runs, we 
used unzipped, untrimmed fastq reads (as required by 
McClintock 1) and the following input files (provided in 
https:// github. com/ bergm anlab/ mccli ntock/ blob/ mas-
ter/ test/): the UCSC sacCer2 version of the S. cerevisiae 
S288c reference genome (sacCer2.fasta, commit SHA 
53a5e8f ); reference TE annotations (reference_TE_loca-
tions.gff, commit SHA 571ef0e), taxonomy files (sac_
cer_te_families.tsv, commit SHA 571ef0e), and canonical 
sequences for S. cerevisiae Ty elements (sac_cer_TE_
seqs.fasta, commit SHA d649713) from [62]. Trials were 
run serially on the same cluster node (an AMD EPYC 
processor with a total of 32 cores and 256GB RAM, oper-
ating system Linux 3.10.0-1160.36.2.el7.x86_64). The 
average and standard deviation of CPU efficiency and 
run times was calculated from five replicates of each set-
ting (defined as the combination of number of cores and 
McClintock run options). All possible settings were run 
as a batch for each replicate to control for differences 
in cluster node performance over the duration of the 
experiment.

Analysis of TE insertions in a diverse panel of wild 
and domesticated yeast strains
To demonstrate the utility of the McClintock 2 sys-
tem for large-scale mining of empirical short-read 
WGS data, we applied our pipeline to Illumina paired-
end datasets for 1,011 S. cerevisiae isolates [64, 66] 
sequenced to variable depths (from 50× to 900× fold-
coverage). Illumina WGS data were downloaded from 
NCBI Sequence Read Archive and converted to fastq 
format using SRA toolkit (v2.10.8) [67]. To minimize 
the influence of variable coverage and reduce comput-
ing resources, if the coverage of the original dataset 
was greater than 50× , we down-sampled it to 50× fold-
coverage using seqtk (v1.3) [65]. The full McClintock 

2 pipeline using all 12 components plus the coverage 
and trimgalore module (“-m ngs_te_mapper,ngs_te_
mapper2,relocate, relocate2,temp,temp2,retroseq,po
poolationte,popoolationte2,te-locate,teflon,tebreak, 
coverage,trimgalore”) (commit SHA 7aa5298) was 
applied to this yeast resequencing dataset using the 
following input files (provided in https:// github. com/ 
bergm anlab/ mccli ntock/ blob/ master/ test/): the UCSC 
sacCer2 version of the S. cerevisiae S288c reference 
genome (sacCer2.fasta, commit SHA 53a5e8f ); refer-
ence TE annotations (reference_TE_locations.gff, com-
mit SHA 571ef0e), taxonomy files (sac_cer_te_families.
tsv, commit SHA 571ef0e), and canonical sequences for 
S. cerevisiae Ty elements (sac_cer_TE_seqs.fasta, com-
mit SHA d649713) from [62]. Multi-sample VCF files 
for non-reference TEs predicted by McClintock 2 com-
ponent methods the 1,011 S. cerevisiae isolates can be 
found in Additional file 5.

We identified non-reference TE insertions in the vicin-
ity of tRNA genes using BEDtools (v2.30.0,  “window -u 
-sw -l 1000 -r 500”) [68]. BEDtools (“closest -D b”) was 
used to calculate the genomic distance between the start 
position of each non-reference TE insertion and its clos-
est tRNA transcription start site (TSS). To analyze the 
relationship between the distribution of non-reference 
TE insertions and nucleosome occupancy upstream of 
tRNA genes, we mapped micrococcal nuclease diges-
tion with deep sequencing (MNase-seq) data from [69] 
to the sacCer2 version of the S. cerevisiae S288c refer-
ence genome using Bowtie (v1.2.3 [70]) and generated 
genome-wide nucleosome occupancy profiles using 
NUCwave [71]. Whole genome nucleosome occupancy 
profiles in .wig format were converted to .bw format using 
wigToBigWig (v377) [72], and then bwtool (v20170428, 
“aggregate 2000:500”) [73] was used to calculate nucleo-
some occupancy in the region 2 kb upstream to 500 bp 
downstream of all tRNA TSSs.

Data analysis and visualization
Data were analyzed and visualized in R (v3.6.3) using the 
ggplot2 (v3.3.3) [74] and GGally (v2.1.1, https:// ggobi. 
github. io/ ggally/) packages. UpSet plots were generated 
by comparing overlaps among true-positive predictions 
across component methods using UpSetR (v1.4.0) [75]. 
Kernel density plots showing distributions of Ty insertion 
sites around tRNA genes were created with the ggplot2 
function “geom_density” with Gaussian kernel and 0.4× 
default bandwidth. In contrast to Nelson et al. [15], pre-
dictions from TEMP [25] in the current study were not 
partitioned into those with split-read versus read-pair 
evidence. Scripts to generate results in this study can be 
found in Additional file 6.

https://github.com/bergmanlab/mcclintock/blob/master/test/
https://github.com/bergmanlab/mcclintock/blob/master/test/
https://github.com/bergmanlab/mcclintock/blob/master/test/
https://github.com/bergmanlab/mcclintock/blob/master/test/
https://ggobi.github.io/ggally/
https://ggobi.github.io/ggally/
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Results and discussion
Validation of McClintock 2 implementation and simulation 
system
Here we present a Python-based re-implemention and 
extension of the McClintock TE detection meta-pipeline, 
as well as a reproducible simulation system to test the 
performance of component TE detectors integrated into 
McClintock. The major features that distinguish the new 
McClintock 2 system from the original version reported 
in Nelson et al. [15] are described in the Implementation 
section above and are summarized in Table 1. To validate 
the McClintock 2 implementation and simulation system, 
we conducted a series of in silico experiments testing the 
ability of the six original components to detect a single 
synthetic non-reference TE insertion introduced into an 
otherwise unmodified S. cerevisiae reference genome (see 
Additional file 1 for details). Contrasts between different 
simulations allowed us to test whether various improve-
ments in the new McClintock 2 system could yield results 
that replicate those previously published in Nelson et al. 
[15] including: (i) the Python-based implementation of 
the simulation system, (ii) the Python-based implemen-
tation of the meta-pipeline, and (iii) the random inser-
tion model in the single insertion simulation framework. 
Results from these simulations (Fig. S1) allowed us to 
validate that the McClintock 2 re-implementation yields 
results that broadly replicate those previously published 
in Nelson et al. [15].

Parallelization by Snakemake in McClintock 2 improves 
multi‑core job run times
McClintock 2 uses Snakemake as a workflow manager, 
which allows parallelization of multiple rules when 
enough CPU cores are available. To investigate potential 
improvements in computational efficiency due to Snake-
make job management in McClintock 2, we executed 
McClintock 1 and McClintock 2 (using either the six 
original or all 12 components) with a variable number of 
cores under controlled computing environments. For this 
analysis, we used a 101-bp paired-end Illumina dataset 
from the S. cerevisiae domesticated palm-wine strain Y12 
(YJM1460; SRA: SRR800842) downsampled to either 50× 
or 100× (see Materials and Methods for details). In gen-
eral, we observe a decreasing trend in CPU efficiency for 
all McClintock run configurations as the number of CPU 
cores increases (Fig. 2A). However, when more than one 
core is used, we found that McClintock 2 has better CPU 
efficiency than McClintock 1 for the six original compo-
nents, and that CPU efficiency is highest for all numbers 
of cores used when executing all 12 McClintock 2 com-
ponents. Improved CPU efficiency for McClintock 2 is 
observed at both 50× and 100× coverage.

When comparing run times for the six original com-
ponents at both 50× and 100× coverage (Fig.  2B), we 
found that McClintock 2 was slightly slower ( ∼10%) than 
McClintock 1 when using only a single core, however 
McClintock 2 finished faster than McClintock 1 when 
five or more cores were available. Run times for McClin-
tock 2 decreased up to 15 CPU cores when executing 
either the original six or all 12 components, while no 
major benefits in run time were observed beyond 5 CPU 
cores for McClintock 1. Interestingly, when 15 or more 
cores are allocated, executing McClintock 2 with all 12 
components is faster than running McClintock 1 using 
only six components. Together, these results indicate that 
parallelization afforded by using Snakemake in McClin-
tock 2 results in better utilization of computing resources 
in multi-core computing systems relative to McClintock 
1.

Evaluation of McClintock 2 component TE detectors 
on simulated yeast data
McClintock 2 now includes six additional component 
methods for detecting non-reference TE insertions using 
short-read WGS data that are not available in McClin-
tock 1: ngs_te_mapper2 [35], PoPoolationTE2 [48], Relo-
caTE2 [49], TEBreak [50], TEFLoN [51], and TEMP2 
[52]). Four of the new components (ngs_te_mapper2, 
PoPoolationTE2, RelocaTE2, TEMP2) are “second-
generation” versions of tools previously incorporated in 
McClintock 1, and the other two (TEBreak and TEFLoN) 
represent new TE detection strategies not represented in 
McClintock 1.

To evaluate the relative performance of these 12 TE 
detection strategies, we used the new reproducible single 
insertion simulation approach available in McClintock 
2. The evaluation of McClintock 2 component meth-
ods performed here differs from the approach originally 
used in Nelson et al. [15] in several ways (see Additional 
file 1 for details). First, we used a more biologically real-
istic model to randomly select the family and location of 
simulated non-reference TE insertions over a range of 
genomic positions. Second, we investigated the effects of 
component performance over a range of fold-coverages, 
which provides practical guidance for users to optimize 
data generation. Third, the summary statistics used in 
Nelson et  al. [15] are not standard evaluation metrics, 
and therefore difficult to compare with other evaluation 
studies (e.g., [14, 16]). Thus, here we used the standard 
evaluation metrics of recall and precision derived from 
the number of true-positive, false-positive, and false-neg-
ative predictions at various window sizes (see Implemen-
tation for details). Finally, here we evaluated performance 
using simulations that model yeast TE target preferences 
(Simulation 3) as in Nelson et al. [15], as well as random 
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insertion into non-repetitive DNA (Simulation 4). Simu-
lation 4 helps us interpret how insertion into repetitive 
DNA in the reference genome influences component per-
formance in yeast and gives insight into potential com-
ponent performance in other organisms that don’t have 
strong TE targeting preferences.

As shown previously for the original six components 
in McClintock 1 [15], different methods in McClintock 
2 vary in their ability to accurately predict the posi-
tion of synthetic TE insertions in simulated data (Figs. 
S2, S3, S4, S5). Several components (i.e., ngs_te_map-
per, ngs_te_mapper2, RelocaTE, RelocaTE2, TEFLoN 
and TEBreak) make most predictions very close the 

expected location of the synthetic insertion, whereas 
other components (i.e., PoPoolationTE, PoPoolationTE2, 
and TE-locate) predict insertions over a wider distance 
around the synthetic insertion ( ∼500bp). Even for com-
ponents that attempt to identify insertion breakpoints at 
nucleotide resolution using split-read information, only 
ngs_te_mapper and RelocaTE2 have predictions with the 
expected 5-bp TSD length for all Ty families (Figs. S6, 
S7). This method-dependent variation in positional accu-
racy makes it difficult to fairly compare performance of 
different components at a single window size. Therefore, 
we calculated performance metrics over a range of win-
dow sizes for overlaps between predicted and simulated 

Fig. 2 McClintock 2 re-implementation improves CPU efficiency and run time on multi-core architectures. Shown are average (A) CPU 
efficiency and (B) run times across 5 replicates of McClintock 1 (six component methods, orange line) or McClintock 2 (same six component 
methods as for McClintock 1, light blue line; all 12 component methods in McClintock 2, dark blue line) applied to 50× and 100× Illumina 101-bp 
paired-end sample for S. cerevisiae strain YJM1460 (SRA: SRR800842). Error bars indicate standard deviations across replicates. To allow compatibility 
with McClintock 1, all runs were performed on unzipped, untrimmed fastq files and thus run times do not include these processes
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insertions (exact, within-5, within-100, within-300, and 
within-500 bp). Inspection of the complete set of results 
for all window sizes (Figs. S8, S9, S10, S11) revealed that 
two window sizes (exact and within-100 bp) could illus-
trate the majority of key features in McClintock 2 com-
ponent performance across the insertion models and 
range of fold-coverages investigated here.

To guide selection of TE detectors in the model spe-
cies S. cerevisiae, we first analyzed the performance of 
McClintock 2 components using data from Simulation 
3 where TEs were inserted in their biologically realistic 
locations for yeast in regions upstream of tRNA genes 
[76–80] (Fig. 3; purple lines). Three general trends can be 
observed in the recall and precision curves for McClin-
tock 2 components for non-reference TEs in tRNA pro-
moter regions. First, component performance is higher 
when allowing a more relaxed window size (within-100 
bp) to classify TP predictions (dashed lines) than when 
requiring TP predictions to be exact (solid lines), consist-
ent with most methods making many predictions that 
are not precise to exact nucleotide coordinates. Only 
ngs_te_mapper makes all its predictions exactly, and 
thus performance curves are overlayed for both win-
dow sizes shown for this method. Second, component 
performance typically increases with sequencing depth 
and then plateaus at a method-specific coverage. Some 
exceptions to this trend are observed for PoPoolationTE 
recall and RelocaTE and TEFLoN precision, which show 
decreasing performance with increasing coverage. Per-
formance curves for most components suggest that 25× 
is the most cost-effective depth of sequencing coverage, 
and 50× is sufficient to optimize performance for most 
component methods. Third, second generation versions 
of TE detectors – apart from PoPoolationTE2 – typically 
show improved performance relative to their first genera-
tion counterparts, suggesting that gains in TE detector 
performance can be made by continued method devel-
opment. Overall, results from Simulation 3 suggest that 
RelocaTE2 has remarkably high recall ( ∼92%) and pre-
cision ( ∼98%) to predict non-reference TE insertions in 
tRNA promoter regions of the yeast genome (at 50× cov-
erage and ≥ 5 bp window size). The recall and precision 
of TEMP, TEMP2, RetroSeq and TEBreak to detect TE 
insertions in yeast promoter regions are all both greater 
than 75% when allowing non-exact predictions in WGS 
datasets with greater than 50× coverage.

While biologically relevant for S. cerevisiae, Simula-
tion 3 potentially underestimates component perfor-
mance since synthetic insertions in the yeast insertion 
model are often placed into fragments of TE sequences 
that occur upstream of tRNA genes in the reference 
genome [61, 62]. To gain insight into other organismal 
contexts and understand how insertion into reference TE 

sequences may impact McClintock 2 component perfor-
mance in yeast, we also investigated a model of random 
insertion into unique regions of the S. cerevisiae genome 
(Simulation 4). Recall and precision curves for the ran-
dom insertion model (Fig. 3; orange lines) show the same 
general trends but have consistently higher performance 
relative to results for the same component in the tRNA 
promoter insertion model (Fig. 3; purple lines). General 
performance improvements in Simulation 4 relative to 
Simulation 3 indicate that prediction of non-reference 
TE insertions into locally TE-rich regions (like tRNA 
promoters in yeast) is more challenging for most com-
ponent methods than for those in non-repetitive DNA. 
Consistent with results from the tRNA promoter model, 
RelocaTE2 has the highest recall and precision of any 
component in McClintock 2, with essentially perfect 
performance in non-repetitive regions of the S. cerevi-
siae genome ( ∼100%) even at exact base-pair resolution. 
At the within-100 bp window size, TEMP, TEMP2, Ret-
roSeq and TEBreak also perform very well at identifying 
non-reference insertions in unique regions. We note that 
two additional methods – ngs_te_mapper2 and TEFLoN 
– show dramatically better recall for non-exact predic-
tions in non-repetitive regions relative to tRNA promoter 
regions, putting these methods in a similar performance 
class as TEMP, TEMP2, RetroSeq and TEBreak for inser-
tions in non-repetitive DNA.

In summary, results from our reproducible simulation 
experiments show that RelocaTE2 is the best-perform-
ing component method currently in the McClintock 2 
meta-pipeline to detect non-reference TE insertions in S. 
cerevisiae under both the biologically relevant tRNA pro-
moter and non-repetitive insertion models. If exact base-
pair positional accuracy is not required, TEMP, TEMP2, 
RetroSeq and TEBreak also exhibit high performance 
to detect TE insertions in S. cerevisiae tRNA promoter 
regions at 50× coverage. Furthermore, our results suggest 
that at 50× coverage TEMP, TEMP2, RetroSeq, TEBreak, 
ngs_te_mapper2, and TEFLoN may have high perfor-
mance to detect TE insertions in non-repetitive regions 
of other genomes. Finally, our results indicate that users 
should provide McClintock 2 with WGS datasets of at 
least 25× fold-coverage to generate the best performance 
from most component methods, but that coverage higher 
than 50× may not lead to further performance benefits.

Best‑in‑class component methods reveal consistent 
insights into patterns of TE insertion in yeast.
Our reproducible simulation system allowed us to vali-
date the McClintock 2 re-implementation and evalu-
ate component methods under ideal conditions, where 
only one TE insertion per strain is to be detected and 
all sequencing data is generated in an identical way. 



Page 11 of 19Chen et al. Mobile DNA            (2023) 14:8  

However, analysis of large-scale empirical re-sequenc-
ing data is expected to present additional challenges 
to TE detectors, such as more complex insertion pat-
terns in a given strain (e.g., multiple insertions, tandem 

elements) and variability in WGS dataset composition 
across strains (e.g., fold-coverage or median insert size). 
To assess component method performance under a more 
realistic population genomic scenario, we applied the 

Fig. 3 Performance of McClintock 2 component methods in simulated yeast WGS data. Shown are the (A) recall and (B) precision across different 
fold-coverage for individual compnent methods to detect single synthetic insertions in an otherwise unmodified S. cerevisiae reference genome. 
Purple lines (Simulation 3) model the biologically realistic insertion preferences of yeast TEs, with synthetic Ty insertions created upstream of tRNA 
genes in regions that often have fragments of prior TE insertions in the reference genome. Orange lines (Simulation 4) model random insertions 
in non-repetitive regions, which allows insight into the effects of insertion within repetitive DNA and component’s performance for organisms 
without strong TE targeting preferences. Points indicate tested fold-coverage configurations, i.e, 3 × , 6 × , 12× , 25× , 50× and 100× . Solid lines 
represent performance estimates for non-reference TE predictions made at the exact site of the synthetic insertion. Dashed lines represent 
performance estimates for non-reference TE predictions made within 100 bp surrounding the synthetic insertion site. The six original component 
methods in McClintock 1 are on the top row of each panel, and the six new methods in McClintock 2 are on the second row of each panel
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complete McClintock 2 system (all 12 components plus 
the coverage module) to empirical WGS datasets from a 
world-wide sample of 1,011 S. cerevisiae strains isolated 
from diverse environments and geographical locations 
[64, 66]. Since these WGS datasets varied significantly 
in their fold-coverage (50× to 900× ), we down-sampled 
all WGS datasets to 50× prior to running McClintock 
2 based on simulation results above that indicated 50× 
coverage is sufficient to maximize component method 
performance (Fig. 3). Our goals for this analysis were to 
evaluate whether McClintock 2 component methods: (i) 
predict consistent numbers of non-reference TE inser-
tions per strain (overall and by Ty family), and (ii) have 
sufficient positional accuracy to identify expected pat-
terns of targeting in yeast tRNA promoter regions. This 
analysis also allowed us to generate the first species-wide 
Ty insertion variant call sets for S. cerevisiae (Additional 
file 5).

To evaluate consistency among component methods 
on empirical WGS data, we first quantified the distri-
bution of non-reference TE predictions made by each 
method across 1,011 yeast strains (Fig. 4A). We observe 
substantial variation in median values of non-reference 
Ty insertions across all 12 methods, as well as in the cor-
relation among methods in the number of predicted non-
reference Ty insertions (Fig. S12). Interestingly, median 
values of ∼ 50 non-reference Ty insertions per strain are 
consistently predicted by the five component methods 
(RelocaTE2, TEMP, TEMP2, RetroSeq and TEBreak) 
(Fig. 4A; bold outlines) that showed the best performance 
(when considering non-exact predictions) in simulated 
data under the biologically relevant tRNA promoter 
model (Fig.  3; purple dotted lines). These five compo-
nents also have the highest pairwise correlation of non-
reference Ty counts per strain across methods (Fig. S12). 
We note that the original six components do not show 
the general pattern of ∼ 50 non-reference Ty insertions 
per strain (Fig 4A; top row) and have some of the low-
est correlation of non-reference Ty counts across meth-
ods (Fig. S12), underscoring the value of incorporating 
additional recently-developed methods into McClintock 
2 to reveal consistent biological patterns that could not 
be revealed by the McClintock 1 system. Since McClin-
tock 2 component methods do not distinguish full-length 
elements from solo LTRs, the estimate of ∼ 50 non-refer-
ence Ty insertions per yeast strain is likely to represent 
a combination of both structural types. Indeed, applying 
the McClintock 2 coverage module to internal coding 
regions of all Ty families, we estimate that the number of 
full-length elements per strain is ∼ 20 (Fig. S13), suggest-
ing that many non-reference Ty insertions detected by 
McClintock 2 components in this population sample are 
polymorphic solo LTRs [62, 81].

Next, we assessed the consistency among compo-
nent methods to classify the TE family of non-reference 
predictions across all 1,011 isolates (Fig.  4B). As for 
estimates of overall non-reference Ty abundance per 
strain, we observe variable patterns in relative Ty fam-
ily abundance across component methods, with most 
methods being able to differentiate Ty families that are 
known to be active (Ty1, Ty2, Ty3 and Ty4) from those 
that are inactive or low-abundance (Ty3_1p, Tsu4, Ty5). 
As observed for numbers of non-reference TEs per 
strain above, we note that no clear pattern of Ty fam-
ily abundance can be discerned across the original six 
components (Fig.  4B; top row). However, a consistent 
pattern of relative Ty family abundance is observed 
for four of the five component methods (RelocaTE2, 
TEMP, TEMP2 and TEBreak) that show both consist-
ent non-reference TE abundance per strain and high 
performance in simulated data. These four methods 
all indicate that Ty2 has the highest overall number of 
non-reference Ty insertions in this sample of S. cerevi-
siae strains. While Ty1 is often cited as the most abun-
dant Ty family in S. cerevisiae because of its high copy 
number in the reference strain S288c [61, 62], the find-
ing that Ty2 has the highest number of non-reference 
insertions in this diverse worldwide sample of S. cerevi-
siae strains is supported by orthogonal copy-number 
estimates from the McClintock 2 coverage module (Fig. 
S14) and a similar depth-based approach used in recent 
independent study [82]. In contrast, the fifth compo-
nent method that shows consistent Ty abundance per 
strain and high performance in simulated data – Ret-
roSeq – predicts more Ty1 and Ty2 insertions in empir-
ical yeast data, which we infer to be misidentification 
because of the similarity in LTR sequences for these 
two Ty families [61, 83].

Previously [15], we used the well-established pattern 
that Ty1, Ty2, Ty3 and Ty4 non-randomly target promot-
ers of genes transcribe by RNA polymerase III such as 
tRNAs (reviewed in [84]) to validate non-reference TE 
predictions made by McClintock 1 component methods 
in small sample of 93 S. cerevisiae genomes [15, 64]. Here, 
we confirm that the majority of non-reference predic-
tions made by all component methods in McClintock 2 
for these four Ty families are in the expected vicinity of 
tRNA genes in the species-wide S. cerevisiae resequenc-
ing dataset analyzed here (Fig. 4B) [64, 66]. Moreover, the 
four methods (RelocaTE2, TEMP, TEMP2 and TEBreak) 
that consistently predict similar numbers and families of 
non-reference Ty insertions in empirical yeast genome 
data, also predict similar proportions of insertions in 
tRNA genes. Combined with their high performance 
in simulated data, we conclude that RelocaTE2, TEMP, 
TEMP2 and TEBreak are the “best-in-class” methods for 
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Fig. 4 Numbers of Ty elements predicted by McClintock 2 components in a world-wide sample of yeast strains. A Numbers of non-reference TE 
predictions per strain (summed over all Ty families) and (B) numbers of non-reference TE predictions across Ty families (summed over all strains) 
in 1,011 S. cerevisiae WGS samples [64, 66], down-sampled to 50× fold-coverage. In panel (A), lines inside boxes indicate median values, colored 
boxes show interquartile ranges (IQR), whiskers show values 1.5×IQR of the upper or lower quartiles, and the dots indicate outliers that beyond 1.5×
IQR. Components with bold outlines in panel (A) have have median values of ∼ 50 non-reference Ty insertions per strain, as well as recall 
and precision both >75% in tRNA promoter insertion simulations when allowing non-exact predictions in WGS datasets with >50× coverage 
(see Fig. 3). We note that the y-axis is on a log10 scale, and that 16 zero-count data points and one extreme TE-locate data point (count=749) 
is removed to aid with visualization. In panel (B) total numbers of non-reference TE predictions are partitioned as “tRNA” (dark red) if they are located 
between 1000 bp upstream and 500 bp downstream of tRNA genes, or “non-tRNA” (orange) if outside these windows. Note that the y-scale varies 
for each component method. The percentage of near tRNA gene predictions is annotated at the top of each bar. “N.A.” means no such Ty family 
was found using that component. Components with bold outlines in panel (B) predict consistent relative TE family abundance and also have 
properties of components with bold outlines in panel (A), and thus we designate them as “best-in-class” methods for predicting non-reference 
TE insertions in S. cerevisiae. Dashed lines in panel (A) represent the average of the median number of non-reference TE insertions across the four 
best-in-class methods (n=54)
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predicting Ty insertions in S. cerevisiae WGS resequenc-
ing data.

Finally, we sought to test whether predictions in spe-
cies-wide S. cerevisiae WGS data made by the best-
in-class components in McClintock 2 have sufficient 
positional accuracy to recapitulate the association 
between Ty1 insertion profiles and nucleosome occu-
pancy in tRNA promoters observed for experimentally-
induced insertions [77, 79, 85]. Recent work by Hays 
et al. [40] using WGS data from experimentally-evolved 

genomes has shown that Ty insertions predicted by 
RelocaTE2, aggregated across all Ty families, exhibit 
periodicity upstream of tRNA genes in S. cerevisiae 
[40]. However, their analysis does not partition inser-
tions to individual Ty families, show a direct correlation 
with nucleosome profiles, or demonstrate that this sig-
nal is not an artifact of a single TE detection system. As 
shown in Fig. 5, spontaneous Ty1 insertions predicted in 
species-wide S. cerevisiae resequencing data by the four 
“best-in-class” component methods show a clear profile 

Fig. 5 copia-superfamily retrotransposons show a dyad pattern of insertion in nucleosome-bound regions upstream of yeast tRNA genes. The top 
four rows show density profiles of non-redundant insertion sites for non-reference Ty predictions made by best-in-class McClintock 2 components 
(RelocaTE2, TEMP, TEMP2 and TEBreak) in tRNA promoter regions in a panel of 1,011 S. cerevisiae WGS samples [64, 66], down-sampled to 50× 
fold-coverage. Only the four Ty familes (Ty1, Ty2, Ty3 and Ty4) that are know to non-randomly target tRNA genes are included in this analysis. The 
bottom row shows nucleosome occupancy inferred using MNase-seq data from [69]. Light blue shaded areas indicate 100-bp regions surrounding 
peaks of nucleosome occupancy
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of dyad peaks on the first nucleosome-bound regions 
upstream of tRNA TSS with weaker dyad signals on the 
second and third upstream nucleosome-bound regions, 
as observed for experimentally-induced Ty1 insertions 
[77, 79, 85]. Intriguingly, spontaneous Ty2 and Ty4 inser-
tions predicted by all four best-in-class methods (and 
by RetroSeq, ngs_te_mapper2 and TEFLoN; Figs. S15 
and S16) also have dyad peaks on the first nucleosome-
bound region upstream of S. cerevisiae tRNA genes. 
These results are consistent with the observation that 
the domain of Ty1 integrase shown to be responsible for 
targeting nucleosomes upstream of tRNA genes is con-
served in Ty2 and Ty4 [86, 87]. In contrast, spontaneous 
Ty3 insertions show no correlation with nucleosomal 
profiles and for RelocaTE2 and TEBreak are restricted to 
∼ 15 bp upstream of tRNA TSSs as seen for experimen-
tally-induced insertions [80]. Profiles of spontaneous Ty3 
insertions predicted by TEMP and TEMP2 are more var-
iable than the other best-in-class methods, which can be 
explained by lower positional accuracy for a proportion 
of Ty3 predictions made by these methods (see Fig S2 
and S3). A proportion of lower resolution predictions for 
TEMP may also explain the additional peak of insertions 
for Ty1 and Ty2 downstream of the tRNA TSS, which is 
not observed for spontaneous insertions predicted by 
RelocaTE2, TEMP2, or TEBreak or in experimentally-
induced Ty1 insertions [77, 79, 85]. Overall, these results 
demonstrate that the insertion profiles for Ty1 and Ty3 
upstream of tRNA genes are not artifacts of experimental 
induction, and suggest that the molecular mechanisms 
responsible for the targeting of Ty1 to nucleosomes are 
conserved in the related copia-superfamily retrotranspo-
sons Ty2 and Ty4.

Conclusions
In this report we present a re-implemented version of 
the McClintock TE detection system with improved 
installation, error handling, speed, stability, and extensi-
bility. Relative to the original system [15], McClintock 2 
includes six new short-read TE detectors, pre-processing 
and analysis modules, interactive HTML reports, and 
a reproducible simulation system that we used here to 
cross-validate the re-implemented system and evaluate 
component TE detectors. We acknowledge that not all 
available short-read TE detectors are currently incor-
porated into the McClintock 2 meta-pipeline, however 
use of Conda and Snakemake in the re-implemented 
meta-pipeline puts us in a better position to integrate 
additional or improved components in the future. Other 
potential improvements include creating a Bioconda 
package for McClintock 2 itself, which could aid instal-
lation and enhance portability by the automatic con-
struction of Docker/Singularity containers containing 

McClintock 2, its component methods, and all relevant 
dependencies [88]. We are also considering modifying 
McClintock 2 to allow installation of TE detectors from 
user-downloaded executables or source code to be able 
to integrate high-performing methods like MELT [89] 
which have restrictive licenses that prevent automatic 
installation.

A major improvement in McClintock 2 is the availabil-
ity of a reproducible simulation framework that allows 
evaluation of component method performance in a wide 
range of organismal contexts besides S. cerevisiae, includ-
ing humans and other model organisms. In the future, we 
plan to modify the simulation framework to allow multi-
ple insertions in a single synthetic genome to reduce the 
number of replicates needed to analyze larger genomes 
that have longer run times. We also plan to implement a 
complementary evaluation system that uses TE annota-
tions in long-read assemblies as gold standards to empiri-
cally benchmark TE detectors using short-read WGS 
data from the same strain [16, 52].

Based on performance evaluations in simulated WGS 
data, we conclude that RelocaTE2 is the best McClin-
tock 2 component to detect non-reference TE inser-
tions in S. cerevisiae at base-pair accuracy, which 
supports the use of this method in recent yeast experi-
mental evolution studies [40, 90]. However, we cau-
tion against the general conclusion that RelocaTE2 is 
the best McClintock 2 component for other species, 
since this method can have long run times that pre-
cludes its use in larger genomes [16, 52]. By combining 
results from simulated data with consistency analyses 
in empirical WGS data, we also identify TEMP, TEMP2 
and TEBreak as additional “best-in-class” methods for 
predicting Ty insertions in S. cerevisiae WGS rese-
quencing data with 50× fold-coverage or higher, albeit 
with lower positional accuracy than RelocaTE2. Results 
from the four best-in-class McClintock 2 components 
for S. cerevisiae provide additional support to the 
emerging view that Ty2 is the most abundant TE in this 
species [82], although we acknowledge that non-inde-
pendence of strains and non-random sampling in the 
strain panel analyzed [64, 66] may bias this conclusion. 
Finally, we show that best-in-class McClintock 2 com-
ponents for S. cerevisiae generate reasonable non-refer-
ence TE predictions with sufficient resolution to reveal 
a dyad pattern of integration in nucleosome-bound 
regions upstream of yeast tRNA genes for Ty1, Ty2, 
and Ty4. This finding allows knowledge about fine-scale 
target preferences revealed in experimentally-induced 
Ty1 insertions [77, 79, 85] to be extended to natural Ty1 
insertions and related copia-superfamily retrotrans-
posons in yeast. Together with the new bioinformatics 
resources provided in McClintock 2, our work provides 
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novel biological insights about TEs in one of the best-
studied model systems and a paradigm for selecting 
optimal non-reference TE detectors in a diversity of 
organisms.
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