Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. doi:10.1038/35057062.
Article
CAS
PubMed
Google Scholar
de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 2011;7(12):e1002384. doi:10.1371/journal.pgen.1002384.
Article
PubMed Central
PubMed
Google Scholar
Ray DA, Batzer MA. Reading TE leaves: new approaches to the identification of transposable element insertions. Genome Res. 2011;21(6):813–20. doi:10.1101/gr.110528.110.
Article
PubMed Central
CAS
PubMed
Google Scholar
Batzer MA, Gudi VA, Mena JC, Foltz DW, Herrera RJ, Deininger PL. Amplification dynamics of human-specific (HS) Alu family members. Nucleic Acids Res. 1991;19(13):3619–23.
Article
PubMed Central
CAS
PubMed
Google Scholar
Batzer MA, Deininger PL. A human-specific subfamily of Alu sequences. Genomics. 1991;9(3):481–7.
Article
CAS
PubMed
Google Scholar
Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A. 2003;100(9):5280–5. doi:10.1073/pnas.0831042100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kazazian Jr HH, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature. 1988;332(6160):164–6. doi:10.1038/332164a0.
Article
CAS
PubMed
Google Scholar
Wang H, Xing J, Grover D, Hedges DJ, Han K, Walker JA, et al. SVA elements: a hominid-specific retroposon family. J Mol Biol. 2005;354(4):994–1007. doi:10.1016/j.jmb.2005.09.085.
Article
CAS
PubMed
Google Scholar
Ostertag EM, Goodier JL, Zhang Y, Kazazian Jr HH. SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet. 2003;73(6):1444–51. doi:10.1086/380207.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schmid CW, Deininger PL. Sequence organization of the human genome. Cell. 1975;6(3):345–58.
Article
CAS
PubMed
Google Scholar
Ullu E, Tschudi C. Alu sequences are processed 7SL RNA genes. Nature. 1984;312(5990):171–2.
Article
CAS
PubMed
Google Scholar
Fanning TG, Singer MF. LINE-1: a mammalian transposable element. Biochim Biophys Acta. 1987;910(3):203–12.
Article
CAS
PubMed
Google Scholar
Burton FH, Loeb DD, Voliva CF, Martin SL, Edgell MH, Hutchison 3rd CA. Conservation throughout mammalia and extensive protein-encoding capacity of the highly repeated DNA long interspersed sequence one. J Mol Biol. 1986;187(2):291–304.
Article
CAS
PubMed
Google Scholar
Ono M, Kawakami M, Takezawa T. A novel human nonviral retroposon derived from an endogenous retrovirus. Nucleic Acids Res. 1987;15(21):8725–37.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shen L, Wu LC, Sanlioglu S, Chen R, Mendoza AR, Dangel AW, et al. Structure and genetics of the partially duplicated gene RP located immediately upstream of the complement C4A and the C4B genes in the HLA class III region. Molecular cloning, exon-intron structure, composite retroposon, and breakpoint of gene duplication. J Biol Chem. 1994;269(11):8466–76.
CAS
PubMed
Google Scholar
Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian Jr HH. High frequency retrotransposition in cultured mammalian cells. Cell. 1996;87(5):917–27.
Article
CAS
PubMed
Google Scholar
Dewannieux M, Esnault C, Heidmann T. LINE-mediated retrotransposition of marked Alu sequences. Nat Genet. 2003;35(1):41–8. doi:10.1038/ng1223.
Article
CAS
PubMed
Google Scholar
Salem AH, Kilroy GE, Watkins WS, Jorde LB, Batzer MA. Recently integrated Alu elements and human genomic diversity. Mol Biol Evol. 2003;20(8):1349–61. doi:10.1093/molbev/msg150.
Article
CAS
PubMed
Google Scholar
Batzer MA, Deininger PL. Alu repeats and human genomic diversity. Nat Rev Genet. 2002;3(5):370–9. doi:10.1038/nrg798.
Article
CAS
PubMed
Google Scholar
Ray DA, Xing J, Salem AH, Batzer MA. SINEs of a nearly perfect character. Syst Biol. 2006;55(6):928–35.
Article
PubMed
Google Scholar
Perna NT, Batzer MA, Deininger PL, Stoneking M. Alu insertion polymorphism: a new type of marker for human population studies. Hum Biol. 1992;64(5):641–8.
CAS
PubMed
Google Scholar
Batzer MA, Stoneking M, Alegria-Hartman M, Bazan H, Kass DH, Shaikh TH, et al. African origin of human-specific polymorphic Alu insertions. Proc Natl Acad Sci U S A. 1994;91(25):12288–92.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stoneking M, Fontius JJ, Clifford SL, Soodyall H, Arcot SS, Saha N, et al. Alu insertion polymorphisms and human evolution: evidence for a larger population size in Africa. Genome Res. 1997;7(11):1061–71.
PubMed Central
CAS
PubMed
Google Scholar
Witherspoon DJ, Marchani EE, Watkins WS, Ostler CT, Wooding SP, Anders BA, et al. Human population genetic structure and diversity inferred from polymorphic L1(LINE-1) and Alu insertions. Hum Hered. 2006;62(1):30–46. doi:10.1159/000095851.
Article
CAS
PubMed
Google Scholar
Ray DA, Walker JA, Hall A, Llewellyn B, Ballantyne J, Christian AT, et al. Inference of human geographic origins using Alu insertion polymorphisms. Forensic Sci Int. 2005;153(2–3):117–24. doi:10.1016/j.forsciint.2004.10.017.
Article
CAS
PubMed
Google Scholar
Terreros MC, Alfonso-Sanchez MA, Novick GE, Luis JR, Lacau H, Lowery RK, et al. Insights on human evolution: an analysis of Alu insertion polymorphisms. J Hum Genet. 2009;54(10):603–11. doi:10.1038/jhg.2009.86.
Article
CAS
PubMed
Google Scholar
Watkins WS, Rogers AR, Ostler CT, Wooding S, Bamshad MJ, Brassington AM, et al. Genetic variation among world populations: inferences from 100 Alu insertion polymorphisms. Genome Res. 2003;13(7):1607–18. doi:10.1101/gr.894603.
Article
PubMed Central
CAS
PubMed
Google Scholar
Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65. doi:10.1038/nature11632.
Article
Google Scholar
Jakobsson M, Scholz SW, Scheet P, Gibbs JR, VanLiere JM, Fung HC, et al. Genotype, haplotype and copy-number variation in worldwide human populations. Nature. 2008;451(7181):998–1003. doi:10.1038/nature06742.
Article
CAS
PubMed
Google Scholar
Lohmueller KE, Indap AR, Schmidt S, Boyko AR, Hernandez RD, Hubisz MJ, et al. Proportionally more deleterious genetic variation in European than in African populations. Nature. 2008;451(7181):994–7. doi:10.1038/nature06611.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science. 2008;319(5866):1100–4. doi:10.1126/science.1153717.
Article
CAS
PubMed
Google Scholar
Bryc K, Velez C, Karafet T, Moreno-Estrada A, Reynolds A, Auton A, et al. Colloquium paper: genome-wide patterns of population structure and admixture among Hispanic/Latino populations. Proc Natl Acad Sci U S A. 2010;107 Suppl 2:8954–61. doi:10.1073/pnas.0914618107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zakharia F, Basu A, Absher D, Assimes TL, Go AS, Hlatky MA, et al. Characterizing the admixed African ancestry of African Americans. Genome Biol. 2009;10(12):R141. doi:10.1186/gb-2009-10-12-r141.
Article
PubMed Central
PubMed
Google Scholar
Reich D, Patterson N, Campbell D, Tandon A, Mazieres S, Ray N, et al. Reconstructing Native American population history. Nature. 2012;488(7411):370–4. doi:10.1038/nature11258.
Article
PubMed Central
CAS
PubMed
Google Scholar
Genomes Project C, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061–73. doi:10.1038/nature09534.
Article
Google Scholar
Ding L, Wiener H, Abebe T, Altaye M, Go RC, Kercsmar C, et al. Comparison of measures of marker informativeness for ancestry and admixture mapping. BMC Genomics. 2011;12:622. doi:10.1186/1471-2164-12-622.
Article
PubMed Central
CAS
PubMed
Google Scholar
Collins-Schramm HE, Phillips CM, Operario DJ, Lee JS, Weber JL, Hanson RL, et al. Ethnic-difference markers for use in mapping by admixture linkage disequilibrium. Am J Hum Genet. 2002;70(3):737–50. doi:10.1086/339368.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smith MW, O'Brien SJ. Mapping by admixture linkage disequilibrium: advances, limitations and guidelines. Nat Rev Genet. 2005;6(8):623–32. doi:10.1038/nrg1657.
Article
CAS
PubMed
Google Scholar
Winkler CA, Nelson GW, Smith MW. Admixture mapping comes of age. Annu Rev Genomics Hum Genet. 2010;11:65–89. doi:10.1146/annurev-genom-082509-141523.
Article
CAS
PubMed
Google Scholar
Stewart C, Kural D, Stromberg MP, Walker JA, Konkel MK, Stutz AM, et al. A comprehensive map of mobile element insertion polymorphisms in humans. PLoS Genet. 2011;7(8):e1002236. doi:10.1371/journal.pgen.1002236.
Article
PubMed Central
CAS
PubMed
Google Scholar
Weir BS, Cockerham CC. Estimating F-Statistics for the Analysis of Population-Structure. Evolution. 1984;38(6):1358–70. doi:10.2307/2408641.
Article
Google Scholar
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–8. doi:10.1093/bioinformatics/btr330.
Article
PubMed Central
CAS
PubMed
Google Scholar
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.
CAS
PubMed
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9. doi:10.1093/molbev/mst197.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cann HM, de Toma C, Cazes L, Legrand MF, Morel V, Piouffre L, et al. A human genome diversity cell line panel. Science. 2002;296(5566):261–2.
Article
CAS
PubMed
Google Scholar
Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5(6):e1000529. doi:10.1371/journal.pgen.1000529.
Article
PubMed Central
PubMed
Google Scholar