Smit AF. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev. 1999;9:657–63.
CAS
PubMed
Google Scholar
Platt RN 2nd, Vandewege MW, Ray DA. Mammalian transposable elements and their impacts on genome evolution. Chromosom Res. 2018;26:25–43.
CAS
Google Scholar
de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 2011;7:e1002384.
PubMed
PubMed Central
Google Scholar
Richardson SR, Doucet AJ, Kopera HC, Moldovan JB, Garcia-Perez JL, Moran JV. The influence of LINE-1 and SINE retrotransposons on mammalian genomes. Microbiol Spectr. 2015;3:MDNA3-0061-2014.
PubMed
Google Scholar
Shedlock AM, Okada N. SINE insertions: powerful tools for molecular systematics. BioEssays. 2000;22:148–60.
CAS
PubMed
Google Scholar
Warren WC, Hillier LW, Graves JAM, Birney E, Ponting CP, Grützner F, et al. Genome analysis of the platypus reveals unique signatures of evolution. Nature. 2008;453:175-83.
Kordis D, Gubensek F. Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes. Proc Natl Acad Sci U S A. 1998;95:10704–9.
CAS
PubMed
PubMed Central
Google Scholar
Kordis D, Gubensek F. Horizontal transfer of non-LTR retrotransposons in vertebrates. Genetica. 1999;107:121–8.
CAS
PubMed
Google Scholar
Schaack S, Gilbert C, Feschotte C. Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol. 2010;25:537–46.
PubMed
PubMed Central
Google Scholar
Panaud O. Horizontal transfers of transposable elements in eukaryotes: the flying genes. C R Biol. 2016;339:296–9.
PubMed
Google Scholar
Chen L, Qiu Q, Jiang Y, Wang K, Lin Z, Li Z, et al. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science. 2019;364(6446):eaav6202.
CAS
PubMed
Google Scholar
Youngman S, van Luenen HG, Plasterk RH. Rte-1, a retrotransposon-like element in Caenorhabditis elegans. FEBS Lett. 1996;380:1–7.
CAS
PubMed
Google Scholar
Zupunski V, Gubensek F, Kordis D. Evolutionary dynamics and evolutionary history in the RTE clade of non-LTR retrotransposons. Mol Biol Evol. 2001;18:1849–63.
CAS
PubMed
Google Scholar
Hassanin A, Delsuc F, Ropiquet A, Hammer C, Jansen van Vuuren B, Matthee C, et al. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C R Biol. 2012;335:32–50.
PubMed
Google Scholar
Agaba M, Ishengoma E, Miller WC, McGrath BC, Hudson CN, Bedoya Reina OC, et al. Giraffe genome sequence reveals clues to its unique morphology and physiology. Nat Commun. 2016;7:11519.
CAS
PubMed
PubMed Central
Google Scholar
Liu C, Gao J, Cui X, Li Z, Chen L, Yuan Y, et al. A towering genome: experimentally validated adaptations to high blood pressure and extreme stature in the giraffe. Sci Adv. 2021;7(12):eabe9459.
CAS
PubMed
PubMed Central
Google Scholar
Farré M, Li Q, Darolti I, Zhou Y, Damas J, Proskuryakova AA, et al. An integrated chromosome-scale genome assembly of the Masai giraffe (Giraffa camelopardalis tippelskirchi). Gigascience. 2019;8:giz090.
PubMed
PubMed Central
Google Scholar
Coimbra RTF, Winter S, Kumar V, Koepfli KP, Gooley RM, Dobrynin P, et al. Whole-genome analysis of giraffe supports four distinct species. Curr Biol. 2021;31(13):2929–2938.e5.
Ewing AD. Transposable element detection from whole genome sequence data. Mob DNA. 2015;6:24.
PubMed
PubMed Central
Google Scholar
Gardner EJ, Lam VK, Harris DN, Chuang NT, Scott EC, Pittard WS, et al. The mobile element locator tool (MELT): population-scale mobile element discovery and biology. Genome Res. 2017;27:1916–29.
CAS
PubMed
PubMed Central
Google Scholar
Mahmoud M, Gobet N, Cruz-Dávalos DI, Mounier N, Dessimoz C, Sedlazeck FJ. Structural variant calling: the long and the short of it. Genome Biol. 2019;20:246.
PubMed
PubMed Central
Google Scholar
Hormozdiari F, Konkel MK, Prado-Martinez J, Chiatante G, Herraez IH, Walker JA, et al. Rates and patterns of great ape retrotransposition. Proc Natl Acad Sci U S A. 2013;110:13457–62.
CAS
PubMed
PubMed Central
Google Scholar
Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015;526:75–81.
CAS
PubMed
PubMed Central
Google Scholar
Feusier J, Watkins WS, Thomas J, Farrell A, Witherspoon DJ, Baird L, et al. Pedigree-based estimation of human mobile element retrotransposition rates. Genome Res. 2019;29:1567–77.
CAS
PubMed
PubMed Central
Google Scholar
Okhovat M, Nevonen KA, Davis BA, Michener P, Ward S, Milhaven M, et al. Co-option of the lineage-specific LAVA retrotransposon in the gibbon genome. Proc Natl Acad Sci U S A. 2020;117:19328–38.
CAS
PubMed
PubMed Central
Google Scholar
Watkins WS, Feusier JE, Thomas J, Goubert C, Mallick S, Jorde LB. The Simons Genome Diversity Project: a global analysis of mobile element diversity. Genome Biol Evol. 2020;12:779–94.
CAS
PubMed
PubMed Central
Google Scholar
Lammers F, Gallus S, Janke A, Nilsson MA. Phylogenetic conflict in bears identified by automated discovery of transposable element insertions in low-coverage genomes. Genome Biol Evol. 2017;9:2862–78.
CAS
PubMed
PubMed Central
Google Scholar
Ruggiero RP, Bourgeois Y, Boissinot S. LINE insertion polymorphisms are abundant but at low frequencies across populations of Anolis carolinensis. Front Genet. 2017;8:44.
PubMed
PubMed Central
Google Scholar
Suh A, Smeds L, Ellegren H. Abundant recent activity of retrovirus-like retrotransposons within and among flycatcher species implies a rich source of structural variation in songbird genomes. Mol Ecol. 2018;27:99–111.
CAS
PubMed
Google Scholar
Felsenstein J. Phylogenies and the comparative method. Am Nat. 1985;125(1):1–15.
Google Scholar
Fennessy J, Bidon T, Reuss F, Kumar V, Elkan P, Nilsson MA, et al. Multi-locus analyses reveal four giraffe species instead of one. Curr Biol. 2016;26:2543–9.
CAS
PubMed
Google Scholar
Swofford D. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland: Sinauer Associates; 2002.
Google Scholar
Nei M. Genetic distance between populations. Am Nat. 1972;196:283–92.
Google Scholar
Wright S. Isolation by distance. Genetics. 1943;28:114–38.
CAS
PubMed
PubMed Central
Google Scholar
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–70.
CAS
PubMed
Google Scholar
Adelson DL, Raison JM, Edgar RC. Characterization and distribution of retrotransposons and simple sequence repeats in the bovine genome. Proc Natl Acad Sci U S A. 2009;106:12855–60.
CAS
PubMed
PubMed Central
Google Scholar
Gallus S, Kumar V, Bertelsen MF, Janke A, Nilsson MA. A genome survey sequencing of the Java mouse deer (Tragulus javanicus) adds new aspects to the evolution of lineage specific retrotransposons in Ruminantia (Cetartiodactyla). Gene. 2015;571:271–8.
CAS
PubMed
Google Scholar
Malik HS, Eickbush TH. The RTE class of non-LTR retrotransposons is widely distributed in animals and is the origin of many SINEs. Mol Biol Evol. 1998;15:1123–34.
CAS
PubMed
Google Scholar
Ivancevic AM, Kortschak RD, Bertozzi T, Adelson DL. Horizontal transfer of BovB and L1 retrotransposons in eukaryotes. Genome Biol. 2018;19:85.
PubMed
PubMed Central
Google Scholar
Shimamura M, Abe H, Nikaido M, Ohshima K, Okada N. Genealogy of families of SINEs in cetaceans and artiodactyls: the presence of a huge superfamily of tRNA(Glu)-derived families of SINEs. Mol Biol Evol. 1999;16:1046–60.
CAS
PubMed
Google Scholar
Nikaido M, Matsuno F, Abe H, Shimamura M, Hamilton H, Matsubayashi H, et al. Evolution of CHR-2 SINEs in cetartiodactyl genomes: possible evidence for the monophyletic origin of toothed whales. Mamm Genome. 2001;12:909–15.
CAS
PubMed
Google Scholar
Rinehart TA, Grahn RA, Wichman HA. SINE extinction preceded LINE extinction in sigmodontine rodents: implications for retrotranspositional dynamics and mechanisms. Cytogenet Genome Res. 2005;110:416–25.
CAS
PubMed
Google Scholar
Cantrell MA, Scott L, Brown CJ, Martinez AR, Wichman HA. Loss of LINE-1 activity in the megabats. Genetics. 2008;178:393–404.
CAS
PubMed
PubMed Central
Google Scholar
Platt RN 2nd, Ray DA. A non-LTR retroelement extinction in Spermophilus tridecemlineatus. Gene. 2012;500:47–53.
CAS
PubMed
Google Scholar
Gallus S, Hallström BM, Kumar V, Dodt WG, Janke A, Schumann GG, et al. Evolutionary histories of transposable elements in the genome of the largest living marsupial carnivore, the Tasmanian devil. Mol Biol Evol. 2015;32:1268–83.
CAS
PubMed
PubMed Central
Google Scholar
Grahn RA, Rinehart TA, Cantrell MA, Wichman HA. Extinction of LINE-1 activity coincident with a major mammalian radiation in rodents. Cytogenet Genome Res. 2005;110:407–15.
CAS
PubMed
Google Scholar
Ivancevic AM, Kortschak RD, Bertozzi T, Adelson DL. LINEs between species: evolutionary dynamics of LINE-1 retrotransposons across the eukaryotic tree of life. Genome Biol Evol. 2016;8:3301–22.
CAS
PubMed
PubMed Central
Google Scholar
Winter S, Fennessy J, Janke A. Limited introgression supports division of giraffe into four species. Ecol Evol. 2018;8:10156–65.
PubMed
PubMed Central
Google Scholar
Muller Z, Bercovitch F, Brand R, Brown D, Brown M, Bolger D. Giraffa camelopardalis (amended version of 2016 assessment). The IUCN red list of threatened species 2018; e.T9194A136266699; 2018.
Google Scholar
Helyar SJ, Hemmer-Hansen J, Bekkevold D, Taylor MI, Ogden R, Limborg MT, et al. Application of SNPs for population genetics of nonmodel organisms: new opportunities and challenges. Mol Ecol Resour. 2011;11(Suppl 1):123–36.
PubMed
Google Scholar
Ceballos FC, Joshi PK, Clark DW, Ramsay M, Wilson JF. Runs of homozygosity: windows into population history and trait architecture. Nat Rev Genet. 2018;19:220–34.
CAS
PubMed
Google Scholar
Teixeira JC, Huber CD. The inflated significance of neutral genetic diversity in conservation genetics. Proc Natl Acad Sci U S A. 2021;118:e2015096118.
CAS
PubMed
PubMed Central
Google Scholar
Bourgeois Y, Boissinot S. On the population dynamics of junk: a review on the population genomics of transposable elements. Genes (Basel). 2019;10:419.
CAS
Google Scholar
Lammers F, Blumer M, Rücklé C, Nilsson MA. Retrophylogenomics in rorquals indicate large ancestral population sizes and a rapid radiation. Mob DNA. 2019;10:5.
PubMed
PubMed Central
Google Scholar
Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci U S A. 2020;117:9451–7.
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
CAS
PubMed
PubMed Central
Google Scholar
Kohany O, Gentles AJ, Hankus L, Jurka J. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics. 2006;7:474.
PubMed
PubMed Central
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.
PubMed
PubMed Central
Google Scholar
Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27:221–4.
CAS
PubMed
Google Scholar
Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0. 2013-2015. http://www.repeatmasker.org.
Okada N, Hamada M. The 3′ ends of tRNA-derived SINEs originated from the 3′ ends of LINEs: a new example from the bovine genome. J Mol Evol. 1997;44(Suppl 1):S52–6.
CAS
PubMed
Google Scholar
Jurka J. Bovc-tA2. Repbase Rep. 2009;9:1183.
Google Scholar
Steinegger M, Söding J. Clustering huge protein sequence sets in linear time. Nat Commun. 2018;9:2542. https://doi.org/10.1038/s41467-018-04964-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
PubMed
PubMed Central
Google Scholar
Tange O. GNU Parallel 20150322 (‘Hellwig’); 2015. https://doi.org/10.5281/zenodo.16303.
Book
Google Scholar
Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2011;3:217–23.
Google Scholar
Wickham, et al. Welcome to the tidyverse. J Open Source Softw. 2019;4(43):1686.
Google Scholar
Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28–36.
Google Scholar
Knaus BJ, Grünwald NJ. vcfr: a package to manipulate and visualize variant call format data in R. Mol Ecol Resour. 2016;17:44–53.
PubMed
Google Scholar
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8.
CAS
PubMed
Google Scholar
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67.
CAS
PubMed
Google Scholar
Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: visualization of intersecting sets. IEEE Trans Vis Comput Graph. 2014;20:1983–92.
PubMed
PubMed Central
Google Scholar
Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33:2938–40.
CAS
PubMed
PubMed Central
Google Scholar
R Core Team. R: a language and environment for statistical computing: R Foundation for Statistical Computing; 2019. Retrieved from https://www.R-project.org/
de Jong MJ, de Jong JF, Hoelzel AR, Janke A. SambaR: an R package for fast, easy and reproducible population-genetic analyses of biallelic SNP data sets. Mol Ecol Resour. 2021;21:1369–79.
PubMed
Google Scholar
Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–5.
CAS
PubMed
Google Scholar
Jombart T, Ahmed I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27:3070–1.
CAS
PubMed
PubMed Central
Google Scholar
Pembleton LW, Cogan NO, Forster JW. StAMPP: an R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol Ecol Resour. 2013;13:946–52.
CAS
PubMed
Google Scholar
Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28:3326–8.
CAS
PubMed
PubMed Central
Google Scholar
Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27:592–3.
CAS
PubMed
Google Scholar
Kamvar ZN, Tabima JF, Grünwald NJ. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2014;2:e281.
PubMed
PubMed Central
Google Scholar
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.
CAS
PubMed
PubMed Central
Google Scholar