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F-CphI represents a new homing
endonuclease family using the Endo VII
catalytic motif
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Abstract

Background: There are six known families of homing endonucleases, LAGLIDADG, GIY-YIG, HNH, His-Cys box,
PD-(D/E)-XK, and EDxHD, which are characterized by their conserved residues. Previously, we discovered a novel
homing endonuclease F-CphI encoded by ORF177 of cyanophage S-PM2. F-CphI does not resemble any characterized
homing endonucleases. Instead, the C-terminus of F-CphI aligns well with the N-terminal catalytic domain of a Holliday
junction DNA resolvase, phage T4 endonuclease VII (Endo VII).

Results: A PSI-BLAST search resulted in a total of 313 Endo VII motif–containing sequences in sequenced genomes.
Multiple sequence alignment showed that the catalytically important residues of T4 Endo VII were all well conserved in
these proteins. Our site-directed mutagenesis studies further confirmed that the catalytically important residues of T4
Endo VII were also essential for F-CphI activity, and thus F-CphI might use a similar protein fold as Endo VII for DNA
cleavage. A phylogenetic tree of the Endo VII motif–containing sequences showed that putative resolvases grouped
into one clade while putative homing endonucleases and restriction endonucleases grouped into another clade.

Conclusions: Based on the unique conserved residues, we proposed that F-CphI represents a new homing
endonuclease family, which was named the DHHRN family. Our phylogenetic analysis could be used to predict
the functions of many previously unknown proteins.
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Background
Many group I introns contain open reading frames (ORFs)
that encode homing endonucleases. In a process called
intron-homing, a homing endonuclease cleaves an intron-
less allele near the intron insertion site (IIS) and repair of
the DNA break using the intron-containing allele as tem-
plate transfers the intron and the homing endonuclease
gene into the intronless allele [1]. Homing endonuclease
genes are also found as optional free-standing genes
inserted between two conserved genes. They can cleave
one of the two conserved genes in genomes lacking the
homing endonuclease gene. Analogous to intron-homing,

repair of the DNA break transfers the homing endonucle-
ase gene to the recipient genome, a process that has been
called intronless homing [2, 3].
Homing endonucleases have been grouped into six

families, LAGLIDADG, GIY-YIG, HNH, His-Cys box,
PD-(D/E)-XK, and EDxHD, which were named for the
conserved amino acid residues (reviewed by [4]). Crystal
structures of the six homing endonuclease families have
been determined [5–10]. Based on their structural simi-
larities, it was suggested that the HNH and His-Cys box
families should be combined to a ββα-metal superfamily
[11]. The catalytic motifs of PD-(D/E)-XK and EDxHD
families were also shown to be related [4].
Previously, we identified a novel homing endonucle-

ase F-CphI [12]. It is encoded by ORF177 of cyanoph-
age S-PM2 (genome accession # AJ630128.1), which is
adjacent to the intron-containing psbA gene [13, 14].
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While F-CphI has specificity for the homologous intron-
less psbA gene of phage S-BM4, the group I intron pre-
vents F-CphI cleavage of the S-PM2 psbA gene [12]. In
this novel arrangement, an intron prevents self-cleavage
by a free-standing homing endonuclease, which in turn
provides the intron with potential to invade intronless ge-
nomes. Thus, this process has been named “collaborative
homing” [12].
ORF177 was originally annotated as similar to gene 49

of phage T4, which encodes endonuclease VII (Endo VII),
a Holliday junction DNA resolvase [13, 14]. A BLAST
search using F-CphI as the query sequence did not find
any characterized homing endonuclease, but typically
many other proteins annotated as “Endo VII”, “similar to
Endo VII”, “resolvase”, and “gp 49”. Aside from Endo VII
and its homologues in T-even phages, the enzymatic
activities of these proteins had not been determined. Se-
quence alignment of F-CphI, Endo VII, and other Endo
VII-like proteins showed a region of conserved sequence
that included the catalytic domain of T4 Endo VII (Fig. 1a).
Moreover, the catalytically important residues of Endo VII
were all well conserved in these proteins. In this work, we
conducted site directed mutagenesis on these con-
served residues in F-CphI to determine whether they
are functionally important. In addition, phylogenetic
analysis allowed us to identify potential homing endo-
nucleases and resolvases among the uncharacterized
proteins. F-CphI appears to be the first characterized
representative of a new family of homing endonucleases
that use the Endo VII catalytic motif.

Results
Endonuclease assay with recombinant F-CphI
Previously we have used in vitro expressed F-CphI to
map its cleavage site in the psbA gene of phage S-BM4
[12]. In order to further study the biochemical properties
of this novel homing endonuclease, we cloned S-PM2
ORF177 into pBAD/Myc-HisB and induced His-tagged
F-CphI expression in Escherichia coli cells. After large
amounts of soluble F-CphI were induced, one step puri-
fication gave ~ 64% purity as observed on SDS-PAGE
(Additional file 1: Figure S1A). Purified F-CphI was used
to digest plasmid DNA containing the F-CphI recogni-
tion site for different times. As soon as F-CphI was
added into the reaction, the closed-circular plasmid sub-
strates were nicked into open-circular intermediate
products, which were then converted into the final linear
products (Fig. 2a). To know whether one DNA strand
was preferentially nicked, top strand or bottom strand
32P labeled oligonucleotide duplexes containing the
F-CphI recognition site were used as substrates. The top
strand cleavage products appeared earlier than the bot-
tom strand cleavage products, indicating that F-CphI
preferred to nick the top strand first (Fig. 2b). Similarly,
Endo VII [15] and the homing endonucleases I-SceI
[16], I-TevI [17], I-TevII [18], and I-BmoI [19] also pref-
erentially cleave one strand of the DNA substrate.

Optimal conditions for F-CphI endonuclease activity
In order to determine the optimal conditions for F-CphI
endonuclease activity on the plasmid DNA substrate,

Fig. 1 Sequence alignment. a, b The C-terminal part of F-CphI aligns with the N-terminal catalytic domain of Endo VII. c Sequence logo shows the
consensus sequence from the multiple sequence alignment in Additional file 3: Figure S2. The positions of the conserved residues in F-CphI and Endo VII
are shown on the top, and F-CphI mutants generated in this study are shown on the bottom. At each position of the sequence logo, the total height of
a stack of letters shows the information content in bits that is calculated from a profile hidden Markov model (see Methods), and the height of a letter
relative to the total height of letters at a position represents the letter’s frequency. The red lines indicate gaps in the multiple sequence alignment
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each parameter in the standard endonuclease assay was
changed systematically (Fig. 3). F-CphI was most active
at around 20 °C (Fig. 3a) and pH 7.0 (Fig. 3b), which is
in contrast to 37–70 °C and alkaline pH for most bio-
chemically characterized homing endonucleases [20] and
T4 Endo VII [21]. The optimal temperature of F-CphI is
consistent with the temperature of seawater where cya-
nophage S-PM2 was isolated, which encodes the gene
for F-CphI. F-CphI activity showed a dependence on Mg2+,
with an optimum of 4–20 mM (Fig. 3c). In addition, Mg2+

could be replaced by Mn2+ and Co2+, but not by Ca2+, Ni2+,
or Zn2+ (Fig. 3e). Similar patterns of divalent cation de-
pendence have previously been seen in the LAGLIDADG
homing endonucleases I-DmoI [22], I-CreI [23], and the
HNH homing endonuclease I-HmuI [7]. Endo VII ac-
tivity was also dependent on Mg2+, which can be re-
placed by Mn2+ but not by Ca2+ [21]. Furthermore,
F-CphI activity was not affected by a low concentration
(5 mM) of monovalent ions (Na+, K+, or NH4

+), but
was inhibited at higher concentrations (Fig. 3d), a

Fig. 2 Strand preference of F-CphI. a Purified F-CphI (1600 nM) was used to digest plasmid DNA (5 nM) in the standard endonuclease assay
buffer for different times. Closed-circular plasmid DNA (C) was nicked to form open circular DNA (O) and then nicked again on the other strand
to form a linear product (L). b Time course activity assay on 32P-labeled oligonucleotide duplex. Oligonucleotides SBM4-60Top and SBM4-60Top-r
were used to create a 60 bp duplex containing the F-CphI recognition site from the cyanophage S-BM4 psbA gene. The duplex was labeled on
the top or the bottom strand by 32P. Labeled duplex substrates were digested by F-CphI and the cleavage products were separated by electrophoresis
on a 4% denaturing polyacrylamide gel. Substrates labeled on the top or the bottom strand were examined separately. Percent cleavage products are
shown over time

Fig. 3 Optimization of conditions for DNA cleavage by F-CphI. Purified F-CphI (1600 nM) was used to digest plasmid DNA (5 nM) in different
conditions for 30 min. The graphs show F-CphI endonuclease activity at different temperatures a, pH b, Mg2+ concentrations c, monovalent
cation concentrations d and divalent cation concentrations e F-CphI endonuclease activity was calculated by expressing intensities of the linear
products relative to the total plasmid DNA substrates. The highest activity for each variable was assigned a value of 100%. Error bars indicate the
s.d. from two b, d and e or three a and c experiments
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characteristic shared by homing endonucleases [24] and
Endo VII [21].

The catalytic domain of T4 endonuclease VII is conserved
in F-CphI
The C-terminal part of F-CphI (residues 71–129) aligns
with the N-terminal part of Endo VII (residues 10–73)
(Fig. 1a and b), which is the catalytic domain of Endo
VII [25, 26]. Using the putative C-terminal catalytic
domain of F-CphI to do PSI-BLAST search, a total of
313 sequences were found in sequenced genomes
(Additional file 2: Table S1). Multiple sequence align-
ment of these sequences (Additional file 3: Figure S2)
revealed a highly conserved pattern of a central DHDH
flanked by an N-terminal CX2-4C and a C-terminal
CX2C (Fig. 1c). The first histidine in the DHDH region
(H41 of Endo VII) was conserved in all the sequences
(Additional file 3: Figure S2). The first aspartic acid
(D40 of Endo VII) and the second histidine (H43 of
Endo VII) were conserved in most of the sequences
(Additional file 3: Figure S2). The arginine residue
(R54 of Endo VII) after the DHDH sequence was con-
served in all the sequences (Fig. 1c, Additional file 3:
Figure S2). The asparagine (N62 of Endo VII) distal to
CX2C was conserved in most sequences (replaced by R
in one sequence Strvi_0243) (Fig. 1c, Additional file 3:
Figure S2).
The catalytic domain of T4 Endo VII has been studied

extensively. The CX2-4C and CX2C sequences have been
shown to coordinate one atom of zinc in Endo VII [27].
D40 and N62 are the metal ion binding residues in the
active site of T4 Endo VII [25, 28]. H41 and H43 are
catalytically important in Endo VII [25, 26]. Although
the second aspartic acid (D42) in the DHDH region was
conserved in many sequences, it is not essential for Endo
VII [29]. R54 was shown to be within the active site of
T4 Endo VII and near the metal ion [26], but its func-
tion is still unknown. The fact that the catalytically im-
portant residues for Endo VII were all conserved in

F-CphI (Fig. 1b) suggested to us that they may play simi-
lar roles in F-CphI.

Site-directed mutagenesis confirms that the conserved
Endo VII residues are also essential for F-CphI
Site-directed mutagenesis has been done on T4 Endo
VII. C23S and C61S mutants were inactive and they can-
not bind to the DNA substrate [27]. C26S and C58S mu-
tants were still active, but when both cysteines were
mutated the mutant was inactive and failed to bind to
the DNA substrate [27]. D40N, D40A, H41T, H43T
[29], and N62D [26] were inactive but they can bind to
the DNA substrate, suggesting that these residues are
important for catalytic activity. To test whether the es-
sential residues of Endo VII are also important for
F-CphI activity, we carried out site-directed mutagen-
esis on F-CphI at the corresponding residues to Endo
VII (C84S, D101N, H102T, N118A, and N118D). No
mutation had been made on the conserved arginine of
T4 Endo VII, but since it is highly conserved and is
near other catalytically important residues, the arginine
on F-CphI was also mutated (R110A and R110T) to ex-
plore its function.
After expression and purification, the F-CphI mutants

had similar soluble protein yields as that of the wild type
(Additional file 1: Figure S1B), suggesting that mutations
may not disrupt the general folding of the protein. A
plasmid containing the F-CphI recognition site was used
to conduct endonuclease assays to compare the activities
of F-CphI wild type and mutants. The closed-circular
plasmid DNA was linearized by 400 nM wild type pro-
tein, however, cleavage products were not obviously seen
for all the mutants, even at ~ 10-fold excess protein con-
centration (Fig. 4). To analyze the cause for abolished
DNA cleavage observed with the F-CphI mutants, the
DNA binding property was assayed by electrophoretic
mobility shift assay using a 32P-labeled 60-bp oligonucleo-
tide containing the F-CphI recognition site. Among the
mutant proteins, only D101N and H102T can bind DNA
(Additional file 4: Figure S3A), but their DNA binding

WT     C84S      D101N     H102T      R110T     N118D           R110A     N118A

nM   400   400  4000  400  4000 400  4000 400  4000  400  4000 400  4000 400  3000  0

O
L

C

Fig. 4 Activity comparison of F-CphI wild type and mutants. F-CphI wild type (400 nM) and mutants (400 nM and 3000 nM for N118A; 400 nM
and 4000 nM for others) were incubated with 5 nM closed-circular plasmid DNA (C) at 25 °C for 1 h. For N118A, 4000 nM cannot be used since it
bound to the DNA substrate non-specifically and showed a smear in the gel (data not shown). Reaction products were separated on a 0.8%
agarose gel. Positions of linear (L) and open circular (O) products are shown. DNA substrate without protein added was run in the last lane
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affinities were lower than that of the wild type as shown
by their higher Kd values (Additional file 4: Figure S3C).
Using an unlabeled non-specific 41-bp DNA complex as
the competitor, competition assays confirmed that the
binding of the wild type, D101N and H102T to DNA sub-
strate was specific (Additional file 4: Figure S3B). In
summary, similar to T4 Endo VII [29], our mutagenesis
studies suggested that C84 of F-CphI is important for
DNA binding, while D101 and H102 are essential for DNA
cleavage. The difference is that F-CphI mutant N118D can-
not bind to DNA, while the corresponding Endo VII mu-
tant N62D can bind to DNA [26]. In addition, our results
showed that R110 of F-CphI is an essential residue for
DNA binding, but it is not clear whether it is also essential
for DNA cleavage (see Discussion).

Phylogenetic analysis of proteins containing the Endo VII
motif
Based on the multiple sequence alignment (Additional
file 3: Figure S2), we built a phylogenetic tree using the
protein sequences that contain the Endo VII motif. The
phylogenetic tree consisted of two major branches
(Fig. 5). The bottom portion of the tree contained T4
Endo VII (sequence name underlined) and sequences
that aligned their whole length with Endo VII (Fig. 5,
Additional file 2: Table S1). Moreover, most sequences
in the bottom portion of the tree had the Endo VII
motif on their N-termini (Fig. 5), which is similar to the
domain arrangement of T4 Endo VII. The top portion
of the tree contained F-CphI (sequence name under-
lined) and proteins that aligned the whole length with
F-CphI (Fig. 5, Additional file 2: Table S1). Interest-
ingly, most sequences in the top portion of the tree had
the Endo VII motif on their C-termini (Fig. 5), similar
to the domain arrangement of F-CphI. Our further ana-
lysis shown below suggested that sequences in the bot-
tom portion of the tree might be resolvases and those
in the top portion might be endonucleases, and hence
we named them resolvase and endonuclease clades,
respectively.
In the resolvase clade, sequences from myoviruses in-

cluding T4 Endo VII clustered together (Fig. 5) and
they are likely to be the Holliday junction resolvases of
these phages. Many sequences from podoviruses also
clustered together (Fig. 5). Interestingly, while phage T7
uses endonuclease I as its Holliday junction resolvase,
none of these podoviruses encodes an endonuclease I
homolog. Therefore, these podoviruses might use Endo
VII as their Holliday junction resolvase. The resolvase
clade also contained four sequences from putative pro-
phage fragments in bacterial genomes (BTI_1591, BDB_
mp60439, EH105704_05_00150, P845_01269) (Fig. 5). In
these bacterial genomes, the Endo VII motif-containing
sequences were often adjacent to integrase genes, portal

protein genes, or putative phage genes, and thus they were
probably resolvases of prophages. Furthermore, we identi-
fied 15 sequences from Caenorhabditis (Fig. 5) that were
annotated as DNA polymerase B. These proteins are of
different lengths, and the Endo VII motifs are in different
positions in these proteins (Additional file 2: Table S1).
The function of the Endo VII motif in DNA polymerase B
remained unknown.
In the endonuclease clade, the podoviruses (Fig. 5) all

encode the T7 resolvase endonuclease I, and thus the
Endo VII motif–containing proteins might not be resol-
vases. Moreover, sequences from Yersinia phage Berlin,
Yersinia phage YpP-G, and Pseudomonas phage LUZ24
are embedded in a group I intron in the DNA polymer-
ase gene (Intron-encoded, Fig. 5), indicating that they
are homing endonucleases [30]. Self-splicing group I in-
trons have also been identified in the DNA polymerase
genes of several T7-like phages [31, 32]. There are six
sequences from myoviruses (Fig. 5). Four of them are
intron-encoded (Fig. 5, sequences from Escherichia
phage JH2, Escherichia phage EC6, Salmonella phage
FSL SP − 010, and Escherichia phage 2 JES − 2013),
while F-CphI is associated with a group I intron. The
only sequence that is not encoded/associated with an in-
tron is gp6 from Escherichia phage vB EcoM−VR7. Since
this phage has another Endo VII motif-containing protein
(gp81) in the resolvase clade, gp6 is probably a free-stand-
ing homing endonuclease. There are 13 sequences from
Helicobacter and one of them Hpy99I has been shown to
be a type II restriction endonuclease [33]. Similar to
Hpy99I, 12 out of the 13 Helicobacter sequences (except
for EMH02975) are adjacent to a methylase, which pro-
tects bacterial genomes from self-cleavage. Thus, these se-
quences are likely to be restriction endonucleases.

Discussion
Multiple sequence alignment of F-CphI, T4 Endo VII,
and the other Endo VII motif–containing proteins re-
vealed a different consensus sequence from that of the
HNH family endonucleases (Additional file 5: Figure S4).
The HNH family was named based on a conserved pat-
tern of a central asparagine flanked by two histidines at
some distance (the second histidine is often replaced by
an asparagine) (Additional file 5: Figure S4) [34, 35].
Superposition of the catalytic domains of T4 Endo VII
and the HNH homing endonuclease I-HmuI showed
that H41 and N62 of Endo VII correspond to the first
and the second histidines of the HNH motif in I-HmuI,
respectively [7, 25]. However, Endo VII and F-CphI do
not contain the central asparagine that is conserved in
the HNH family endonucleases, and they both contain
several additional conserved residues (D40, H43, and R54
in Endo VII) (Additional file 5: Figure S4). The consensus
sequence of the Endo VII motif–containing proteins are
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also different from that of the His-Cys box family homing
endonucleases (Additional file 5: Figure S4). Therefore, we
proposed that F-CphI represents a new homing endo-
nuclease family and we named it the DHHRN family
based on the conserved residues.
Among the DHHRN endonucleases, the crystal struc-

tures of T4 Endo VII [28] and Hpy99I [36] have been
solved together with their DNA substrates. Although Endo
VII is a Holliday junction DNA resolvase and Hpy99I is
a restriction endonuclease, their endonuclease domain
structures are almost identical and are also similar to

those of the HNH family homing endonuclease I-HmuI
and the His-Cys box family homing endonuclease I-PpoI
(Fig. 6) [36]. Together with the HNH and His-Cys box
families [11], the DHHRN family also belongs to the
ββα-metal endonuclease superfamily.
Our mutagenesis experiments suggested that D101

and H102 were catalytically important for F-CphI. The
corresponding residues are not only conserved in Endo
VII and Hpy99I, they are also within the active site and
have catalytic functions [28, 36]. Thus, the active site
structure of F-CphI is likely to be similar to those of

Fig. 5 Phylogenetic tree of the Endo VII motif–containing sequences. An unrooted radial tree was drawn, as there was not a suitable outgroup.
The top portion of the tree was named Endonuclease Clade and the bottom portion was named Resolvase Clade. The branch length represents
the expected number of substitutions per site, and the scale bar shows 0.1 substitution per site. The branch color shows the organism type.
A color bar on the left of a sequence name indicates the location of the Endo VII motif in that sequence, yellow for C-terminal and purple for
N-terminal. Dots on the branches indicate bootstrap values > 50%. Branches with triangles on the end contain more than one sequences from
the same organism type whose Endo VII motifs are in similar locations of a protein. The number in the parenthesis after a clade name indicates
the number of sequences in that clade and the sequences are listed in Additional file 7: Table S2
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Endo VII and Hpy99I. Indeed, we used Hpy99I structure
to model the structure of F-CphI and found that their
core structures harboring the active site are almost iden-
tical (Fig. 6). Since Hpy99I uses its active site region for
both DNA cleavage and binding [36], F-CphI may also
use its active site region for DNA binding. Furthermore,
our mutagenesis experiments showed that R110 and
N118 affected DNA binding of F-CphI, while the corre-
sponding residues are shown in Hpy99I to have catalytic
functions [36]. Thus, we proposed that R110 and N118
of F-CphI may play a role in both DNA binding and
cleavage.
It has been shown that the catalytic motifs of

LAGLIDADG, GIY-YIG, HNH, His-Cys box, PD-(D/E)-
XK, and EDxHD homing endonucleases are used by pro-
teins of a variety of functions. These proteins include
non-specific DNA-degradation colicins, restriction endo-
nucleases, DNA repair enzymes, Holliday junction resol-
vases, intron-splicing factors, and transcription factors
[4]. It is still not clear whether these proteins diverged
from a common ancestor or the homing endonucleases
were modified by the host organisms to be specialized
in other cellular functions [4]. Similar to the six estab-
lished homing endonuclease families, our phylogenetic
analysis (Fig. 5) showed that the DHHRN motif can be
used by homing endonucleases, Holliday junction resol-
vases, restriction endonucleases, and possibly DNA
polymerases. Our analysis facilitates the functional pre-
diction of many previously unknown proteins.

Conclusions
The catalytically important residues of T4 Endo VII are
all conserved and essential for F-CphI activity. F-CphI

represents a new homing endonuclease family, the
DHHRN family. Our phylogenetic analysis showed that the
DHHRN family proteins include homing endonucleases,
Holliday junction resolvases, restriction endonucleases,
and possibly DNA polymerases.

Methods
Cloning of F-CphI gene and site-directed mutagenesis
F-CphI wild type and mutants were cloned into pBAD/
Myc-HisB plasmid (Invitrogen), in which protein expres-
sion is tightly controlled by the PBAD promoter and can be
induced by L-arabinose. Primers CyaU-Nco and CyaD-Xba
were used to amplify the F-CphI gene from S-PM2 phage.
PCR was carried out with 0.02 U/μl KOD HiFi DNA poly-
merase (Novagen) in 120 mM Tris-HCl (pH 8.0), 10 mM
KCl, 6 mM (NH4)2SO4, 0.1% Triton X-100, 0.001% BSA,
1 mM MgCl2, 0.2 mM dNTPs, and 0.4 μM of each primer.
PCR cycling conditions consisted of a hot start at 94 °C for
5 min, followed by 25 cycles (98 °C for 15 s, 50 °C for 2 s
and 74 °C for 20 s), followed by incubation at 74 °C for
7 min. Site-directed mutagenesis was performed by a PCR
based overlap extension method [37]. PCR products were
inserted into the NcoI and XbaI sites of the pBAD/
Myc-HisB vector and transformed into E. coli Top10
cells. Primer CyaD-Xba does not have a stop codon
and hence the cloned genes are in frame with the
downstream His-tag. The desired mutations were con-
firmed by sequencing. Oligonucleotides are listed in
Additional file 6: Table S3.

Protein expression and purification
Strains for expressing F-CphI wild type and mutants
were grown at 37 °C overnight in the LB medium

Fig. 6 Structures of the ββα-metal superfamily endonucleases. Protein structures of Hpy99I [36], Endo VII [26], I-HmuI [7], and I-PpoI [5] were
obtained from previous studies. The structure model of F-CphI was generated based on Hpy99I structure using the online tool SWISS-MODEL
(www.swissmodel.expasy.org/). The conserved active-site motif of each protein was colored orange and presented in the same orientation
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containing 50 μg/ml ampicillin. Overnight cultures were
diluted 1:100 with the same medium, grown at 37 °C
until OD600 = 0.5, and then used for protein induction.
The concentration of inducer (L-arabinose), the induc-
tion time, and temperature were optimized. Maximum
protein expression was induced by 0.02% L-arabinose
(final concentration) at 16 °C for 24 h. Bacterial cells
were harvested by centrifugation at 6000 g for 20 min.
The cell pellet was suspended with the binding buffer
(20 mM sodium phosphate, 500 mM NaCl, 20 mM
imidazole, pH 7.4) and disrupted by sonication. The
crude lysate was centrifuged at 10,000 g for 20 min and
the supernate was loaded on a HisTrap FF crude column
(GE Healthcare). Protein purification was performed ac-
cording to the manufacturer’s instructions. Protein was
eluted from the column with the elution buffer (20 mM
sodium phosphate, 500 mM NaCl, 500 mM imidazole,
pH 7.4) and stored in 50% glycerol at − 20 °C.

Endonuclease assay with plasmid substrate
The plasmid pSBM4-TA [12] containing the phage S-BM4
psbA gene was used as substrate for F-CphI. 5 nM plasmid
was incubated with 1600 nM purified F-CphI in the stand-
ard endonuclease assay buffer (50 mM Tris-HCl, pH 7.5,
50 mM NaCl, 10 mM MgCl2 and 0.1 mg/ml BSA) at
25 °C for 30 min when the reaction was still linear. The
reaction was stopped by adding 1 μl 10× endonuclease
stop buffer (100 mM Tris-HCl, 25 mM EDTA, 5% SDS,
pH 7.5) and kept on ice. Reaction products were sepa-
rated in a 0.8% agarose gel and stained with EtBr. To
determine the optimal conditions for F-CphI, each par-
ameter in the standard endonuclease buffer was changed
while others remained the same. Formate (for pH 3.9),
succinic acid (for pH 5.0, 5.4 and 6.0), PIPES (for pH 6.8,
7.0 and 7.3), Tris (for pH 8.0), and CHES (for pH 9.0 and
10.0) were used to prepare different pH buffers and their
final concentrations were all 50 mM. The optimal endo-
nuclease assay buffer was characterized as 50 mM PIPES
(pH 7.0), 5 mM MgCl2, 50 mM KCl and 0.1 mg/ml BSA.
To compare the activities of F-CphI wild type and mu-
tants, 5 nM pSBM4-TA plasmid was incubated with dif-
ferent amounts of proteins at 25 °C for 1 h in the optimal
endonuclease assay buffer.

Endonuclease assay with 32P-labeled substrate
Oligonucleotide duplex containing the F-CphI cleavage
site [12] was generated by annealing complementary oli-
gonucleotides SBM4-60Top and SBM4-60Top-r at 90 °C
for 5 min and cooling to 55 °C in 25 mM Tris/HCl
(pH 8.0) and 50 mM NaCl. Individually 5′ end-labeled tar-
gets were generated by labeling one of the oligonucleotides
on its 5′ end (with [γ-32P]ATP and T4 polynucleotide
kinase) before being used in annealing reactions with
an unlabeled partner. Labeled duplexes were purified

using a QIAquick PCR Purification Kit (Qiagen). 10 nM
labeled duplex was incubated with 1 μM F-CphI in the
optimal endonuclease assay buffer at 25 °C. Reaction
products were extracted with an equal volume of phenol
and separated on a 4% denaturing polyacrylamide gel. Se-
quences of SBM4-60Top and SBM4-60Top-r are listed in
Additional file 6: Table S3.

Electrophoretic mobility shift assay
To compare the DNA binding ability of F-CphI wild
type and mutants, both specific and nonspecific DNA
duplexes were used. A specific oligonucleotide duplex
containing the F-CphI cleavage site was generated by
annealing 5′ end labeled SBM4-60Top and unlabeled
SBM4-60Top-r. Nonspecific competitor duplex was
generated using oligonucleotide endoV41A and its com-
plementary sequence endoV41comp (Additional file 6:
Table S3). For assays without competitor, 2 nM labeled
SBM4-60Top duplex was incubated on ice for 15 min
with different amounts of protein in 10 mM Tris-HCl
(pH 8.0), 2% glycerol, 2 μg/ml poly-dIdC, 2 μg/ml BSA
and 0.2 mM DTT in total 20 μl reaction volume. For as-
says with nonspecific competitor, 2 nM labeled SBM4-
60Top duplex and 200 nM protein were incubated with
different amounts of endoV41A duplex. The free DNA
and protein-bound complexes were separated on 8% na-
tive polyacrylamide gel with 1X TBE buffer (89 mM
Tris, 2 mM EDTA, 89 mM Boric acid, pH 8.3).

Binding affinities of F-CphI wild type and mutants to DNA
substrates
Quantitation of band intensities from the electrophoretic
mobility shift assay were performed in the GelQuant.
NET software (biochemlabsolutions.com). Band intensity
of DNA-bound complex at protein concentration of
0 nM was used as the background signal, and was sub-
tracted from the signal intensities obtained from all the
bands. The fraction of DNA bound was thus calculated
from bound/(bound + unbound), and was plotted versus
the concentrations of F-CphI wild type, and D101N and
H102T mutants, respectively. The data were then fitted
by non-linear regression model with the nlsLM function
of minpack. lm package in R, using the following equa-
tion modified from previous studies [38, 39]:

F ¼ A� P0=ðKdþ P0Þ
where F is the fraction of DNA bound, A is the maximal
fraction of DNA bound, P0 is the concentration of total
protein, and Kd is the apparent equilibrium dissociation
constant.

Homolog search
In-house BLAST searches were carried out against
the downloaded non-redundant (nr) protein database
(http://www.ncbi.nlm.nih.gov/BLAST/). In each search,
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we performed BLASTp and PSI-BLAST with two iter-
ations and set a final e-value cut-off of 1E-4. In search of
the Endo VII homologs, both the catalytic domain of T4
Endo VII (residues 1–97) and the corresponding sequence
of F-CphI (residues 62–139) were used as the query pro-
tein sequences. The resulting 313 protein sequences from
complete genomes were fetched from NCBI for further
analysis. In search of the HNH and His-Cys box family
proteins, the catalytic domains of I-HmuI (residues
49–97) from Bacillus phage SP01 and I-PpoI (residues
93–127) from Physarum polycephalum were used as
the query sequences, respectively. Sequences from incom-
plete genomes or obtained from environmental samples
were discarded prior to protein sequence extraction.

Multiple sequence alignment
MAFFT [40] and Clustal X [41] were used for multiple
sequence alignment of the homologous sequences. The
resulting alignment was then manually refined through
editing in Alignment Explorer of MEGA6 [42]. The final
alignment, 133 bp in length with gaps, represented the
most conserved sequence blocks across all compared or-
ganisms. The alignment was then analyzed on ESPript
(http://espript.ibcp.fr/) to obtain the consensus sequence
with conserved amino acids highlighted.

Sequence logo
In order to profile the consensus sequence from the mul-
tiple sequence alignment, we generated sequence logo on
the Skylign website (http://skylign.org), which is based on
the profile hidden Markov model (HMM) analysis [43].
Profile HMM establishes a position-specific scoring se-
quence profile representing a multiple sequence alignment
[43]. Skylign creates a graphical sequence logo (HMM
logo) from the sequence alignment, which not only repre-
sents the extent of conservation at each position, but also
shows the probabilities of a profile HMM [44]. In the
HMM logo, the height of a stack of letters at each position
shows the information content in bits, which represents
the extent to which the position-specific distribution of
letters differs from that of the background. At each posi-
tion, the height of a letter relative to the total height of the
stack of letters correlates to a particular letter’s frequency
at that position [44].

Phylogenetic analysis
ProtTest [45] was used with default parameters to select
the best amino acid substitution model. PhyML [46] was
used for phylogenetic analysis of the Endo VII domain
homologs, based on the maximum-likelihood principle.
The parameters for the command-line PhyML program
were set as: -d aa -b 100 -m Blosum62 -f m -v e -s SPR
-o tlr. The output phylogenetic tree was demonstrated
via iTOL (http://itol.embl.de).

Additional files

Additional file 1: Figure S1. Purification of F-CphI wild type and mutants.
(A) E. coli cells were induced to express F-CphI and then disrupted by
sonication. The crude lysate was centrifuged and the supernate was loaded
on a HisTrap FF crude column. Five elutions (1 ml each) were collected. The
crude lysate, supernate, pellet, and five elutions were separated on 15%
SDS-PAGE. (B) Purified F-CphI wild type and mutants (second elutions) were
separated on 15% SDS-PAGE. (PDF 233 kb)

Additional file 2: Table S1. Endo VII motif-containing proteins. Proteins
containing the Endo VII motif were revealed by PSI-BLAST searches. In
the last column, the position of the Endo VII motif in a protein is shown.
The Endo VII motif of a protein could be in the C terminus (C), the N
terminus (N), or in the middle (indicated by residue numbers/full length
of a protein). In the same column, F-CphI and Endo VII indicate that a
protein aligns with the full length of F-CphI or Endo VII, respectively.
(XLSX 29 kb)

Additional file 3: Figure S2. Multiple sequence alignment of the Endo
VII motif sequences. Dots represent gaps in the alignment. Totally conserved
residues at a position are shown by white letters in red background. Residues
with conservation above 70% at a position are shown by red letters in blue
boxes. The position numbers of F-CphI and Endo VII residues are shown on
top of the alignment. (PDF 1993 kb)

Additional file 4: Figure S3. Gel shift assay of F-CphI wild type and
mutants. (A) 2 nM 32P labeled 60 bp duplex containing the F-CphI recognition
site was incubated on ice for 15 min with increasing concentration of each
protein. The free DNA (F) and protein-bound complexes (C) were separated
on 8% native polyacrylamide gel. (B) 2 nM 32P labeled 60 bp duplex
containing the F-CphI recognition site and 200 nM protein were
incubated with increasing concentration of unlabeled non-specific
60 bp duplex (0 nM to 20 nM). The first lane in each gel shows the
pattern of free DNA (no protein was added in the reaction). (C) Using
the gels in A, the fractions of protein-bound complexes for wild type,
D101N, and H102T were plotted against protein concentrations. The
binding curves were generated from the non-linear regression fitted
data, and were used to estimate the apparent equilibrium dissociation
constant (Kd). Kd values are shown in each graph and errors represent
95% confidence interval. (PDF 126 kb)

Additional file 5: Figure S4. Sequence logos of the DHHRN, HNH, and
His-Cys box endonuclease families. Sequences near the active site of an
endonuclease family are used to generate sequence logos. At each position
of the sequence logo, the total height of a stack of letters shows the
information content in bits that is calculated from a profile hidden Markov
model, and the height of a letter relative to the total height of letters at a
position represents the letter’s frequency. The red lines indicate gaps in the
multiple sequence alignment. Above each sequence logo, the corresponding
residue numbers of Endo VII, I-HmuI, and I-PpoI are shown, which are
representatives of the DHHRN, HNH, and His-Cys box families, respectively.
Black boxes show the corresponding catalytic residues used by Endo VII,
I-HmuI, and I-PpoI. (PDF 351 kb)

Additional file 6: Table S3. Oligonucleotides used in this study (restriction
sites are underlined and mutated sites are italicized). (DOCX 12 kb)

Additional file 7: Table S2. Clades of Endo VII motif-containing proteins
as shown in Fig. 5. (XLSX 17 kb)
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