Biémont C, Vieira C. Genetics: junk DNA as an evolutionary force. Nature. 2006;443(7111):521–4.
Article
PubMed
CAS
Google Scholar
McClintock B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci. 1950;36(6):344–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007;8(12):973–82.
Article
CAS
PubMed
Google Scholar
Kapitonov VV, Jurka J. A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet. 2008;9(5):411–2.
Article
PubMed
Google Scholar
Seberg O, Petersen G. A unified classification system for eukaryotic transposable elements should reflect their phylogeny. Nat Rev Genet. 2009;10(4):276.
Article
CAS
PubMed
Google Scholar
Rishishwar L, Tellez Villa CE, Jordan IK. Transposable element polymorphisms recapitulate human evolution. Mob DNA. 2015;6:21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bourgeois Y, Boissinot S. On the Population Dynamics of Junk: A Review on the Population Genomics of Transposable Elements. Genes. 2019;10(6):419.
Article
CAS
PubMed Central
Google Scholar
Petrov DA, Fiston-Lavier A-S, Lipatov M, Lenkov K, Gonzalez J. Population genomics of transposable elements in Drosophila melanogaster. Mol Biol Evol. 2011;28(5):1633–44.
Article
CAS
PubMed
Google Scholar
Rebollo R, Romanish MT, Mager DL. Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet. 2012;46(1):21–42.
Article
CAS
PubMed
Google Scholar
Dupressoir A, Marceau G, Vernochet C, Bénit L, Kanellopoulos C, Sapin V, et al. Syncytin-a and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proc Natl Acad Sci U S A. 2005;102(3):725–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Volff J-N. Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. BioEssays News Rev Mol Cell Dev Biol. 2006;28(9):913–22.
Article
CAS
Google Scholar
Gilbert C, Feschotte C. Horizontal acquisition of transposable elements and viral sequences: patterns and consequences. Curr Opin Genet Dev. 2018;49:15–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kapitonov VV, Jurka J. RAG1 core and V(D) J recombination signal sequences were derived from Transib transposons. PLoS Biol. 2005;3(6):e181.
Article
PubMed
PubMed Central
CAS
Google Scholar
Naville M, Warren IA, Haftek-Terreau Z, Chalopin D, Brunet F, Levin P, et al. Not so bad after all: retroviruses and long terminal repeat retrotransposons as a source of new genes in vertebrates. Clin Microbiol Infect. 2016;22(4):312–23.
Article
CAS
PubMed
Google Scholar
Dolgin ES, Charlesworth B. The fate of transposable elements in asexual populations. Genetics. 2006;174(2):817–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hickey DA. Selfish DNA: a sexually-transmitted nuclear parasite. Genetics. 1982;101(3–4):519–31.
CAS
PubMed
PubMed Central
Google Scholar
Wright S, Finnegan D. Genome evolution: sex and the transposable element. Curr Biol. 2001;11(8):R296–9.
Article
CAS
PubMed
Google Scholar
Schaack S, Gilbert C, Feschotte C. Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol. 2010;25(9):537–46.
Article
PubMed
PubMed Central
Google Scholar
Zeyl C, Bell G, Green DM. Sex and the spread of retrotransposon Ty3 in experimental populations of Saccharomyces cerevisiae. Genetics. 1996;143(4):1567–77.
CAS
PubMed
PubMed Central
Google Scholar
Felsenstein J. The evolutionary advantage of recombination. Genetics. 1974;78(2):737–56.
CAS
PubMed
PubMed Central
Google Scholar
Hill WG, Robertson A. The effect of linkage on limits to artificial selection. Genet Res. 1966;8(3):269–94.
Article
CAS
PubMed
Google Scholar
Arkhipova IR. Mobile genetic elements and sexual reproduction. Cytogenet Genome Res. 2005;110(1–4):372–82.
Article
CAS
PubMed
Google Scholar
Barsoum E, Martinez P, Astrom SU. Alpha 3, a transposable element that promotes host sexual reproduction. Genes Dev. 2010;24(1):33–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bestor TH. Sex brings transposons and genomes into conflict. Genetica. 1999;107(1–3):289–95.
Article
CAS
PubMed
Google Scholar
Kraaijeveld K, Zwanenburg B, Hubert B, Vieira C, De Pater S, Van Alphen JJM, et al. Transposon proliferation in an asexual parasitoid. Mol Ecol. 2012;21(16):3898–906.
Article
CAS
PubMed
Google Scholar
Warren WC, García-Pérez R, Xu S, Lampert KP, Chalopin D, Stöck M, et al. Clonal polymorphism and high heterozygosity in the celibate genome of the Amazon molly. Nat Ecol Evol. 2018;2(4):669–79.
Article
PubMed
PubMed Central
Google Scholar
Arkhipova I, Meselson M. Transposable elements in sexual and ancient asexual taxa. Proc Natl Acad Sci U S A. 2000;97(26):14473–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flot J-F, Hespeels B, Li X, Noel B, Arkhipova I, Danchin EGJ, et al. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature. 2013;500(7463):453–7.
Article
CAS
PubMed
Google Scholar
Capel B. Vertebrate sex determination: evolutionary plasticity of a fundamental switch. Nat Rev Genet. 2017;18(11):675–89.
Article
CAS
PubMed
Google Scholar
Pan Q, Anderson J, Bertho S, Herpin A, Wilson C, Postlethwait JH, et al. Vertebrate sex-determining genes play musical chairs. C R Biol. 2016;339(7–8):258–62.
Article
PubMed
PubMed Central
Google Scholar
Bull JJ, Vogt RC. Temperature-dependent sex determination in turtles. Science. 1979;206(4423):1186–8.
Article
CAS
PubMed
Google Scholar
Lang JW, Andrews HV. Temperature-dependent sex determination in crocodilians. J Exp Zool. 1994;270(1):28–44.
Article
Google Scholar
Honeycutt JL, Deck CA, Miller SC, Severance ME, Atkins EB, Luckenbach JA, et al. Warmer waters masculinize wild populations of a fish with temperature-dependent sex determination. Sci Rep. 2019;9(1):6527.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman T-L, et al. Sex determination: why so many ways of doing it? PLoS Biol. 2014;12(7):e1001899.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schartl M. Sex chromosome evolution in non-mammalian vertebrates. Curr Opin Genet Dev. 2004;14(6):634–41.
Article
CAS
PubMed
Google Scholar
Koene JM. Sex determination and gender expression: reproductive investment in snails. Mol Reprod Dev. 2017;84(2):132–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuda M. Sex determination in the teleost medaka, Oryzias latipes. Annu Rev Genet. 2005;39:293–307.
Article
CAS
PubMed
Google Scholar
Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A, et al. A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci. 2002;99(18):11778–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilbert SF. Chromosomal sex determination in drosophila. Dev Biol 6th Ed. 2000.
Sanchez L, Chaouiya C. Logical modelling uncovers developmental constraints for primary sex determination of chicken gonads. J R Soc Interface. 2018;15(142):20180165.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stothard P, Pilgrim D. Sex-determination gene and pathway evolution in nematodes. BioEssays News Rev Mol Cell Dev Biol. 2003;25(3):221–31.
Article
CAS
Google Scholar
Tang W, Seth M, Tu S, Shen E-Z, Li Q, Shirayama M, et al. A Sex Chromosome piRNA Promotes Robust Dosage Compensation and Sex Determination in C. elegans. Dev Cell. 2018;44(6):762–770.e3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eggers S, Ohnesorg T, Sinclair A. Genetic regulation of mammalian gonad development. Nat Rev Endocrinol. 2014;10(11):673–83.
Article
CAS
PubMed
Google Scholar
Hsu C, Pan Y-J, Wang Y-W, Tong S-K, Chung B. Changes in the morphology and gene expression of developing zebrafish gonads. Gen Comp Endocrinol. 2018;265:154–9.
Article
CAS
PubMed
Google Scholar
Croft B, Ohnesorg T, Hewitt J, Bowles J, Quinn A, Tan J, et al. Human sex reversal is caused by duplication or deletion of core enhancers upstream of SOX9. Nat Commun. 2018;9(1):5319.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gonen N, Futtner CR, Wood S, Garcia-Moreno SA, Salamone IM, Samson SC, et al. Sex reversal following deletion of a single distal enhancer of Sox9. Science. 2018;360(6396):1469–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schartl M, Schories S, Wakamatsu Y, Nagao Y, Hashimoto H, Bertin C, et al. Sox5 is involved in germ-cell regulation and sex determination in medaka following co-option of nested transposable elements. BMC Biol. 2018;16:16.
Assis R, Zhou Q, Bachtrog D. Sex-biased transcriptome evolution in drosophila. Genome Biol Evol. 2012;4(11):1189–200.
Article
PubMed
PubMed Central
CAS
Google Scholar
Böhne A, Sengstag T, Salzburger W. Comparative transcriptomics in east african cichlids reveals sex- and species-specific expression and new candidates for sex differentiation in fishes. Genome Biol Evol. 2014;6(9):2567–85.
Article
PubMed
PubMed Central
CAS
Google Scholar
Catalan A, Hutter S, Parsch J. Population and sex differences in Drosophila melanogaster brain gene expression. BMC Genomics. 2012;13:1–12.
Article
CAS
Google Scholar
Ledón-Rettig CC, Zattara EE, Moczek AP. Asymmetric interactions between doublesex and tissue- and sex-specific target genes mediate sexual dimorphism in beetles. Nat Commun. 2017;8:14593.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu H, Lamm MS, Rutherford K, Black MA, Godwin JR, Gemmell NJ. Large-scale transcriptome sequencing reveals novel expression patterns for key sex-related genes in a sex-changing fish. Biol Sex Differ. 2015;6:26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shi L, Zhang Z, Su B. Sex biased gene expression profiling of human brains at major developmental stages. Sci Rep. 2016;6:21181.
Waters PD, Wallis MC, Graves JAM. Mammalian sex—origin and evolution of the Y chromosome and SRY. Semin Cell Dev Biol. 2007;18(3):389–400.
Article
CAS
PubMed
Google Scholar
Herpin A, Schartl M. Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators. EMBO Rep. 2015;16(10):1260–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schartl M. A comparative view on sex determination in medaka. Mech Dev. 2004;121(7–8):639–45.
Article
CAS
PubMed
Google Scholar
Matsuda M, Sakaizumi M. Evolution of the sex-determining gene in the teleostean genus Oryzias. Gen Comp Endocrinol. 2016;239:80–8.
Article
CAS
PubMed
Google Scholar
Herpin A, Adolfi MC, Nicol B, Hinzmann M, Schmidt C, Klughammer J, et al. Divergent expression regulation of gonad development genes in medaka shows incomplete conservation of the downstream regulatory network of vertebrate sex determination. Mol Biol Evol. 2013;30(10):2328–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takehana Y, Matsuda M, Myosho T, Suster ML, Kawakami K, Shin T, et al. Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena. Nat Commun. 2014;5:4157.
Article
CAS
PubMed
Google Scholar
Chen S, Zhang G, Shao C, Huang Q, Liu G, Zhang P, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet. 2014;46(3):253–60.
Article
CAS
PubMed
Google Scholar
Deloger M, Cavalli FMG, Lerat E, Biémont C, Sagot M-F, Vieira C. Identification of expressed transposable element insertions in the sequenced genome of Drosophila melanogaster. Gene. 2009;439(1–2):55–62.
Article
CAS
PubMed
Google Scholar
Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, et al. The developmental transcriptome of Drosophila melanogaster. Nature. 2011;471(7339):473–9.
Article
CAS
PubMed
Google Scholar
Lipatov M, Lenkov K, Petrov DA, Bergman CM. Paucity of chimeric gene-transposable element transcripts in the Drosophila melanogaster genome. BMC Biol. 2005;3(1):24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sienski G, Dönertas D, Brennecke J. Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell. 2012;151(5):964–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brunet F, Roche A, Chalopin D, Naville M, Klopp C, Vizziano-Cantonnet D, et al. Analysis of transposable elements expressed in the gonads of the siberian sturgeon. In: Williot P, Nonnotte G, Vizziano-Cantonnet D, Chebanov M, editors. The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 1 - Biology. Cham: Springer International Publishing; 2018. p. 115–30.
Chapter
Google Scholar
Esteve-Codina A, Kofler R, Palmieri N, Bussotti G, Notredame C, Perez-Enciso M. Exploring the gonad transcriptome of two extreme male pigs with RNA-seq. BMC Genomics. 2011;12:552.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laski FA, Rio DC, Rubin GM. Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell. 1986;44(1):7–19.
Article
CAS
PubMed
Google Scholar
Iwasaki YW, Siomi MC, Siomi H. PIWI-Interacting RNA: Its biogenesis and functions. Annu Rev Biochem. 2015;84(1):405–33.
Article
CAS
PubMed
Google Scholar
Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature. 2008;455(7217):1193–7.
Article
CAS
PubMed
Google Scholar
Sarkar A, Volff J-N, Vaury C. piRNAs and their diverse roles: a transposable element-driven tactic for gene regulation? FASEB J. 2017;31(2):436–46.
Article
CAS
PubMed
Google Scholar
Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10(2):126–39.
Article
CAS
PubMed
Google Scholar
Kelleher ES. Reexamining the P-element invasion of Drosophila melanogaster through the lens of piRNA silencing. Genetics. 2016;203(4):1513–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hill T, Schlötterer C, Betancourt AJ. Hybrid dysgenesis in Drosophila simulans associated with a rapid invasion of the P-element. PLoS Genet.2016;12(3):e1005920.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ecco G, Imbeault M, Trono D. KRAB zinc finger proteins. Dev. 2017;144(15):2719–29.
Article
CAS
Google Scholar
Molaro A, Malik HS. Hide and seek: how chromatin-based pathways silence retroelements in the mammalian germline. Curr Opin Genet Dev. 2016;37:51–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolf D, Goff SP. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature. 2009;458(7242):1201–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacobs FMJ, Greenberg D, Nguyen N, Haeussler M, Ewing AD, Katzman S, et al. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature. 2014;516(7530):242–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan X, Xu X, Elkenani M, Smorag L, Zechner U, Nolte J, et al. Zfp819, a novel KRAB-zinc finger protein, interacts with KAP1 and functions in genomic integrity maintenance of mouse embryonic stem cells. Stem Cell Res. 2013;11(3):1045–59.
Article
CAS
PubMed
Google Scholar
Helleboid P-Y, Heusel M, Duc J, Piot C, Thorball CW, Coluccio A, et al. The interactome of KRAB zinc finger proteins reveals the evolutionary history of their functional diversification. EMBO J. 2019;38(18):e101220.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ. An epigenetic role for maternally inherited piRNAs in transposon silencing. Science. 2008;322(5906):1387–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zempleni J, Chew YC, Bao B, Pestinger V, Wijeratne SSK. Repression of transposable elements by histone biotinylation. J Nutr. 2009;139(12):2389–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet. 2007;8(4):272–85.
Article
CAS
PubMed
Google Scholar
Capy P, Gasperi G, Biémont C, Bazin C. Stress and transposable elements: co-evolution or useful parasites? Heredity. 2000;85(2):101.
Article
CAS
PubMed
Google Scholar
Dong Y, Huang Z, Kuang Q, Wen Z, Liu Z, Li Y, et al. Expression dynamics and relations with nearby genes of rat transposable elements across 11 organs, 4 developmental stages and both sexes. BMC Genomics. 2017;18:666.
Trizzino M, Park Y, Holsbach-Beltrame M, Aracena K, Mika K, Caliskan M, et al. Transposable elements are the primary source of novelty in primate gene regulation. Genome Res. 2017;27(10):1623–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zamudio N, Bourc’his D. Transposable elements in the mammalian germline: a comfortable niche or a deadly trap? Heredity. 2010;105(1):92–104.
Article
CAS
PubMed
Google Scholar
Hadziselimovic F, Hadziselimovic NO, Demougin P, Krey G, Oakeley E. Piwi-pathway alteration induces LINE-1 transposon derepression and infertility development in cryptorchidism. Sex Dev. 2015;9(2):98–104.
Article
CAS
PubMed
Google Scholar
Malki S, van der Heijden GW, O’Donnell KA, Martin SL, Bortvin A. A role for Retrotransposon LINE-1 in fetal oocyte attrition in mice. Dev Cell. 2014;29(5):521–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feschotte C. Transposable elements and the evolution of regulatory networks. Nat Rev Genet. 2008;9(5):397–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sundaram V, Wang T. Transposable element mediated innovation in gene regulatory landscapes of cells: re-visiting the “gene-battery” model. BioEssays. 2017;40(1):1700155.
Article
CAS
Google Scholar
Sundaram V, Choudhary MNK, Pehrsson E, Xing X, Fiore C, Pandey M, et al. Functional cis-regulatory modules encoded by mouse-specific endogenousretrovirus. Nat Commun. 2017;8:14550.
Ellison CE, Bachtrog D. Dosage compensation via transposable element mediated rewiring of a regulatory network. Science. 2013;342(6160):846–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ellison CE, Bachtrog D. Non-allelic gene conversion enables rapid evolutionary change at multiple regulatory sites encoded by transposable elements. Elife. 2015;4:e05899.
Article
PubMed Central
CAS
Google Scholar
Ellison C, Bachtrog D. Contingency in the convergent evolution of a regulatory network: dosage compensation in Drosophila. PLoS Biol. 2019;17(2):e3000094.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nagao A, Mituyama T, Huang H, Chen D, Siomi MC, Siomi H. Biogenesis pathways of piRNAs loaded onto AGO3 in the Drosophila testis. RNA. 2010;16(12):2503–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malone CD, Lehmann R, Teixeira FK. The cellular basis of hybrid dysgenesis and stellate regulation in Drosophila. Curr Opin Genet Dev. 2015;34:88–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kotelnikov RN, Klenov MS, Rozovsky YM, Olenina LV, Kibanov MV, Gvozdev VA. Peculiarities of piRNA-mediated post-transcriptional silencing of stellate repeats in testes of Drosophila melanogaster. Nucleic Acids Res. 2009;37(10):3254–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herpin A, Braasch I, Kraeussling M, Schmidt C, Thoma EC, Nakamura S, et al. Transcriptional Rewiring of the Sex Determining dmrt1 Gene Duplicate by Transposable Elements. Petrov DA, éditeur. PLoS Genet. 2010;6(2):e1000844.
Article
PubMed
PubMed Central
CAS
Google Scholar
Simonti CN, Pavličev M, Capra JA. Transposable element exaptation into regulatory regions is rare, influenced by evolutionary age, and subject to pleiotropic constraints. Mol Biol Evol. 2017;34(11):2856–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rojas-Ríos P, Simonelig M. piRNAs and PIWI proteins: regulators of gene expression in development and stem cells. Dev. 2018;145(17):dev161786.
Article
PubMed
CAS
Google Scholar
Rouget C, Papin C, Boureux A, Meunier A-C, Franco B, Robine N, et al. Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature. 2010;467(7319):1128–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sytnikova YA, Rahman R, Chirn G, Clark JP, Lau NC. Transposable element dynamics and PIWI regulation impacts lncRNA and gene expression diversity in Drosophila ovarian cell cultures. Genome Res. 2014;24(12):1977–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watanabe T, Cheng E, Zhong M, Lin H. Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline. Genome Res. 2015;25(3):368–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Katsuma S, Kawamoto M, Kiuchi T. Guardian small RNAs and sex determination. RNA Biol. 2014;11(10):1238–42.
Article
PubMed
Google Scholar
Kiuchi T, Koga H, Kawamoto M, Shoji K, Sakai H, Arai Y, et al. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature. 2014;509(7502):633–6.
Article
CAS
PubMed
Google Scholar
Carvalho AB, Vicoso B, Russo CAM, Swenor B, Clark AG. Birth of a new gene on the Y chromosome of Drosophila melanogaster. Proc Natl Acad Sci U S A. 2015;112(40):12450–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomaszkiewicz M, Chalopin D, Schartl M, Galiana D, Volff J-N. A multicopy Y-chromosomal SGNH hydrolase gene expressed in the testis of the platyfish has been captured and mobilized by a Helitron transposon. BMC Genet. 2014;15:44.
Article
PubMed
PubMed Central
CAS
Google Scholar
Faber-Hammond JJ, Phillips RB, Brown KH. Comparative analysis of the shared sex-determination region (SDR) among salmonid fishes. Genome Biol Evol. 2015;7(7):1972–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lubieniecki KP, Lin S, Cabana EI, Li J, Lai YYY, Davidson WS. Genomic Instability of the Sex-Determining Locus in Atlantic Salmon (Salmo salar). G3. 2015;5(11):2513–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meisel RP, Gonzales CA, Luu H. The house fly Y chromosome is young and minimally differentiated from its ancient X chromosome partner. Genome Res. 2017;27(8):1417–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin J, Kuvangkadilok C, Peart DH, Lee BTO. Multiple sex determining regions in a group of related Chironomus species (Diptera:Chironomidae). Heredity. 1980;44(3):367–82.
Article
Google Scholar
Chalopin D, Naville M, Plard F, Galiana D, Volff J-N. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol Evol. 2015;7(2):567–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erlandsson R, Wilson JF, Pääbo S. Sex chromosomal transposable element accumulation and male-driven substitutional evolution in humans. Mol Biol Evol. 2000;17(5):804–12.
Article
CAS
PubMed
Google Scholar
Lyon MF. The Lyon and the LINE hypothesis. Semin Cell Dev Biol. 2003;14(6):313–8.
Article
CAS
PubMed
Google Scholar
Mawaribuchi S, Takahashi S, Wada M, Uno Y, Matsuda Y, Kondo M, et al. Sex chromosome differentiation and the W- and Z-specific loci in Xenopus laevis. Dev Biol. 2017;426(2):393–400.
Article
CAS
PubMed
Google Scholar
Bertocchi NA, de Oliveira TD, Del Valle GA, Coan RLB, Gunski RJ, Martins C, et al. Distribution of CR1-like transposable element in woodpeckers (Aves Piciformes): Z sex chromosomes can act as a refuge for transposable elements. Chromosom Res. 2018;26(4):333–43.
Article
CAS
Google Scholar
Śliwińska EB, Martyka R, Tryjanowski P. Evolutionary interaction between W/Y chromosome and transposable elements. Genetica. 2016;144(3):267–78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tang W, Mun S, Joshi A, Han K, Liang P. Mobile elements contribute to the uniqueness of human genome with 15,000 human-specific insertions and 14 Mbp sequence increase. DNA Res. 2018;25(5):521–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Griffin DK. Is the Y chromosome disappearing?—both sides of the argument. Chromosom Res. 2012;20(1):35–45.
Article
CAS
Google Scholar
Schartl M, Schmid M, Nanda I. Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs. Chromosoma. 2016;125(3):553–71.
Article
PubMed
Google Scholar
Brown EJ, Bachtrog D. The chromatin landscape of Drosophila: comparisons between species, sexes, and chromosomes. Genome Res. 2014;24(7):1125–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lemos B, Branco AT, Hartl DL. Epigenetic effects of polymorphic Y chromosomes modulate chromatin components, immune response, and sexual conflict. Proc Natl Acad Sci. 2010;107(36):15826–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chow J, Heard E. X inactivation and the complexities of silencing a sex chromosome. Curr Opin Cell Biol. 2009;21(3):359–66.
Article
CAS
PubMed
Google Scholar
Lyon MF. X-chromosome inactivation: a repeat hypothesis. Cytogenet Cell Genet. 1998;80(1–4):133–7.
Article
CAS
PubMed
Google Scholar
Scott LA, Kuroiwa A, Matsuda Y, Wichman HA. X accumulation of LINE-1 retrotransposons in Tokudaia osimensis, a spiny rat with the karyotype XO. Cytogenet Genome Res. 2006;112(3–4):261–9.
Article
CAS
PubMed
Google Scholar
Lyon MF. Do LINEs have a role in X-chromosome inactivation? J Biomed Biotechnol. 2006;2006(1):59746.
PubMed
PubMed Central
Google Scholar
Bailey JA, Carrel L, Chakravarti A, Eichler EE. Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc Natl Acad Sci U S A. 2000;97(12):6634–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaumeil J, Le Baccon P, Wutz A, Heard E. A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev. 2006;20(16):2223–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chow JC, Ciaudo C, Fazzari MJ, Mise N, Servant N, Glass JL, et al. LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell. 2010;141(6):956–69.
Article
CAS
PubMed
Google Scholar
Jazin E, Cahill L. Sex differences in molecular neuroscience: from fruit flies to humans. Nat Rev Neurosci. 2010;11(1):9–17.
Article
CAS
PubMed
Google Scholar
Shansky RM. Are hormones a “female problem” for animal research? Science. 2019;364(6443):825–6.
Article
CAS
PubMed
Google Scholar
Wang M, Branco AT, Lemos B. The Y chromosome modulates splicing and sex-biased intron retention rates in Drosophila. Genetics. 2018;208(3):1057–67.
Article
CAS
PubMed
Google Scholar
Ellegren H, Parsch J. The evolution of sex-biased genes and sex-biased gene expression. Nat Rev Genet. 2007;8(9):689–98.
Article
CAS
PubMed
Google Scholar
Yang L, Zhang Z, He S. Both male-biased and female-biased genes evolve faster in fish genomes. Genome Biol Evol. 2016;8(11):3433–45.
Article
PubMed
PubMed Central
Google Scholar
Graham P, Penn JKM, Schedl P. Masters change, slaves remain. BioEssays. 2003;25(1):1–4.
Article
PubMed
CAS
Google Scholar