Volff JN: Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays. 2006, 28: 913-922.
Article
CAS
PubMed
Google Scholar
Hedges DJ, Deininger PL: Inviting instability: transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat Res. 2007, 616: 46-59.
Article
PubMed Central
CAS
PubMed
Google Scholar
Craig Nl, Craige R, Gellert M, Lambowitz AM: Mobile DNA II. 2002, ASM Press, Washington, DC, USA
Book
Google Scholar
Levin HL, Moran JV: Dynamic interactions between transposable elements and their hosts. Nat Rev Genet. 2011, 12: 615-627.
Article
PubMed Central
CAS
PubMed
Google Scholar
Luan DD, Korman MH, Jakubczak JL, Eickbush TH: Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. 1993, 72: 595-605.
Article
CAS
PubMed
Google Scholar
Kramerov DA, Vassetzky NS: Short retroposons in eukaryotic genomes. Int Rev Cytol. 2005, 247: 165-221.
Article
CAS
PubMed
Google Scholar
Ohshima K, Okada N: SINEs and LINEs: symbionts of eukaryotic genomes with a common tail. Cytogenet Genome Res. 2005, 110: 475-490.
Article
CAS
PubMed
Google Scholar
Belancio VP, Hedges DJ, Deininger P: Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res. 2008, 18: 343-358.
Article
CAS
PubMed
Google Scholar
Kapitonov VV, Jurka J: A novel class of SINE elements derived from 5 S rRNA. Mol Biol Evol. 2003, 20: 694-702.
Article
CAS
PubMed
Google Scholar
Sun F-J, Fleurdépine S, Bousquet-Antonelli C, Caetano-Anollés G, Deragon J-M: Common evolutionary trends for SINE RNA structures. Trends Genet. 2007, 23: 26-33.
Article
PubMed
Google Scholar
Oshima K, Hamada M, Terai Y, Okada N: The 3' ends of tRNA-derived short interspersed repetitive elements are derived from the 3' ends of long interspersed repetitive elements. Mol Cell Biol. 1996, 16: 3756-3764.
Article
Google Scholar
Kajikawa M, Okada N: LINEs mobilize SINEs in the eel through a shared 3' sequence. Cell. 2002, 111: 433-444.
Article
CAS
PubMed
Google Scholar
Dewannieux M, Esnault C, Heidmann T: LINE-mediated retrotransposition of marked Alu sequences. Nat Genet. 2003, 35: 41-48.
Article
CAS
PubMed
Google Scholar
Roy-Engel AM, Salem A-H, Oyeniran OO, Deininger L, Hedges DJ, Kilroy GE, Batzer MA, Deininger PL: Active Alu element "A-tails": size does matter. Genome Res. 2002, 12: 1333-1344.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eickbush TH: R2 and Related site-specific non-long terminal repeat retrotransposons. Mobile DNA II. Edited by: Craig NL, Craigie R, Gellert M, Lambowitz AM. 2002, ASM Press, Washington, DC, USA, 813-835.
Chapter
Google Scholar
Christensen SM, Ye J, Eickbush TH: RNA from the 5’ end of the R2 retrotransposon controls R2 protein binding to and cleavage of its DNA target site. Proc Natl Acad Sci USA. 2006, 103: 17602-17607.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fenq Q, Shumann G, Boeke JD: Retrotransposon R1Bm endonuclease cleaves the target sequence. Proc Natl Acad Sci USA. 1998, 95: 2083-2088.
Article
Google Scholar
Maita N, Aoyagi H, Osani M, Shirakawa M, Fujiwara H: Characterization of the sequence specificity of the R1Bm endonuclease domain by structural and biochemical studies. Nucleic Acids Res. 2007, 35: 3918-3927.
Article
PubMed Central
CAS
PubMed
Google Scholar
Anzai T, Osanai M, Hamada M, Fujiwara H: Functional roles of 3'-terminal structures of template RNA during in vivo retrotransposition of non-LTR retrotransposon, R1Bm. Nucleic Acids Res. 2005, 33: 1993-2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lathe WC, Eickbush TH: A single lineage of R2 retrotransposable elements is an active, evolutionary stable component of the Drosophila rDNA locus. Mol Biol Evol. 1997, 14: 1232-1241.
Article
CAS
PubMed
Google Scholar
Gentile KL, Burke WD, Eickbush TH: Multiple lineages of R1 retrotransposable elements can coexist in the rDNA loci of Drosophila. Mol Biol Evol. 2001, 18: 235-245.
Article
CAS
PubMed
Google Scholar
Stage DE, Eickbush TH: Origin of nascent lineages and the mechanisms used to prime second-strand DNA synthesis in the R1 and R2 retrotransposons of Drosophila. Genome Biol. 2009, 10: R49-
Article
PubMed Central
PubMed
Google Scholar
Osani-Futahashi M, Suetsugu Y, Mita K, Fujiwara H: Genome-wide screening and characterization of transposable elements and their distribution analysis in the silkworm, Bombyx mori. Insect Biochem Mol Biol. 2008, 38: 1046-1057.
Article
Google Scholar
Kojima KK, Fujiwara H: Evolution of target specificity in R1 clade non-LTR retrotransposons. Mol Biol Evol. 2003, 20: 351-361.
Article
CAS
PubMed
Google Scholar
Eickbush DG, Eickbush TH: R2 retrotransposons encode a self-cleaving ribozyme for processing from an rRNA cotranscript. Mol Cell Biol. 2010, 30: 3142-3150.
Article
PubMed Central
CAS
PubMed
Google Scholar
NCBI: BLAST. [http://www.ncbi.nlm.nih.gov/BLAST/] []
Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, Kaufman TC, Kellis M, Gelbart W, Iyer VN, Pollard DA, Sackton TB, Larracuente AM, Singh ND, Abad JP, Abt DN, Adryan B, Aguade M, Akashi H, Anderson WW, Aquadro CF, Ardell DH, Arguello R, Artieri CG, Barbash DA, Barker D, Barsanti P, Batterham P, Batzoglou S, Drosophila 12 Genomes Consortium: Evolution of genes and genomes on the Drosophila phylogeny. Nature. 2007, 450: 203-218.
Article
PubMed
Google Scholar
Mathews DH, Banerjee AR, Luan DD, Eickbush TH, Turner DH: Secondary structure model of the RNA recognized by the reverse transcriptase from the R2 retrotransposable element. RNA. 1997, 3: 1-16.
PubMed Central
CAS
PubMed
Google Scholar
Webb C-HT, Lupták A: HDV-like self-cleaving ribozymes. RNA Biol. 2011, 8: 719-727.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nehdi A, Perreault J-P: Unbiased in vitro selection reveals the unique character of the self-cleaving antigenomic HDV RNA sequence. Nucleic Acids Res. 2006, 34: 584-592.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sánchez-Luque FJ, López MC, Macias F, Alonso C, Thomas MC: Identification of an hepatitis delta virus-like ribozyme at the mRNA 5'end of the L1Tc retrotransposon from Trypanosoma cruzi. Nucleic Acids Res. 2011, 39: 8065-8077.
Article
PubMed Central
PubMed
Google Scholar
Jakubczak JL, Zenni MK, Woodruff RC, Eickbush TH: Turnover of R1 (Type I) and R2 (Type II) retrotransposable elements in the ribosomal DNA of Drosophila melanogaster. Genetics. 1992, 131: 129-142.
PubMed Central
CAS
PubMed
Google Scholar
Zhang X, Eickbush TH: Characterization of active R2 retrotransposition in the rDNA locus of Drosophila simulans. Genetics. 2005, 170: 195-205.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tarn WY, Steitz JA: A novel spliceosome containing U11, U12, and U5 snRNPs excises a minor class (AT-AC) intron in vitro. Cell. 1996, 84: 801-811.
Article
CAS
PubMed
Google Scholar
Bibillo A, Eickbush TH: End-to-end template jumping by the reverse transcriptase encoded by the R2 retrotransposon. J Biol Chem. 2004, 279: 14945-14953.
Article
CAS
PubMed
Google Scholar
Buzdin A, Gogvadze E, Kovalskaya E, Volchkov P, Ustyugova S, Illarionova A, Fushan A, Vinogradova T, Sverdlov E: The human genome contains many types of chimeric retrogenes generated through in vivo RNA recombination. Nucleic Acids Res. 2003, 31: 4385-4390.
Article
PubMed Central
CAS
PubMed
Google Scholar
Buzdin A, Ustyugova S, Gogvadze E, Vinogradova T, Lebedev Y, Sverdlov E: A new family of chimeric retrotranscripts formed by a full copy of U6 small nuclear RNA fused to the 3' terminus of L1. Genomics. 2002, 80: 402-406.
Article
CAS
PubMed
Google Scholar
Gilbert N, Lutz S, Morrish TA, Moran JV: Multiple fates of L1 retrotransposition intermediates in cultures human cells. Mol Cell Biol. 2005, 25: 7780-7795.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kapitonov W, Jurka J: Helitrons in fruit flies. Repbase Reports. 2007, 7: 127-132.
Google Scholar
Yang HP, Barbash DA: Abundant and species-specific DINE-1 transposable elements in 12 Drosophila genomes. Genome Biol. 2008, 9: R39-
Article
PubMed Central
PubMed
Google Scholar
Engels WR: A trans-acting product needed for P factor transposition in Drosophila. Science. 1984, 226: 1194-1196.
Article
CAS
PubMed
Google Scholar
Pardue ML, DeBaryshe PG: Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu Rev Genet. 2003, 37: 485-511.
Article
CAS
PubMed
Google Scholar
Tamura K, Subramoanian S, Kumar S: Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Mol Biol Evol. 2004, 21: 36-44.
Article
CAS
PubMed
Google Scholar
Singh ND, Larracuente AM, Sackton TB, Clark AG: Comparative genomics on the Drosophila phylogenetic tree. Annu Rev Ecol Evol Syst. 2009, 40: 459-480.
Article
Google Scholar
Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR: An active DNA transposon family in rice. Nature. 2003, 421: 163-167.
Article
CAS
PubMed
Google Scholar
Witte C-P, Le QH, Bureau T, Kumar A: Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci USA. 2001, 98: 13778-13783.
Article
PubMed Central
CAS
PubMed
Google Scholar
Antonius-Klemola K, Kalendar R, Schulman AH: TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theor Appl Genet. 2006, 112: 999-1008.
Article
CAS
PubMed
Google Scholar
Kwon SJ, Kim DH, Lim MH, Long Y, Meng JL, Lim KB, Kim JA, Kim JS, Jin M, Kim HI, Ahn SN, Wessler SR, Yang TJ, Park BS: Terminal repeat retrotransposon in miniature (TRIM) as DNA markers in Brassica relatives. Mol Genet Genomics. 2007, 278: 361-370.
Article
CAS
PubMed
Google Scholar
Kimmel BE, Ole-Moiyoi OK, Young JR: Ingi, a 5.2-kb dispersed sequence element from Trypanosoma brucei that carries half of a smaller mobile element at either end and has homology with mammalian LINEs. Mol Cell Biol. 1987, 7: 1465-1475.
Article
PubMed Central
CAS
PubMed
Google Scholar
Biedler J, Tu Z: Non-LTR retrotransposons in the African malaria mosquito, Anopheles gambiae: unprecedented diversity and evidence of recent activity. Mol Biol Evol. 2003, 20: 1811-1825.
Article
CAS
PubMed
Google Scholar
Bringaud F, Berriman M, Fowler-Hertz C: TSIDER1, a short and non-autonomous Salivarian trypanosome-specific retroposon related to the ingi6 subclade. Mol Biochem Parasitology. 2011, 179: 30-36.
Article
CAS
Google Scholar
Eickbush DG, Eickbush TH: Transcription of endogenous and exogenous R2 elements in the rRNA gene locus of Drosophila melanogaster. Mol Cell Biol. 2003, 23: 3825-3836.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang X, Zhou J, Eickbush TH: Rapid R2 retrotransposition leads to the loss of previously inserted copies via large deletions of the rDNA locus. Mol Biol Evol. 2008, 25: 229-237.
Article
PubMed
Google Scholar
George JA, Eickbush TH: Conserved features at the 5' end of Drosophila R2 retrotransposable elements: implications for transcription and translation. Insect Mol Biol. 1999, 8: 3-10.
Article
CAS
PubMed
Google Scholar
Ruminski DJ, Webb C-HT, Riccitelli NJ, Lupták A: Processing and translation initiation of non-long terminal repeat retrotransposons by hepatitis delta virus (HDV)-like self-cleaving ribozymes. J Biol Chem. 2011, 286: 41286-41295.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wei W, Gilbert N, Ooi SL, Lawler JF, Ostertag EM, Kazazian HH, Boeke JD, Moran JV: Human L1 retrotransposition: cis preference versus trans complementation. Mol Cell Biol. 2001, 21: 1429-1439.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eickbush DG, Ye J, Zhang X, Burke WD, Eickbush TH: Epigenetic regulation of retrotransposons within the nucleolus of Drosophila. Mol Cell Biol. 2008, 28: 6452-6461.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhou J, Eickbush TH: The pattern of R2 retrotransposon activity in natural populations of Drosophila simulans reflects the dynamic nature of the rDNA locus. PLoS Genet. 2009, 5: e1000386-
Article
PubMed Central
PubMed
Google Scholar
Eickbush DG, Eickbush TH: Vertical transmission of the retrotransposable elements R1 and R2 during the evolution of the Drosophila melanogaster species subgroup. Genetics. 1995, 139: 671-684.
PubMed Central
CAS
PubMed
Google Scholar
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tool. Nucleic Acids Res. 1997, 25: 4876-4882.
Article
PubMed Central
CAS
PubMed
Google Scholar