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Abstract

Background: A key difference between the Tourist and Stowaway families of miniature inverted repeat
transposable elements (MITEs) is the manner in which their excision alters the genome. Upon excision, Stowaway-
like MITEs and the associated Mariner elements usually leave behind a small duplication and short sequences from
the end of the element. These small insertions or deletions known as “footprints” can potentially disrupt coding or
regulatory sequences. In contrast, Tourist-like MITEs and the associated PIF/Pong/Harbinger elements generally excise
precisely, returning the genome to its original state. The purpose of this study was to determine the mechanisms
underlying these excision differences, including the role of the host DNA repair mechanisms.

Results: The transposition of the Tourist-like element, mPing, and the Stowaway-like element, 14T32, were evaluated
using yeast transposition assays. Assays performed in yeast strains lacking non-homologous end joining (NHEJ)
enzymes indicated that the excision sites of both elements were primarily repaired by NHEJ. Altering the target site
duplication (TSD) sequences that flank these elements reduced the transposition frequency. Using yeast strains with
the ability to repair the excision site by homologous repair showed that some TSD changes disrupt excision of the
element. Changing the ends of mPing to produce non-matching TSDs drastically reduced repair of the excision site
and resulted in increased generation of footprints.

Conclusions: Together these results indicate that the difference in Tourist and Stowaway excision sites results from
transposition mechanism characteristics. The TSDs of both elements play a role in element excision, but only the
mPing TSDs actively participate in excision site repair. Our data suggests that Tourist-like elements excise with
staggered cleavage of the TSDs, which provides microhomology that facilitates precise repair. This slight
modification in the transposition mechanism results in more efficient repair of the double stranded break, and thus,
may be less harmful to host genomes by disrupting fewer genes.
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Background
Type II DNA transposable elements (TE) are present in
most, if not all, eukaryotic genomes, but are especially
abundant in plants where they play a role in genome evo-
lution [1]. Plant DNA TEs have been classified into super-
families including hAT, MuDR/MU, CACTA, Mariner, and
Harbinger/Pong [2]. Each of these superfamilies is

composed of autonomous elements that encode the
proteins required for mobilization and non-autonomous
elements that can only be mobilized in trans [3, 4]. Of
special interest are the small (<500 bp) non-autonomous
miniature inverted repeat TEs (MITEs). These are the
most abundant TEs in the genome, often reaching thou-
sands of copies, due to their ability for rapid proliferation
[5–7]. The two best characterized MITE families, Stowaway
and Tourist, have unique characteristics stemming from
differences in their transposition mechanisms. Stowaway-
like MITEs are mobilized by transposase proteins encoded
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by autonomous Mariner-like elements, produce a 2 bp tar-
get site duplication (TSD) upon insertion, and commonly
leave small insertions or deletions (footprints) at their exci-
sion site [8]. Tourist-like MITEs are mobilized by transpo-
sase proteins encoded by the autonomous PIF/Pong-like
elements, produce a 3 bp TSD, and generally excise pre-
cisely leaving no footprints at their excision site [9].
DNA TEs and their associated MITEs are mobilized

by a “cut and paste” mechanism in which transposase
proteins bind to the terminal inverted repeats (TIRs),
effectively positioning the catalytic domain for the DNA
cleavage that is required for both excision and insertion
[10]. Staggered cleavage of the genomic DNA at the in-
sertion site results in either a 5′ or 3′ overhang, both of
which create small TSDs that flank the inserted ele-
ments. Based on the fact that Mariner-like and Stow-
away-like elements have 2 bp TSDs, the transposase
proteins likely produce a 2 bp overhang upon cleavage
of the DNA [8]. The PIF/Pong-like and Tourist-like ele-
ments have 3 bp TSDs, indicating cleavage by their
encoded transposases produce a 3 bp overhang [11].
Analysis of the excision sites of the elements can eluci-
date differences in the catalytic mechanism of their spe-
cific transposases. For example, the excision sites of the
Ac and Ds elements in both plants and yeast demon-
strate that their footprints are palindromic sequences
from the flanking DNA, as opposed to pieces of the TE
itself [12–14]. This suggests that this transposase cleaves
at the end of the element, causing hairpin formation at
the ends of the double stranded break. In contrast, the
excision sites of Mariner/Stowaway-like elements con-
tain footprints that often include some of the sequences
of the element in addition to retaining the TSDs [15].
This indicates that that the Mariner-like transposase
cleaves with a staggered cut at the end of the TIR for ex-
cision, leaving behind the TSD and a short region of sin-
gle stranded TIR [15].
Excision of these DNA TEs produces double stranded

breaks that are repaired by the host DNA repair mecha-
nisms. This can be accomplished using a complementary
template for homologous recombination (HR) or by the
non-homologous end joining (NHEJ) pathway [16]. In
plants, excision site analysis indicates that many of the
repaired sites include insertions or deletions consistent
with NHEJ [17–19]. In addition, yeast transposition ex-
periments with the Ac element superfamily showed that
repair of the double stranded break after excision re-
quired NHEJ proteins [12]. This study also showed that
microhomology (<6 bp) exposed by end processing be-
tween the two strands flanking the element is often used
to facilitate repair [12]. Differences in the proteins re-
quired for the repair of these ends may hint at the na-
ture of the DNA breaks produced by the different
transposases.

The focus of this study was to further characterize the
transposition mechanism of the best studied Tourist-like
MITE, mPing. In contrast to the previously mentioned
elements, mPing excision sites are repaired precisely
(leaving no element or TSD sequences). Based on these
unique excision sites, we hypothesize that the mPing
transposase proteins may cut at the TSD sequences adja-
cent to the element instead of within the element as
seen for Mariner-like elements. Because the TSD se-
quences are identical, staggered cleavage at this location
produces compatible sticky ends, providing microhomol-
ogy for NHEJ that would easily restore the genome back
to its original state before insertion of the element.
Based on this hypothesis, we predict that alteration of
mPing’s TSDs would alter the microhomology and re-
duce the effectiveness of NHEJ repair. Using a previously
developed yeast transposition assay [20, 21], we tested
the result of changing the TSDs for a Tourist-like MITE
(mPing) and Stowaway-like MITE (OsMar 14T32 or the
hyperactive OsMar 14T32-T7). By performing these as-
says in yeast strains with a defective NHEJ DNA repair
pathway, we were able to distinguish between impaired
element excision and DNA repair.

Results and discussion
NHEJ is used for excision site repair
The yeast transposition assay used for these experiments
measures the rate at which the ADE2 gene is repaired
in-frame following excision of the TE (Additional file 1)
[14, 15, 20, 21]. Traditionally, these assays have been
performed in haploid yeast lacking an ADE2 homolo-
gous template for HR repair of the excision site. Under
these conditions the excision site should be repaired
only by NHEJ. Performing transposition assays with
mPing and 14T32 in haploid yeast strains lacking the
NHEJ pathway proteins KU70, MRE11, or RAD50 showed
that these proteins are required for efficient repair of the
excision sites of both elements (Fig. 1a). Almost no ADE2
revertant colonies were obtained in the ku70 strain, as
KU70 is a highly conserved protein involved in the initial
binding of the double stranded breaks [22]. For both ele-
ments, the rad50 strain showed a higher DNA repair rate
than the mre11 strain. This is consistent with a previous
study indicating that MRE11 function is more important
for repair than RAD50 even though these two proteins
function together in the MRX complex to process double
stranded breaks before ligation [22, 23]. These results also
indicated RAD50 plays a more important role in excision
site repair for the 14T32 element than the mPing element
[92 % vs. 56 % decrease in repair efficiency (Fig. 1a)].
However, some of this change could be due to a difference
in the amount of repair products that result in reading
frame disruption. Analysis of excision sites produced in
the rad50 background showed that the mPing excision
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sites were still repaired precisely, while the 14T32 excision
sites had more bases deleted (less precise repair) com-
pared to the control (Fig. 1b). This difference in repair effi-
ciency and quality observed for the two elements in the
rad50 strain provides evidence that there are important
differences in the nature of the double strand breaks pro-
duced by these two elements.

Performing yeast transposition assays in a yeast strain
that provides a partial ADE2 template is an effective
strategy to evaluate whether HR can be used for excision
site repair. This approach has been used to study the Ac
element (hAT superfamily, also creates footprints upon
excision) where it was reported that when a template is
available, about half of the excision sites are repaired by

Fig. 1 Transposition assays in NHEJ deficient yeast. Normalized ADE2 revertant frequency for the mPing (blue) and 14T32 (red) elements in control
(JIM17) and NHEJ mutant yeast strains (a). Error bars indicate the standard error for 6 replicates. Repaired excision sites from control and rad50
yeast strains (b). Lowercase letters indicate the bases derived from the TSD (mPing) or TIRs and TSDs (14T32)
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HR [12]. In this study, we employed similar method-
ology to determine if mPing and the hyperactive OsMar
14T32-T7 excision sites are repaired by HR; we used the
CB101 yeast strain that contains a partial ADE2 template
called ADE2*. This experiment showed that while no
significant difference in the rate of ADE2 revertant col-
onies is observed with or without the ADE2* template,
CB101 seems to show slightly lower average ADE2 re-
vertants (Fig. 2). This may be due to competition be-
tween the two repair pathways or some unknown
genetic change present in CB101. This slight difference
did not affect our experiments because we were able to
normalize within strains. To determine if HR was

occurring in this strain, we analyzed 96 mPing excision sites
and fifteen 14T32-T7 excision sites by PCR and digestion
with HaeIII (present in ADE2* but not in the original
ADE2). Under these conditions, none of the excision sites in
either element contained the HaeIII site, and thus, were not
repaired by HR at detectable levels (Fig. 2b). This indicates
that even when a homologous template is present, the pre-
dominant repair pathway for these excision sites is NHEJ.
In order to allow separate analysis of element excision

and repair, we developed a yeast strain (DG21B9) that
was capable of performing HR at the excision site (con-
tained the ADE2* template), but also had an impaired
NHEJ pathway (ku70). In this strain, the number of

Fig. 2 Transposition assays in yeast with altered DNA repair potentials. ADE2 revertant frequencies for the mPing and 14T32-T7 elements in yeast
strains with different DNA repair mechanisms available for excision site repair (a). JIM17 repairs by NHEJ, CB101 is capable of both HR and NHEJ,
and DG21B9 can only repair by HR. Frequencies were normalized to the activity of each transposable element in JIM17. Error bars represent
standard error. Sequences identified at the mPing (5′ TAA/3′ TAA TSDs) excision sites by restriction site analysis and sequencing (b). Underlined
sequences indicate the HpaI and HaeIII sites used for analysis. Red bases are unique to the ADE2* template. *indicates the excision site was
repaired by HR using the ADE2* template
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ADE2 revertant colonies was drastically reduced for both
mPing and 14T32-T7 (Fig. 2), but was still higher than
observed in the absence of a homologous template
(Fig. 1). This drop in activity in this NHEJ deficient
strain was consistent with the finding that NHEJ is the
dominant pathway for repair of the excision sites. This
together with the results for CB101 suggest that HR re-
pair of these breaks functions as a backup to NHEJ and
only occurs at about 10–20 % of the rate of NHEJ repair.
Analysis of the DG219B ADE2 revertant mPing excision
sites by digestion and sequencing showed that 100 %
were repaired by HR (Fig. 2). Most of these excision sites
(18/19) contained the ADE2* specific HaeIII site and the
remaining site showed that ADE2* was used in such a
way as to only remove the HpaI site and not add the
HaeIII site (Fig. 2).
The ability to perform transposition assays in this

NHEJ deficient strain (DG21B9) makes it possible to ex-
clude the effects that the quality (i.e. blunt, staggered
cut, presence or absence of microhomology) of the DNA
break has on repair efficiency. This is because HR is less
dependent on the immediate sequence at the end of the
double stranded break, instead using sequences farther
away from the cleavage site. Thus, this strain provides a
method to differentiate whether a mutation affects the
rate of NHEJ repair or the rate of excision.

TSD alteration disrupts element excision
Previous studies have shown that Mariner-like elements
require the TSD (TA on both ends) for transposition in
vitro [24]. In this study, we confirmed the importance of
the conserved TSD for the 14T32-T7 element by chan-
ging the TSDs and performing yeast transposition assays.
In CB101, changing both bases of the TSDs from TA/TA
(5′/3′) to AT/AT almost completely inhibited transpos-
ition, while changing just one base (TT/TT or AA/AA)
allowed transposition, but at highly reduced rates
(Fig. 3a). This experiment was also performed in
DG21B9 (HR competent, NHEJ deficient) to confirm
that this decrease in activity was due to inhibited exci-
sion and not inhibited excision site repair. Figure 3a
shows that in DG21B9 alteration of the 14T32-T7 TSDs
produced a comparable decrease in activity to the one
observed in CB101 yeast. Thus, the drop in activity upon
changing the TSDs is likely due to a decrease in excision,
and not due to changes in the efficiency of NHEJ. Other
researchers have shown that the Mariner-like transpo-
sase proteins bind to the TIRs and not the TSDs [25,
26]. Therefore, the TSDs do not likely play a role in
binding, but instead play a role in the catalytic mechan-
ism that cleaves the element from the genome.
To determine what role the TSDs play in mPing trans-

position, we performed yeast assays with mPing elements
with altered TSDs. These experiments indicate that

alteration of mPing’s TSDs also inhibits its transposition
(Fig. 3b, Additional file 2a). Based on insertion site ana-
lysis, it was already known that T or A was acceptable at
the middle position of the TSD [7]. Changing the middle
base to C or G (i.e. from TAA/TAA (5′/3′) to TCA/TCA)
had a small effect with TGA/TGA TSDs producing more
colonies than TCA/TCA TSDs (Additional file 2a). Chan-
ging the first base (i.e. GAA/GAA) or third base (i.e. TAC/
TAC) caused a more severe drop in the number of ADE2
revertants. Changing all three bases completely disrupted
the transposition of the element (Fig. 3b, Additional file 3a).
To determine if this decrease in ADE2 revertants was
caused by a drop in excision or from a decreased rate of
repair, a subset of these altered elements were tested in the
DG21B9 strain (HR only). If altering the TSDs to this ex-
tent only affects repair of the excision site and not excision
itself, all of these altered TSDs would have the same ADE2
revertant rate as the control in DG21B9. However, almost
no ADE2 revertant colonies were detected in the TAC/TAC
or GCC/GCC TSD (5′/3′) combinations (Fig. 3b), in-
dicating that these base changes inhibit the ability of the
transposase proteins to catalyze excision. It is not clear if
this is due to altered enzyme binding or if these bases are
directly involved in the catalytic mechanism.
In addition to reducing the number of ADE2 revert-

ant colonies by decreasing excision, sequencing the
excision sites indicated that altering the TSDs can re-
sult in imprecise repair (Additional file 3b). The pro-
duction of footprints was especially pronounced for
the TAC/TAC TSDs, with 10 of 16 excision sites hav-
ing indels. The inefficient excision of these altered el-
ements may have resulted in strand cleavage in a
non-standard position, creating double stranded
breaks that were not as easily repaired.

mPing excision site repair is facilitated by TSD homology
Based on these initial experiments, we hypothesized that a
difference in the double stranded breaks created by the
mPing and 14T32 elements results in their excision site dif-
ferences. Analysis of repaired excision sites shows that
Mariner-like transposase proteins produce staggered DNA
cleavage within the element, leaving behind some of the
TIR sequences (Fig. 1b, Fig. 4) [15]. In contrast, our model
for PIF/Pong/Harbinger transposition is that they are mobi-
lized by staggered cleavage of the TSDs, producing three
bases of microhomology that facilitates NHEJ (Fig. 4). Based
on this, we predicted that changing the TSDs in such a way
as to disrupt the microhomology would affect the quality
and efficiency of mPing’s excision site repair.
The fact that multiple bases are equally acceptable in

the middle position of mPing’s TSDs allowed experi-
ments to determine if homology between the two TSDs
facilitates repair of mPing excision sites. Yeast transpos-
ition assays comparing mPing constructs with matching
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TSDs (TTA/TTA and TAA/TAA) and non-matching
TSDs (TTA/TAA and TAA/TTA) were performed (Fig. 5,
Additional file 3). As shown in CB101 (Fig. 5b) or JIM17
(Additional file 3) yeast strains, the mPing elements with
non-matching TSDs showed significantly lower trans-
position than those with matching TSDs. Performing
this assay in the DG21B9 strain, which is only capable of
repair by HR did not show this effect, with all TSD com-
binations showing a similar number of ADE2 revertant
colonies (Fig. 5b). Together these results indicate that

the reduction in ADE2 revertant colonies for non-
matching TSDs is caused by reduced or inaccurate NHEJ
repair efficiency. For comparison, similar experiments
using the 14T32-T7 element showed that non-matching
TSDs produced a similar effect in both NHEJ competent
(CB101) and NHEJ deficient (DG21B9) strains (Fig. 5a).
This indicates that changing the TSDs of 14T32-T7
only affected its excision andnot the repair of the excision site.
Analysis of the excision sites from non-matching TSDs

by restriction digest and sequencing was performed to

Fig. 3 Transposition assays with altered but matching TSDs. ADE2 revertant rates for 14T32-T7 (a) and mPing (b) elements with altered but
matching TSDs. Blue bars indicate the rate in CB101 (capable of both NHEJ and HR), while red bars indicate the rate in DG21B9 (only capable of
HR). Values were normalized to the control TSDs (TA/TA for 14T32-T7 and TAA/TAA for mPing) for each yeast strain separately. Error bars represent
standard error
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determine how these sites were repaired. Figure 6 shows
that in JIM17 and CB101 the excision site produced by
an element with TAA/TTA TSDs was repaired fairly pre-
cisely with most excision sites only showing one of the
TSDs. However, two of the excision sites retained both
TSDs, consistent with staggered cleavage at the TSDs
that was repaired by NHEJ without microhomology. In
contrast, we found that repair of the excision site pro-
duced by an element with TTA/TAA TSDs was repaired
less precisely in JIM17, or exclusively by HR repair using
the ADE2* template in CB101 (Fig. 6). This result sug-
gests that the staggered ends created by the TTA/TAA
combination were not as easily joined by NHEJ pathway
as the TAA/TTA combination. Since a 5′ overhang would
create a different set of mismatched bases than a 3′over-
hang at the excision site (Table 1), we compared our results
to the expected base pairing for each non-matching TSD.
Based on this result, we propose thatmPing’s TSDs cleavage
produces a 5′ overhang (Fig. 4, Table 1). A three base 5′
overhang would result in the TAA/TTA TSDs forming a

T:T (pyrimidine:pyrimidine) pairing at the middle base of
the overhang, a more compatible pairing than the A:A (pur-
ine:purine) base paring created by the TTA/TAATSDs.
Based on this model, we should see that some TSD com-

binations are more detrimental to excision site repair than
others. In fact, analysis of additional combinations of mPing
TSDs (TCA and TGA) showed that non-matching TSDs,
that according to our model would result in T:C (pyrimidi-
ne:pyrimidine) or A:G (purine:purine) mismatches, pro-
duced fewer ADE2 revertants than TSD combinations that
produce C:A (pyrimidine:purine) and T:G mismatches (pyr-
imidine:purine) (Additional file 4). Sequence analysis of
the excision sites produced by selected TCA and TGA
mismatched TSDs (Supplemental 4c) indicates that, for
the most part, only one of the TSD sequences is left
behind, as is expected of precise repair. However, about
14 % of the time both of the TSDs remained, leaving
a footprint. This is in stark contrast to mPing elements
with matching TSDs, which have never been observed to
leave behind both TSDs upon excision (Fig. 2b) [20, 27].

Fig. 4 Model of Tourist-like and Stowaway-like MITE transposition. mPing (a) and 14T32-T7 (b) elements are represented by black boxes, with the
TSDs (3 bp and 2 bp respectively) created upon insertion shown as letters. Excision of the mPing element produces TSD derived 5′ overhangs
that result in precise repair, while 14T32 excision leaves element derived overhangs that results in footprint production
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It is not clear how common the excision site creation
and repair mechanisms observed for mPing are present
in other transposon superfamilies. Interestingly, alter-
ation of the P-element TSDs from Drosophila showed a
reduction in transposition activity [28]. Also, a recent
study with the Os3378 element (Mutator superfamily
from rice) that also excises precisely, indicated that alter-
ation of its TSDs reduces the rate of precise excision in
yeast [29]. Analysis of these elements in the CB101 and
DG21B9 yeast strains would be able to determine if this
is due to disruption of excision or excision site repair.

mPing TSDs do not influence target site insertion
Previous research has shown that mPing exhibits a strong
preference for insertion into TAA or TTA sequences in
the genome [20, 27, 30]. This is consistent with the find-
ings of this study indicating that these sequences are
required for efficient excision of the element. However, it was
not known if theTSD sequencesmight play a role in the inser-
tion preference of the element. To address this, 46 insertions
of anmPing element withTCA/TCATSDs were analyzed by
sequencing transposon display PCR products [31]. We ob-
served that 45 of the insertionswere inTTAorTAA, and only

Fig. 5 Transposition assays with non-matching TSDs. Normalized ADE2 revertant frequencies for 14T32-T7 (a) and mPing (b) elements with altered
TSDs. Blue bars indicate the rate in CB101 (capable of both NHEJ and HR), while red bars indicate the rate in DG21B9 (only capable of HR). Values
were normalized to the wild-type TSD (left column). Error bars indicate the standard error
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one was in TCA. This is consistent with the results observed
for the wild type mPing element [20], suggesting that the
TSDs do not play a large role in target site selection.

Conclusions
These results demonstrate a key difference in the trans-
position mechanisms used by the Tourist-like and Stow-
away-like MITEs. While the excision sites of both mPing
and 14T32 elements are primarily repaired by the NHEJ
pathway in yeast, the 14T32 element appears to be more
sensitive to alteration of NHEJ pathway genes. Our study
suggests that the TSDs flanking both elements are re-
quired for their efficient excision. On the other hand,
complementarity of the two TSDs was found only to be

critical to the efficiency and precision of mPing’s excision
site repair. Based on this finding, we conclude that the
transposases that excise mPing, and presumably other
Tourist-like MITEs, produce a staggered cut at the
TSDs that provides microhomology that facilitates
precise repair of the excision site.

Methods
Yeast strains and vectors

Fig. 6 mPing excision sites for non-matching TIRs. Sequences identified at the mPing excision sites by restriction site analysis and sequencing in
JIM17 (NHEJ only) and CB101 (HR and NHEJ). Lowercase letters indicate inserted sequences and a base change is in red. * indicates that the site
was repaired by HR using the ADE2* template

Table 1 Base pairing that results after 5′ or 3′ staggered
cleavage of the mPing TSDs

Proposed middle base pairing

mPing target site duplications 5′ overhang 3′ overhang

TTA/TTA A:T T:A

TTA/TAA A:A T:T

TAA/TTA T:T A:A

TAA/TAA T:A A:T

Strain name Genotype

JIM17 MATa ade2Δ::hphMX4 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0

CB101 MATa ade2Δ::hphMX4 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0
lys2Δ::ADE2*

JIM16 MATa rad50Δ::kanMX4 ade2Δ::hphMX4 his3Δ1 leu2Δ0
met15Δ0 ura3Δ0

JIM22 MATa mre11Δ::kanMX4 ade2Δ::hphMX4 his3Δ1 leu2Δ0
met15Δ0 ura3Δ0

JIM21 MATa ku70Δ::kanMX4 ade2Δ::hphMX4 his3Δ1 leu2Δ0
met15Δ0 ura3Δ0

DG21B9 MATa ku70Δ::kanMX4 ade2Δ::hphMX4 his3Δ1 leu2Δ0
met15Δ0 ura3Δ0 lys2Δ::ADE2*
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Saccharomyces cerevisiae strains, BY4741 (JIM17) or
Yeast Deletion Project strains [32, 33] in the BY4741
background (JIM16, JIM22, JIM21), were adapted for the
study by deleting the ADE2 gene using the hphMX4
(pAG32) cassette replacement technique [34] using the
following primers: ADE2hphMX For-CAATCAAGAAAA
ACAAGAAAATCGGACAAAACAATCAAGTCCTTGA
CAGTCTTGACGTGC, ADE2hphMX Rev-ATAATTATT
TGCTGTACAAGTATATCAATAAACTTATATACGCAC
TTAACTTCGCATCTG.
The partial ADE2 template (ADE2*) was synthesized

with the following sequence 5′-TTTGGCATACGATGG
AAGAGGTAACTTCGTTGTAAAGAATAAGGAAATG
ATTCCGGAAGCTTTGGAAGTACTGAAGGATCGTC
CTTTGTACGCCGAAAAATGGGCACCATTTACTAA
AGAATTAGCAGTCATGATTGTGAGATCTGTGAAT
GGCCTAGTGTTTTCTTACCCAATTGTAGAGACTA
TCCACAAGGACAATATTTGTGACTTATGTTATGC
GCCTGCTAGAGTTCCGGACTCCGTTCAACTTAAG
GCGAAGTTGTTGGCAGAAAATGCAATCAAATCTTT
T-3′ and cloned between the BglII and HindIII sites of the
pIS 385 disintegrator plasmid [35]. To make the CB101
and DG21B9 yeast strains, this plasmid was then linearized
with NruI (New England Biolabs, Massachusetts, USA) and
transformed into the LYS2 locus of JIM17 and JIM21,
respectively. Selection and screening were performed as
described [35] to remove the URA3 selectable marker and
identify transformants that maintained the genomic copy of
the ADE2* template.
The pAG413 Pong ORF1, pAG415 Pong transposase

L418A, L420A and pWL89A mPing plasmids were
described previously [20]. The pAG415 Osmar14 transpo-
sase was made by PCR amplification of the open reading
frame from a previously described Osmar14 transposase
plasmid [21] with the following primers Osmar 14 For –
GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATG
CAAGAGTACGGCGTGTATGC, Osmar 14 Rev- GGGG
ACCACTTTGTACAAGAAAGCTGGGTCTTAAACT
GCACTTGGTTGGCTAATGCT. The PCR product
was inserted into the Gateway® pDONR™/Zeo vector using
a BP clonase reaction (Life Technologies, Carlsbad, CA),
then transferred into pAG415 GAL ccdb using an LR clo-
nase Reaction (Life Technologies, Carlsbad, CA). The
reporter plasmids pwL89A 14T32 and 14T32-T7 were de-
scribed previously [14, 21]. TSD mutations were made to
the MITEs mPing and Osmar 14T32-T7 by PCR amplifi-
cation using primers altered at the TSD (underlined posi-
tions indicate TSD), for example:
mPing TGA For – AGTCTCTACAATTGGGTAAGA

AAACACTAAACCGTTGAGGCCAGTCACAATGGGG
GTTTC
mPing TGA Rev – ACTAAAGAATTAGCAGTCATG

ATTGTGAGGTCTGTCAGGCCAGTCACAATGGCTA
GTGTC

14T32 AT For –CTAAAGAATTAGCAGTCATGATT
GTGAGGTCTGTTATCTCCCTCCGTCCCAGAAAGAA
GG, and
14T32 AT Rev – GTCTCTACAATTGGGTAAGAAAA

CACTAAACCGTTATCTCCCTCCGTCCCAGAAAGAAGC
The resulting PCR products were purified using a clean

and concentrate kit (Zymo Research, Irvine, CA) and then
transformed together with HpaI digested pWL89A using
the LiAc method [36]. Mutations were verified by sequen-
cing PCR products or purified plasmids with following
primers that flank the ADE2 HpaI site: ADE2-CF-GG
GTTTTCCATTCGTCTTGAAGTCGAGGAC and ADE2-
CR-CATTTCCACACCAAATATACCACAACCGGGA.

Yeast transposition assay
Transposition assays were performed using two techniques
depending on the relative transposition rates. For low ac-
tivity combinations (i.e. Figs. 1, 3 and 4b, and Additional
files 3 and 4) transformed yeast were grown in 5 ml of se-
lective media (2 % dextrose) at 30 °C for 48 h, centrifuged
to concentrate the culture, plated on selective 2 % galactose
plates (150 mm) lacking adenine, and incubated at 30 °C
for 15 days as described [20]. For experiments with higher
rates of transposition (i.e. Fig. 2, 5a and Additional file 1), a
3 ml liquid (2 % dextrose) culture was grown for 24 h at
30 °C and 100 μl was plated on selective 2 % galactose
plates (100 mm) and incubated at 30 °C for 10 days. A time
course of this procedure showed that the number of
ADE2 revertant colonies had a linear rate of appearance
(Additional file 1). Dilution series of the liquid cultures
plated on complete YPD media were used to determine
the total number of cells plated. Transposition rate was
calculated by dividing the number of ADE2 revertant
colonies by the total number of yeast plated.

Excision site analysis
ADE2 revertant colonies were suspended in 20 μl of 1
unit/μl Zymolyase (Zymo Research, Irvine, CA) and in-
cubated for 15 min at 37 °C to lyse the yeast cells. PCR
amplification of the excision site was performed using
the ADE2-CF and ADE2-CR primers in a 20 μl reaction
with 2 μl of lysed yeast as the template. PCR products
were diluted and digested with HpaI or HaeIII (New
England Biolabs, Massachusetts, USA) and then ana-
lyzed by agarose gel electrophoresis. PCR products were
treated with ExoSAP-IT (USB Corporation, Ohio, USA)
per instruction of the manufacturer prior to sequencing.

Insertion site analysis
Transposon display analysis of mPing insertion sites
were performed as described previously [20, 30, 31].
Individual bands were sequenced after cutting them
from the gel and performing PCR amplification with the
transposon display primers.
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