Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1(2):135–45. https://doi.org/10.1038/35100529.
Article
CAS
PubMed
Google Scholar
Medvedev AE. Toll-like receptor polymorphisms, inflammatory and infectious diseases, allergies, and cancer. J Interf Cytokine Res. 2013;33:467–84. https://doi.org/10.1089/jir.2012.0140.
Article
CAS
Google Scholar
Vijay K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int Immunopharmacol. 2018;59:391–412. https://doi.org/10.1016/j.intimp.2018.03.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dvornikova KA, Bystrova EY, Platonova ON, Churilov LP. Polymorphism of toll-like receptor genes and autoimmune endocrine diseases. Autoimmun Rev. 2020;19(4):102496. https://doi.org/10.1016/j.autrev.2020.102496.
Hawn TR, Wu H, Grossman JM, Hahn BH, Tsao BP, Aderem A. A stop codon polymorphism of Toll-like receptor 5 is associated with resistance to systemic lupus erythematosus. Proc Natl Acad Sci U S A. 2005;102(30):10593–7. https://doi.org/10.1073/pnas.0501165102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quach H, Rotival M, Pothlichet J, Loh YHE, Dannemann M, Zidane N, et al. Genetic adaptation and neandertal admixture shaped the immune system of human populations. Cell. 2016;167(3):643–56. https://doi.org/10.1016/j.cell.2016.09.024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dutta SK, Tripathi A. Association of toll-like receptor polymorphisms with susceptibility to chikungunya virus infection. Virology. 2017;511:207–13. https://doi.org/10.1016/j.virol.2017.08.009.
Article
CAS
PubMed
Google Scholar
Novák K. Functional polymorphisms in Toll-like receptor genes for innate immunity in farm animals. Vet Immunol Immunopathol. 2014;157(1-2):1–2. https://doi.org/10.1016/j.vetimm.2013.10.016.
Cinar MU, Hizlisoy H, Akyüz B, Arslan K, Aksel EG, Gümüşsoy KS. Polymorphisms in toll-like receptor (TLR) 1, 4, 9 and SLC11A1 genes and their association with paratuberculosis susceptibility in Holstein and indigenous crossbred cattle in Turkey. J Genet. 2018;97(5):1147–54.
Article
CAS
Google Scholar
Elmaghraby MM, El-Nahas AF, Fathala MM, Sahwan FM, Tag EL-Dien MA. Association of toll-like receptors 2 and 6 polymorphism with clinical mastitis and production traits in Holstein cattle. Iran J Vet Res. 2018;19(3):202–7.
CAS
PubMed
PubMed Central
Google Scholar
Fouad NA, Saeed AM, Mahedy AW. Toll like receptor-4 gene polymorphism and susceptibility to pulmonary tuberculosis. Egypt J Immunol Egypt. 2019;26:1–10.
Google Scholar
Uenishi H, Shinkai H. Porcine Toll-like receptors: The front line of pathogen monitoring and possible implications for disease resistance. Dev Comp Immunol. 2009;33:353–61. https://doi.org/10.1016/j.dci.2008.06.001.
Article
CAS
PubMed
Google Scholar
Shinkai H, Okumura N, Suzuki R, Muneta Y, Uenishi H. Toll-like receptor 4 polymorphism impairing lipopolysaccharide signaling in Sus scrofa, and its restricted distribution among Japanese wild boar populations. DNA Cell Biol. 2012;31(4):575–81. https://doi.org/10.1089/dna.2011.1319.
Article
CAS
PubMed
Google Scholar
Yang XQ, Murani E, Ponsuksili S, Wimmers K. Association of TLR4 polymorphism with cytokine expression level and pulmonary lesion score in pigs. Mol Biol Rep. 2012;39(6):7003–9. https://doi.org/10.1007/s11033-012-1530-2.
Article
CAS
PubMed
Google Scholar
Yang X, Murani E, Ponsuksili S, Wimmers K. Association of TLR5 sequence variants and mRNA level with cytokine transcription in pigs. Immunogenetics. 2013;65(2):125–32. https://doi.org/10.1007/s00251-012-0662-9.
Article
CAS
PubMed
Google Scholar
Clop A, Huisman A, van As P, Sharaf A, Derdak S, Sanchez A. Identification of genetic variation in the swine toll-like receptors and development of a porcine TLR genotyping array. Genet Select Evol. 2016;48(1):28. https://doi.org/10.1186/s12711-016-0206-0.
Article
CAS
Google Scholar
Darfour-Oduro K, Megens H, Roca A, Groenen M, Schook L. Evidence for adaptation of porcine Toll-like receptors. Immunogenetics. 2016;68(3):179–89. https://doi.org/10.1007/s00251-015-0892-8.
Article
CAS
PubMed
Google Scholar
Muneta Y, Arai N, Yakabe Y, Eguchi M, Shibahara T, Sakuma A, Shinkai H, Uenishi H, Hirose K, Akiba M. In vivo effect of a TLR5 SNP (C1205T) on Salmonella enterica serovar Typhimurium infection in weaned, specific pathogen-free Landrace piglets. Microbiol Immunol. 2018;62(6):380–7. https://doi.org/10.1111/1348-0421.12591.
Article
CAS
PubMed
Google Scholar
Zeng L, Pederson SM, Kortschak RD, Adelson DL. Transposable elements and gene expression during the evolution of amniotes. Mob DNA. 2018;9:17. https://doi.org/10.1186/s13100-018-0124-5.
Article
PubMed
PubMed Central
Google Scholar
Platt RN, Vandewege MW, Ray DA. Mammalian transposable elements and their impacts on genome evolution. Chromosom Res Chromosome Research. 2018;26:25–43. https://doi.org/10.1007/s10577-017-9570-z.
Article
CAS
Google Scholar
Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements: From conflicts to benefits. Nat Rev Genet. 2017;18(2):71–86. https://doi.org/10.1038/nrg.2016.139.
Article
CAS
PubMed
Google Scholar
Orgel LE, Crick FHC. Selfish DNA: The ultimate parasite. Nature. 1980;284(5757):604–7. https://doi.org/10.1038/284604a0.
Article
CAS
PubMed
Google Scholar
Hickey DA. Selfish DNA: A sexually transmitted nuclear parasite. Genetics. 1982;101(3–4):519–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garcia-Perez JL, Widmann TJ, Adams IR. The impact of transposable elements on mammalian development. Dev. 2016;143(22):4101–14. https://doi.org/10.1242/dev.132639.
Article
CAS
Google Scholar
Arkhipova IR, Yushenova IA, Angert E. Giant transposons in eukaryotes: Is bigger better? Genome Biol Evol. 2019;11:906–18. https://doi.org/10.1093/gbe/evz041.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaaij LJT, Mohn F, van der Weide RH, de Wit E, Bühler M. The ChAHP complex counteracts chromatin looping at CTCF sites that emerged from SINE expansions in mouse. Cell. 2019;178(6):1437-1451.e1414. https://doi.org/10.1016/j.cell.2019.08.007.
Article
CAS
PubMed
Google Scholar
Kalendar R, Flavell AJ, Ellis THN, Sjakste T, Moisy C, Schulman AH. Analysis of plant diversity with retrotransposon-based molecular markers. Heredity (Edinb). 2011;106(4):520–30. https://doi.org/10.1038/hdy.2010.93.
Article
CAS
Google Scholar
Kalendar R, Amenov A, Daniyarov A. Use of retrotransposon-derived genetic markers to analyse genomic variability in plants. Funct Plant Biol. 2018;46(1):15–29. https://doi.org/10.1071/FP18098.
Article
CAS
PubMed
Google Scholar
Payer LM, Burns KH. Transposable elements in human genetic disease. Nat Rev Genet. 2019;20(12):760–72. https://doi.org/10.1038/s41576-019-0165-8.
Article
CAS
PubMed
Google Scholar
Payer LM, Steranka JP, Yang WR, Kryatova M, Medabalimi S, Ardeljan D, Liu C, Boeke JD, Avramopoulos D, Burns KH. Structural variants caused by Alu insertions are associated with risks for many human diseases. Proc Natl Acad Sci U S A. 2017;114(20):E3984–92. https://doi.org/10.1073/pnas.1704117114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Payer LM, Steranka JP, Ardeljan D, Walker J, Fitzgerald KC, Calabresi PA, Cooper TA, Burns KH. Alu insertion variants alter mRNA splicing. Nucleic Acids Res. 2019;47(1):421–31. https://doi.org/10.1093/nar/gky1086.
Article
CAS
PubMed
Google Scholar
Chessa B, Pereira F, Arnaud F, Amorim A, Goyache F, Mainland I, Kao RR, Pemberton JM, Beraldi D, Stear MJ, et al. Revealing the history of sheep domestication using retrovirus integrations. Science. 2009;324(5926):532–6. https://doi.org/10.1126/science.1170587.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ngo MH, Arnal M, Sumi R, Kawasaki J, Miyake A, Grant CK, Otoi T, Fernández de Luco D, Nishigaki K. Tracking the fate of endogenous retrovirus segregation in wild and domestic cats. J Virol. 2019;93(24):e01324-01319. https://doi.org/10.1128/JVI.01324-19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pettersson ME, Jern P. Whole-genome analysis of domestic chicken selection lines suggests segregating variation in ERV makeups. Genes (Basel). 2019;10(2):162. https://doi.org/10.3390/genes10020162.
Article
CAS
Google Scholar
Rivas-Carrillo SD, Pettersson ME, Rubin C-J, Jern P. Whole-genome comparison of endogenous retrovirus segregation across wild and domestic host species populations. Proc Natl Acad Sci U S A. 2018;115(43):11012–7. https://doi.org/10.1073/pnas.1815056115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wragg D, Mwacharo JM, Alcalde JA, Wang C, Han JL, Gongora J, Gourichon D, Tixier-Boichard M, Hanotte O. Endogenous retrovirus EAV-HP linked to blue egg phenotype in Mapuche fowl. PLoS ONE. 2013;8(8): e71393. https://doi.org/10.1371/journal.pone.0071393.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Qu L, Yao J, Yang X, Li G, Zhang Y, Li J, Wang X, Bai J, Xu G, et al. An EAV-HP insertion in 5′ Flanking region of SLCO1B3 causes blue eggshell in the chicken. PLoS Genet. 2013;9(1): e1003183. https://doi.org/10.1371/journal.pgen.1003183.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Davis BW, Jern P, Dorshorst BJ, Siegel PB, Andersson L. Characterization of the endogenous retrovirus insertion in CYP19A1 associated with henny feathering in chicken. Mob DNA. 2019;10:1–8. https://doi.org/10.1186/s13100-019-0181-4.
Article
CAS
Google Scholar
Magotra A, Naskar S, Das B, Ahmad T. A comparative study of SINE insertion together with a mutation in the first intron of follicle stimulating hormone beta gene in indigenous pigs of India. Mol Biol Rep. 2015;42:465–70. https://doi.org/10.1007/s11033-014-3789-y.
Article
CAS
PubMed
Google Scholar
Liu C, Ran X, Niu X, Li S, Wang J, Zhang Q. Insertion of 275-bp SINE into first intron of PDIA4 gene is associated with litter size in Xiang pigs. Anim Reprod Sci. 2018;195:16–23. https://doi.org/10.1016/j.anireprosci.2018.04.079.
Article
CAS
PubMed
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8. https://doi.org/10.1093/bioinformatics/btm404.
Article
CAS
PubMed
Google Scholar
Chen C, Wang W, Wang X, Shen D, Wang S, Wang Y, Gao B, Wimmers K, Mao J, Li K, et al. Retrotransposons evolution and impact on lncRNA and protein coding genes in pigs. Mob DNA. 2019;10:1–24. https://doi.org/10.1186/s13100-019-0161-8.
Article
Google Scholar
Kazazian HH Jr. Mobile elements: drivers of genome evolution. Science. 2004;303:1626–32. https://doi.org/10.1126/science.1089670.
Article
CAS
PubMed
Google Scholar
Vicient CM, Casacuberta JM. Impact of transposable elements on polyploid plant genomes. Ann Bot. 2017;120(2):195–207. https://doi.org/10.1093/aob/mcx078.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orozco-Arias S, Isaza G, Guyot R. Retrotransposons in plant genomes: Structure, identification, and classification through bioinformatics and machine learning. Int J Mol Sci. 2019;20(15):3837. https://doi.org/10.3390/ijms20153837.
Article
CAS
PubMed Central
Google Scholar
Tollis M, Boissinot S. The evolutionary dynamics of transposable elements in eukaryote genomes. Genome Dyn. 2012;7:68–91. https://doi.org/10.1159/000337126.
Article
CAS
PubMed
Google Scholar
Chen C, Wang X, Zong W, Enrico D, Domenico G, Guo Y, Mao J, Song C. Genetic diversity and population structures in chinese miniature pigs revealed by SINE retrotransposon insertion polymorphisms, a new type of genetic markers. Animals. 2021;11(4):1136. https://doi.org/10.3390/ani11041136.
Article
PubMed
PubMed Central
Google Scholar
Christy RJ, Brown AR, Gourlie BB, Huang RC. Nucleotide sequences of murine intracisternal A-particle gene LTRs have extensive variability within the R region. Nucleic Acids Res. 1985;13(1):289–302. https://doi.org/10.1093/nar/13.1.289.
Feuchter-murthy AE, Freeman JD, Mager DL. Splicing of a human endogenous retrovirus to a novel phospholipase A2 related gene. Nucleic Acids Res. 1993;21(1):135–43. https://doi.org/10.1093/nar/21.1.135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schulte AM, Lai S, Kurtz A, Czubayko F, Riegel AT, Wellstein A. Human trophoblast and choriocarcinoma expression of the growth factor pleiotrophin attributable to germ-line insertion of an endogenous retrovirus. Proc Natl Acad Sci U S A. 1996;93(25):14759–64. https://doi.org/10.1073/pnas.93.25.14759.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beyer U, Moll-Rocek J, Moll UM, Dobbelstein M. Endogenous retrovirus drives hitherto unknown proapoptotic p63 isoforms in the male germ line of humans and great apes. Proc Natl Acad Sci U S A. 2011;108(9):3624–9. https://doi.org/10.1073/pnas.1016201108.
Article
PubMed
PubMed Central
Google Scholar
Butler JE, Wertz N. The porcine antibody repertoire: Variations on the textbook theme. Front Immunol. 2012;3:153. https://doi.org/10.3389/fimmu.2012.00153.
Article
PubMed
PubMed Central
Google Scholar
Frazão JB, Errante PR, Condino-Neto A. Toll-like receptors’ pathway disturbances are associated with increased susceptibility to infections in humans. Arch Immunol Ther Exp (Warsz). 2013;61(6):427–43. https://doi.org/10.1007/s00005-013-0243-0.
Article
CAS
Google Scholar
Li X, Jiang S, Tapping RI. Toll-like receptor signaling in cell proliferation and survival. Cytokine. 2010;49(1):1–9. https://doi.org/10.1016/j.cyto.2009.08.010.
Article
CAS
PubMed
Google Scholar
O’Neill LAJ, Golenbock D, Bowie AG. The history of Toll-like receptors-redefining innate immunity. Nat Rev Immunol. 2013;13(6):453–60. https://doi.org/10.1038/nri3446.
Article
CAS
PubMed
Google Scholar
Lanki M, Seppänen H, Mustonen H, Hagström J, Haglund C. Toll-like receptor 1 predicts favorable prognosis in pancreatic cancer. PLoS One. 2019;14(7):e0219245. https://doi.org/10.1371/journal.pone.0219245.
Cheng C, Sun WK, Liu R, Wang RM, Chen YH, Wang Y, Li JL, Lu XB, Gao R. Comparison of gene expression of Toll-like receptors and antimicrobial peptides in immune organs and tissues between Yorkshire and Tibetan pigs. Anim Genet. 2015;46(3):272–9. https://doi.org/10.1111/age.12286.
Li Y, Liu H, Wang P, Wang L, Sun Y, Liu G, Zhang P, Kang L, Jiang S, Jiang Y. RNA-seq analysis reveals genes underlying different disease responses to porcine circovirus type 2 in pigs. PLoS ONE. 2016;11(5):e0155502. https://doi.org/10.1371/journal.pone.0155502.
Yeh FC, Yang RC, Boyle T. POPGENE version 1.32: Microsoft Windows–based freeware for population genetic analysis, quick user guide. Edmonton: Molecular Biology and Biotechnology Centre, University of Alberta; 1999. p. 1–29.
Chan S, Shen D, Sang Y, Wang S, Wang Y, Chen C, Gao B, Song C. Development of enhancer-trapping and-detection vectors mediated by the Tol2 transposon in zebrafish. PeerJ. 2019;7:e6862. https://doi.org/10.7717/peerj.6862.
Article
CAS
PubMed
PubMed Central
Google Scholar