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A subtelomeric non-LTR retrotransposon Hebe in
the bdelloid rotifer Adineta vaga is subject to
inactivation by deletions but not 5' truncations

Eugene A Gladyshev'2 and Irina R Arkhipova*!

Abstract

Background: Rotifers of the class Bdelloidea are microscopic freshwater invertebrates best known for: their capacity
for anhydrobiosis; the lack of males and meiosis; and for the ability to capture genes from other non-metazoan species.
Although genetic exchange between these animals might take place by non-canonical means, the overall lack of
meiosis and syngamy should greatly impair the ability of transposable elements (TEs) to spread in bdelloid
populations. Previous studies demonstrated that bdelloid chromosome ends, in contrast to gene-rich regions, harbour
various kinds of TEs, including specialized telomere-associated retroelements, as well as DNA TEs and retrovirus-like
retrotransposons which are prone to horizontal transmission. Vertically-transmitted retrotransposons have not
previously been reported in bdelloids and their identification and studies of the patterns of their distribution and
evolution could help in the understanding of the high degree of TE compartmentalization within bdelloid genomes.

Results: We identified and characterized a non-long terminal repeat (LTR) retrotransposon residing primarily in

subtelomeric regions of the genome in the bdelloid rotifer Adineta vaga. Contrary to the currently prevailing views on
the mode of proliferation of non-LTR retrotransposons, which results in frequent formation of 5'-truncated ('dead-on-
arrival’) copies due to the premature disengagement of the element-encoded reverse transcriptase from its template,

this non-LTR element, Hebe, is represented only by non-5'-truncated copies. Most of these copies, however, were
subject to internal deletions associated with microhomologies, a hallmark of non-homologous end-joining events.

Conclusions: The non-LTR retrotransposon Hebe from the bdelloid rotifer A. vaga was found to undergo frequent
microhomology-associated deletions, rather than 5'-terminal truncations characteristic of this class of
retrotransposons, and to exhibit preference for telomeric localization. These findings represent the first example of a
vertically transmitted putatively deleterious TE in bdelloids, and may indicate the involvement of microhomology-
mediated non-homologous end-joining in desiccation-induced double-strand break repair at the genome periphery.

Background

Mobile genetic elements are divided into two types
according to their mode of transposition: retrotranspo-
sons, which require an RNA intermediate to synthesize a
new copy with the aid of the element-encoded reverse
transcriptase (RT), and DNA transposons, which do not
require an RNA intermediate for transposition. Ret-
rotransposons, in turn, are divided into two large classes
according to the presence, or lack, of long terminal
repeats (LTRs): LTR retrotransposons are framed by

* Correspondence: iarkhipova@mbl.edu

! Josephine Bay Paul Center for Comparative Molecular Biology and Evolution,
Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA

Full list of author information is available at the end of the article

LTRs, while non-LTR retrotransposons are not (reviewed
in [1-3]). When cDNA synthesis is primed extrachromo-
somally, template jumps during reverse transcription lead
to the formation of LTRs. In contrast, if cDNA synthesis
is primed directly at the insertion site by the 3'OH at the
nick in chromosomal DNA (target-primed reverse tran-
scription, or TPRT), no LTRs are formed. The nick is
introduced by the non-LTR retrotransposon-encoded
endonuclease (EN), which may or may not exhibit inser-
tion preferences. RT then uses the endonuclease-gener-
ated 3' hydroxyl to prime cDNA synthesis and is believed
to be highly prone to premature termination of reverse
transcription, which results in formation of numerous 5'
truncated copies of non-LTR retrotransposons (often
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called 'dead-on-arrival') [4-6]. Typically, while the overall
copy number of non-LTR retrotransposons in eukaryotic
genomes tends to be high rather than low, there usually
exist relatively few master copies which have the capacity
to give rise to the new copies [7,8]. These master copies,
however, need to persist in their corresponding host
genomes for extended evolutionary times, as horizontal
transfer of non-LTR elements is believed to be exception-
ally rare [1].

Bdelloid rotifers are small freshwater invertebrates with
the ability to reproduce entirely asexually and to undergo
cycles of desiccation and rehydration at any stage of their
life cycle. These features may be related to their peculiar
genome structure: bdelloids are degenerate tetraploids,
with chromosomes present in quartets, each comprising
two co-linear pairs, with only a minority of genes com-
mon to both pairs, in the same order and orientation
[9,10]. Gene copies from different co-linear pairs exhibit
very high levels of divergence, which was initially inter-
preted as inter-allelic divergence accumulated following
an ancient loss of sex [11] but which, in fact, reflects the
divergence between homeologs. Variable and much
smaller levels of divergence within a co-linear pair (0%-
6%) presumably reflect the occasional operation of
homogenizing processes such as gene conversion and
mitotic crossing-over. The extraordinary resistance of
bdelloid rotifers to ionizing radiation may have evolved as
an adaptation to frequent desiccation/rehydration cycles
to protect the genomes from DNA damage [12].

Retrotransposons in bdelloid rotifers, including non-
LTR retrotransposons, have remained elusive for some
time. Initial screens employing degenerate polymerase
chain reaction (PCR) primers targeted to multicopy
LINE-like and gypsy-like elements turned up negative,
despite yielding positive results in 39 diverse species from
23 animal phyla [13]. DNA transposons, however, were
easily detectable even in early PCR screens, and, like in
other species, exhibited patchy distribution, in agreement
with their ability to transfer laterally and to evolve via
multiple rounds of invasion, amplification, decay and
horizontal escape [13,14]. The presence of vertically-
transmitted non-LTR elements, however, might pose a
problem in asexual species, which could eventually be
overcome by the load of deleterious mutations, lacking
the capacity to get rid of harmful transposable element
(TE) insertions via meiotic recombination [15].

Analysis of about 1.5 Mb of gene-rich DNA from two
bdelloid species, Adineta vaga and Philodina roseola
[9,10] (JL Mark Welch, personal communication) also
failed to reveal the presence of mobile elements, either
intact or decayed. Several 40 kb - 70 kb co-linear contigs
including /&sp82, histone, Hox genes, and their genomic
environment, were obtained by sequencing of overlap-
ping fosmid library clones and contained only a single
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large indel polymorphism which was tentatively ascribed
to a foldback-like DNA TE insertion [14]. The overall
gene density, however, is quite high, with coding
sequences occupying about 50% of genomic DNA (see
Figure Three in [16]). Such a conspicuous lack of mobile
DNA in gene-rich regions of the genome is quite intrigu-
ing, since genomic DNA from gene-rich regions - even of
those model eukaryotes which are regarded as relatively
TE-poor - contains, on average, 7.7-12.3 retrotranspo-
sons and 2.3-3.6 DNA TEs per Mb (Drosophila melano-
gaster [17]), or ~ 7 retrotransposons and ~ 19 DNA TEs
per Mb (Caenorhabditis elegans [18]).

We were able, however, to find genomic regions which
do not appear refractory to TE insertion, but, in contrast,
are highly enriched in TEs. Our efforts aimed at cloning
and sequencing telomeres, which are a lot less conserved
than the core genome and are typically rich in repetitive
and mobile DNA, revealed several types of TEs inhabit-
ing bdelloid chromosome end regions. These included
Athena retroelements specialized for terminal transposi-
tion [19], low copy-number retrovirus-like elements Juno
and Vesta [20], numerous DNA TEs of various kinds [14]
and R9 insertions into 28S ribosomal genes [21]. In the
present study, we describe a non-LTR retrotransposon
belonging to the jockey clade, which may be (or has
recently been) active, is located preferentially in subtelo-
meric regions and is characterized by several unique fea-
tures such as the lack of 5' terminal truncation and a high
frequency of internal deletions associated with microho-
mologies.

Results

Structural organization and copy number

In an extended genome walk directed from the chromo-
some end inwards, one of the telomeres from the bdelloid
rotifer A. vaga (telomere O.4; [19]) was found to carry a
very long chain of telomere-associated retrotransposons
(EF485020; Figure la). In addition to two consecutive
Athena retroelements, the most proximal of which was
3'-truncated by fusion with the oppositely-oriented retro-
virus-like LTR retrotransposon Juno, the head-to-tail ret-
rotransposon chain continued with a non-LTR
retrotransposon encoding two open reading frames
(ORFs). The first ORF contained three Zn-knuckle motifs
(Figure 1a and 1c; Additional File 1) and appeared most
similar to the gag-like ORFs from two Drosophila telom-
ere-associated retrotransposons, TART and HeT-A, while
the second ORF had homology to the apurinic/apyrimi-
dinic (AP) endonuclease and RT domains from other rep-
resentatives of the jockey clade, with the highest degree
of similarity to ORF2 of the retrotransposon Syrinx from
the putatively asexual ostracod crustacean, Darwinula
stevensoni [22]. We named this element Hebe, as it
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Figure 1 Structure and polymorphism of the Adineta vaga Hebe retrotransposon. (a) Genomic environment of the subtelomeric Hebe copy (K
in panel b), including two head-to-tail Athena retroelements and a retrovirus-like long terminal repeat (LTR) retrotransposon Juno. The region contain-
ing Athena elements has likely been acquired from another telomere, O3 (reference [19]), possibly by break-induced replication. T, telomeric repeats.
Scale bar, 1 kb. (b) Structure of a full-length Hebe consensus copy, and alignment of genomic copies to the consensus. APE and RT denote the AP-like
endonuclease and RT domains, respectively; vertical black bars denote the three CCHC zinc knuckle motifs; (A),, poly(A) stretch;//, copies that were
truncated by cloning and could not be sequenced to completion. Deletions are indicated by brackets; in-frame stop codons, by vertical lines; probes
used for library screening, by double-headed arrows; 72-bp tandem repeat units in the 3' untranslated region are in green. Also shown are the base
coordinates for the start and stop of open reading frame (ORF) in the consensus sequence and the position of the unique Spel site. Scale bar, 0.1 kb.
(c) Three zinc knuckle motifs in Hebe ORF1 (panel a) and comparison with selected non-LTR elements from Figure 4b. Highly conserved residues are
designated by asterisks.




Gladyshev and Arkhipova Mobile DNA 2010, 1:12
http://www.mobilednajournal.com/content/1/1/12

appeared to be relatively young and capable of giving rise
to new copies.

In order to determine the exact boundaries of the Hebe
element, we designed a 1-kb PCR probe spanning the
entire core RT domain (Figure 1b) and used it to screen
the A. vaga genomic library to obtain additional Hebe
copies. A second 0.6-kb probe spanning the 3' untrans-
lated region (UTR) was also used in subsequent library
screens in order to find out whether Hebe might give rise
to a large number of short 3' truncated copies which
would have been missed by the RT probe. Interestingly,
hybridization with the second probe yielded few, if any,
additional hybridizing spots, indicating a lack of copies
which are 5' truncated in the region between the two
probes. The number of fosmids obtained from screening
~4 A. vaga genome equivalents is shown in Table 1.

All hybridizing fosmids were first sequenced with the
primer located at the C-terminus of ORF2 and directed
outwards, in order to find out how many independent
insertions (flanked by differing genomic sequences) can
be identified on these fosmids. The sequences fall into 13
groups defined by the adjacent flanking regions, which
correspond to 13 independent insertion events. One
group (L/M) consists of two subgroups which share the
same deletions and flanking sequences, but differ by six
point mutations, indicating that one was recently copied
from the other (for example, in the course of segmental
duplication, break-induced replication or gene conver-
sion between two members of a co-linear pair). Another
group (F/G) shares the 5' flank and 100% identity in
sequence, but differs by a deletion involving the 3' end of
copy FE. Eleven of the 15 sequenced copies do not exhibit
3' truncation and have a characteristic poly(A) tail, which
varies in length between 5 and 25 nucleotides and is
located 11 bp downstream of the AATAAA signal. A
peculiar feature of the 3' UTR is the presence of a 72-bp
tandem repeat, the copy number of which varies from 1
to 4 between different copies, yielding variation in the 3'
UTR length between 0.8 and 1 kb (Figure 1b).

In order to obtain an independent estimate of the copy
number, we performed a Southern analysis of A. vaga
genomic DNA digested with restriction endonucleases
Spel and Sacll. The latter does not have a recognition site
in any of the sequenced Hebe copies, while the former
cuts only once (Figure 1b). We used two enzymes to
achieve a better resolution of the individual bands on the
gel, by digesting away larger amounts of flanking
sequences. The use of the 1-kb probe spanning the RT
domain yielded a set of bands corresponding to each
genomic Hebe copy plus variable amounts of adjacent
flanking sequences (Figure 2). The results are in excellent
agreement with the estimates obtained from genomic
library screening: there are 11 hybridizing bands on the
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gel, four of which are of double intensity, therefore yield-
ing a total of 15 different copies.

Preference for subtelomeric regions and lack of 5'
truncations

The number of fosmids in each group, corresponding to a
single genomic copy, turned out to be lower than that
expected on the basis of genome coverage (typically
between 1 and 4, with the exception of groups F/G)
(Table 1). In comparison, for the same membranes, the
corresponding number of fosmids carrying the single-
copy hsp82 gene was between four and six for each haplo-
type [10,23] and the number of fosmids carrying the his-
tone cluster was similarly high (five to seven for each
haplotype) [24]. Such under-representation is highly
indicative of subterminal localization of the Hebe-con-
taining fosmids, which would be present in the genomic
library in lower numbers as the size-selection step in the
library construction protocol puts the terminal regions at
a disadvantage (see [19]).

Another line of indirect evidence pointing at localiza-
tion in subterminal regions is the nature of the surround-
ing flanking sequences: fosmid end-sequences and the
immediately adjacent genomic flanking regions are char-
acterized by features previously found in other bdelloid
telomeric fosmids, such as tandem repeats, other TEs,
OREFs coding for proteins of repetitive nature or of foreign
origin and short stretches of telomeric repeats (Table 1).
Finally, telomeric retrotransposons often possess 3' UTRs
which are prone to formation of tandem repeats [25,26]
and this is also the case for the Hebe element (Figure 1b;
Additional File 2).

We also sought to confirm that the 5' and 3' ends of
Hebe are equally represented in the genomic library, as
was indicated by our initial screening. To this end, we
probed two additional membranes with the 5" and 3' Hebe
probes of approximately equal length (Figure 1b) and
counted the number of hybridizing spots: a total of 101
spots were shared between the two probes; the 5' probe
revealed 15 additional spots not detected by the 3' probe;
and the 3' probe revealed 26 additional spots not detected
by the 5' probe. Thus, there is no significant excess of
Hebe copies containing only the 3' end and additional
spots in both directions can be explained either by dele-
tions involving one of the termini, as seen in Figure 1b, or
by the presence of incomplete copies truncated by clon-
ing.

Divergence between copies

In order to evaluate the intactness of Hebe copies and the
degree of divergence between them, we sequenced these
copies by primer walking. The results are shown in Figure
1b (see also Additional File 2). Hebe exhibits a number of
peculiar features which are not in agreement with the
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Table 1: Characteristics of Hebe copies.
Copy No. of Stop 5' 3 Internal Genomic
fosmids codon truncation truncation deletion environment
A 4 - - - - Tandem
repeats
B 2 - - - - Leucine rich
repeat protein
C 1 ? ? - - No significant
hits
D 2 + - - - DNATE,
piggyBac-like
E 3 - - - - No significant
hits
F 6 + - + + Tandem
repeats (=G)
G 6 + - - + Tandem
repeats (=F)
H 2 + - + + TPR protein
| 4 ? ? - - Kelch repeat;
Fungal ORF
J 3 - - - + TPR repeat
protein
K 2 - - + - Telomere;
telomeric
repeats
L 2 - - LTR TE (=M)
1 - - LTRTE (=L)
N 1 ? ? - + No significant
hits
(o} 4 - - + + Telomeric
repeats

See Additional File 2 for sequences of copies A-O.
?, copies truncated by cloning.

TE, transposable element; TPR, tetratricopeptide repeat; ORF, open reading frame; LTR, long terminal repeat.

currently prevailing views on proliferation of non-LTR
retrotransposons. First, we could not find any copies
exhibiting 5'-terminal truncation, which normally results
in formation of a large number of inactive copies and is
believed to occur due to the premature dissociation of RT
from its template. Second, it is evident that inactivation
of individual copies occurred mostly via deletions. Nine
copies (D, F/G, ], H, L/M, N, O) carried internal deletions
12-200 bp in length affecting the integrity of their ORFs,
and comparison of the sequences at deletion boundaries
(Figure 3c) reveals that most of them contain characteris-
tic microhomologies (5-14 bp), which are typically
regarded as a hallmark of non-homologous end-joining
events resulting in imprecise repair of double strand
DNA breaks (DSBs) (reviewed in [27]). Four copies (F, H,
L/M) exhibit 3' terminal truncation, which could have
also occurred by deletion, although in this case it is not

possible to compare the sequence with its original non-
deleted version to reveal the presence of microhomolo-
gies. Copies D, F and G carry in-frame stop codons. Copy
K contains a 2.3-kb insertion of unknown nature 26 bp
upstream from the poly(A) tract. Overall, three copies (A,
B and E) may be considered intact, because they carry no
obvious defects in their ORFs and possess intact 5' and 3'
termini. These copies are flanked by 7-12 bp target site
duplications (Figure 3a and 3b) and differ from each other
by 29-33 nucleotide substitutions.

Notably, the Hebe element begins with the sequence
CATT, which is the canonical initiator motif in many
eukaryotes and is characteristic of internal RNA pol II
promoters found in Drosophila non-LTR retrotranspo-
sons which ensure that a full-length copy does not lose its
promoter after retrotransposition [28-30]. The 5' UTR is
rather short, being only 220 bp in length. There are two
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Figure 2 Southern blot analysis of Hebe genomic copies. Genomic
DNA from Adineta vaga was digested with Spel/Sacll (centre lane) and
hybridized with the RT probe (right lane). Marker sizes in kbp are indi-
cated on the left.

more copies (C and I) which we could not sequence in its
entirety because fosmids containing these copies were
truncated by cloning, but they appeared to be intact in
their sequenced part. If these copies are given the benefit
of the doubt, this may bring up to five the number of
potentially intact Hebe copies in the genome.

The genealogy of Hebe genomic copies is depicted in
Figure 4a. Overall, this pattern is characteristic for non-
LTR elements, with inactive copies yielding long terminal
branches, as they accumulate numerous point mutations
in addition to deletions and the potentially active ele-
ments yielding much shorter branches, which are indica-
tive of relatively recent activity. Pairwise all-by-all
comparison of ORF1 and ORF2 coding sequences reveals
an overall excess of synonymous substitutions over non-
synonymous ones, which gradually fades away as copies
become more decayed (Additional File 3). Again, this is in
agreement with relatively recent activity of the element,
although no two independent insertions were found
which differed by less than 10 nucleotide substitutions
(copies A+] and C+E, which potentially represent the
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most recent retrotransposition events; F/G and L/M are
not independent insertions).

Similarities to other retrotransposons

Phylogenetic analysis of the 896-aa ORF2 (including EN
and RT domains) places Hebe as a basal member of the
jockey clade of non-LTR retrotransposons, which also
includes TART and HeT-A/TAHRE (Figure 4b), while its
closest known RT relative is the Syrinx element from D.
stevensoni [22]. The 485-aa ORF1, which codes for a gag-
like protein with three zinc knuckle motifs (CCHC; Fig-
ure 1b and 1c), is expected to evolve faster than ORF2
and, indeed, it exhibits much lower levels of sequence
identity (<25%, compared to 34% for RT and 32% for EN)
to gag-like proteins from other non-LTR retrotranspo-
sons (Figure 4c). It is intriguing that the top BLASTP hits
included the corresponding gag-like ORFs of Drosophila
telomere-associated retrotransposons, some of which
have evolved special properties targeting them to telo-
meric heterochromatin [31]. However, telomeric target-
ing is known to have evolved independently in members
of other non-LTR clades such as R1 [32].

Discussion
In this study, we report, for the first time, a non-LTR ret-
rotransposon in the genome of a bdelloid rotifer A. vaga,
which exhibits characteristics of an active (or recently
active) vertically-transmitted retrotransposon without
apparent preference for a specific target sequence and
may contribute to understanding the reasons behind the
conspicuous lack of TE insertions in the gene-rich
regions of bdelloid genomes [16]. It appears that, despite
relatively recent activity, the element has not reached
high copy numbers and most of its copies are riddled by
deletions. In addition, the majority of insertions appear to
be concentrated in subtelomeric regions. We believe that
we were able to clone and sequence most, if not all, of the
genomic copies. Even though two sequence variants (C
and N) were found in the library only once, and it is for-
mally possible that a few telomere-proximal copies were
not represented in the library, the Southern blot analysis
is in good agreement with our original estimates from
library screening and indicates that it was exhaustive.
Concentration near telomeres may have two possible
explanations, which are not necessarily mutually exclu-
sive: either the element preferentially inserts into subtelo-
meric regions (for example, after having developed an
affinity to certain epigenetic marks in subterminal chro-
matin) or it inserts randomly throughout the genome, but
insertions in gene-rich regions are eliminated by selec-
tion against deleterious effects of such insertions on
nearby genes and/or against deleterious chromosomal
rearrangements caused by ectopic recombination
between insertions. A currently, or recently, active non-
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(c) Internal deletions
Cons ACTGGTACAGCATCTAACAAATCTGTTTAATGCAATTTTGAAACAAGGTTATATTCCAGCAATGTGGAAAAAGGCTAATATTATTCTTCTATTARAGC
H ACTTGTACAGCATCTAACAAATCTGTTTAATGCAAT GTGGAAAAAGGCTAATATTATTCTTCTATTAAAGC
Cons TACAACATCGTGCGATTAGAAAGATACGCTGCAGGACAACTTAGACGACCACGTCGACGACGTCACTCAGCTGTCATTCTTTTCGACATCAAAGCCGC
N TACAACATCGTGCGATTAGAAAGATACGCTGCAGGACAACTTAGACGAC GTCACTCAGCTGTCATTCTTTTCGACATCAAAGCAGC
Cons GACAACCAACAAAGAGCAACCACCACACAACGAAAACAAGGGCCACAAAGCTCACAAAGCATACAAAGCCCACAACAAACAACACAAGTTGGCAAAGC
D GACAACCAACAAAGAGCAACCACCACACAACGAAAACAAGGGC CACAACGAACAACACAAGATGGCAAAAC
FGLM GACAACCAACAAAGAACAACCACCAC CACACAACGAACAACACAAGATGGCAAAGC
0.1 GACAACCAACAAAGAACAACCACCGC ACAACGAACAACACAAGTTGGCAAAGC
Cons TTCAAAGCAGCAAAATGGTCAAAATTTAGGTGCAAGTTAGATCAACAACTGATGCTGTGGAAAAATGATCATCATTTAGATTCAGCAGCAGACATAGA
0.2 TTCARAGCAG GTG ACATAGA
Cons AGAAGGACAAACAACAACCGTCTAGTTATCGACCGATTAGTCTCCTTAGTTGCTTAGGCAAACTATTGGAGAAAATAATCAAACAACGTTTAATGCTC
0.3 AGAAGGACAAACAAC GTTTGATGCTC
Cons AATCCAGCTTCTT TTCTCTTCCTCTCCAATCTATCCATATAGTAC (156bp) TTTTTTTTTTCTCTCTTCCAGCTTATGTATGATTACAACACTTTC
0.4 AATCTAGCTTCTTTTICICTTCC AGCTTATGTATGATTACAACACTTTC
Figure 3 Sequences of Hebe 5' and 3' termini and internally deleted regions. (a) 5-terminal regions from 12 sequenced copies; (b) 3'-terminal
regions from 11 sequenced copies, designated as in Figure 1b. Copies represented in both a and b sets, and the corresponding target site duplications,
are underlined. The CATT initiator sequence and the polyadenylation signal are italicized. (c) Comparison between the Hebe consensus sequence
(Cons) and the corresponding deleted regions from copies with internal deletions shown in Figure 1b. Copies G, F, L and M share the same deletion
boundaries. Four deletions in copy O (0.1, 0.2, 0.3, 04, from left to right) are shown. Microhomologies are underlined.

LTR retrotransposon can be expected to serve as a good
model system with which to discriminate between these
two possibilities, because any short 5'-terminally trun-
cated insertions would have had a better chance of being
found near genes, as they would constitute less efficient
targets for ectopic recombination events [33,34]. How-
ever, these predictions could not be fulfilled because, sur-
prisingly, we were unable to find any 5' truncated

retrotransposed insertions in an exhaustive screen of the
genomic library. If the element's RT is not at all prone to
premature termination of cDNA synthesis, its chances of
survival may increase if there is any insertional specificity
disfavouring insertion into gene-rich regions by recogniz-
ing certain chromatin features. Although the molecular
determinants for telomeric targeting by gag-like proteins
in Drosophila are not known, the similarity between
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Figure 4 Genealogy of Hebe genomic copies and phylogenetic placement of Hebe open reading frames (ORFs). (a) Neighbour-joining phylo-
gram of 15 Hebe genomic copies (Table 1), designated as in Figure 1b, plus the majority-rule consensus sequence (Cons). Copies with deletions are
indicated by A. Scale bar, nucleotide substitutions per site. (b, ¢) Neighbour-joining phylograms of (b) ORF2 from representatives of major non-long
terminal repeat (non-LTR) retrotransposon clades, combining EN and RT domain sequences about 900 amino acids in length and (c) ORF1 coding for
gag-like proteins from diverse non-LTR retrotransposons, about 500 aa in length. Clades are designated with square brackets. Scale bar, amino acid
substitutions per site. Bootstrap support values from 1000 replications are indicated at the nodes.

ORF1s from organisms as distant as fruit flies and rotifers
is intriguing. While telomeric targeting may be a possibil-
ity, the paucity of TE insertions in gene-rich regions most
probably results from synergistic selection against TE-
mediated deleterious rearrangements following DSB
repair (see [12,35]).

While we have previously observed little or no dele-
tions in other telomere-associated TEs, most Hebe copies
contain inactivating deletions, apparently formed via
joining of microhomologies in the vicinity of a DSB. Bdel-
loids are known for their ability to survive multiple
rounds of desiccation and rehydration [36] and for their
extraordinary resistance to ionizing radiation [12], which
is accompanied by extensive DNA breakage and rejoining

and has likely evolved as an adaptation to the desiccation-
prone bdelloid lifestyle. DSB repair in bdelloids most
likely occurs by homologous repair, which does not leave
lesions in DNA. Indeed, examination of >1 Mb of gene-
rich co-linear pairs of bdelloid genomic DNA does not
reveal any molecular footprints of non-homologous end
joining (NHE]) repair events. Repair, however, could also
occur by error-prone NHE] (also called microhomology-
mediated end joining or MME]), which would seal the
break after resection using short microhomologous
stretches of DNA in the vicinity, resulting in deletion of
the intervening DNA sequence (reviewed in [27]). Dele-
tions in Hebe copies were likely formed by this mecha-
nism. It should be noted that similar deletions were
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previously seen in non-LTR retrotransposons of Giardia:
of three retrotransposon families, one was preferentially
disrupted by microhomology-mediated deletions [26];
members of this family, GilD, are found in gene-poor
genomic regions next to variant-specific surface proteins.
We also observed microhomology-mediated deletions in
two out of a few dozen PCR-amplified fragments of A.
vaga mariner DNA transposons, although in this case
their chromosomal location was unknown ([14] and I R
Arkhipova, unpublished data). Such deletions are not
uncommon among TEs ([5]; reviewed in [37]) and tend to
be correlated with heterochromatic environment (see
[15] for discussion).

We hypothesized that, in otherwise asexual bdelloid
populations, genetic exchange might take place without
conventional meiotic sex, based on the observation that
the bdelloid germ line is susceptible to invasion of foreign
DNA, accumulated mostly at telomeres [16]. Such pene-
trability of the germ line could potentially allow any lost
TEs to be regained from bdelloid DNA released into the
environment, even in the absence of meiosis and
syngamy. Alternatively, the presence of non-LTR ele-
ments may constitute evidence of a cryptic sexual process
occurring in bdelloids. Further investigations into the
mechanisms by which bdelloids combat repetitive ele-
ments and repair their DNA, as well as comparative anal-
yses of bdelloid whole-genome sequences and
identification of additional non-LTR retrotransposon
families, may be expected to shed more light on the
remarkable compartmentalization of bdelloid TEs.

Conclusions

The non-LTR retrotransposon from the bdelloid rotifer
A. vaga, named Hebe, was found to undergo frequent
microhomology-associated deletions, rather than 5'-ter-
minal truncations characteristic of this class of ret-
rotransposons. In combination with the tendency for
telomeric localization, these findings may indicate the
involvement of the MME] pathway in the repair of dou-
ble-strand breaks at the genome periphery and may even-
tually help to explain the overall under-representation of
TEs in the bdelloid core genomic regions and their abun-
dance at telomeres. It remains to be seen whether the
presence of vertically-transmitted TEs in bdelloids may
be indicative of sexual exchange.

Methods

Library screening and fosmid analysis

The A. vaga genomic fosmid library [23] was screened
with the 32P-labelled 1-kb RT domain fragment amplified
by PCR using a pair of primers F1 (CCAGTGGTTTGAT-
GATGGTGT) and Rl (CTGCTGATACGTTGCCA-
CTTC), and the 0.6-kb 3'UTR fragment amplified with
primers 3'UTR-F1 (ATGTCACATACAATCCAGCTTC)
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and 3'UTR-R1 (GTAACATAAAGTCAACGGAAGG).
Selected fosmids were end-sequenced with standard T7
and ccFos primers, split into different groups with the
primer seql (CAACAAACAACGACATTACACTG)
directed into the flanking host sequences, and several fos-
mids from each group were sequenced by genome walk-
ing with custom primers (F1; RI; seq3,
AGCCTTTTTCCACATTGCTGG; seq 4, AAAGTTG-
GACTATCATCTTCG; seq5, GTTGGTGCAAGTCAT-
GGAAAT; seq6, TCGATCTTCTTGATCTTCTGATG;
seq7, TGTCATGGATATTGACTTCAGCA). The 5
probe for additional membrane screening to compare
representation of 5' and 3' ends was obtained using prim-
ers 5p (GATCAGTCGCATTCGTCCAA) and seq7, and
the 3' probe - using primers seql and 3'UTR-R1. Entire
fosmid sequences were obtained by shotgun subcloning
into pBluescript II SK- and sequenced on the ABI3730XL
at the W M Keck Ecological and Evolutionary Genetics
Facility at the Josephine Bay Paul Center for Comparative
Molecular Biology and Evolution, Marine Biological Lab-
oratory. Sequences were deposited in GenBank under
accession numbers EF485020 and GU176366-GU176379.

Southern blotting

A. vaga genomic DNA was sequentially digested with
restriction endonucleases Spel and Sacll, fractionated on
0.7% agarose gel, and transferred to Hybond+ membrane
(Amersham). The RT probe (about 1 kbp) was amplified
from A. vaga genomic DNA using the primer pair F1/R1
described above, gel-purified using the Qiagen Gel
Extraction Kit and labelled with 32P-dCTP using random
primers (Invitrogen, CA, USA). The probe was hybrid-
ized at high stringency (2xSSC, 65°C overnight).

Phylogenetic analysis

Alignment (ClustalW) and phylogenetic analysis was
done with MEGA4 [38], using either nucleotide
sequences (maximum composite likelihood; pairwise
deletion; 1000 bootstrap replications) or amino acid
sequences (neighbour-joining or minimum evolution;
Poisson correction or P-distance; pairwise deletion; 1000
bootstrap replications). Amino acid sequence alignments
in BoxShade format are presented in Additional File 1.
Pairwise Ka/Ks ratios were calculated by the program
DIVERGE from the Wisconsin package (Accelrys Inc.,
San Diego, CA, USA).

Additional material

Additional file 1 BoxShade alignment of amino acid sequences from the
most conserved regions of open reading frame (ORF) 1 (p.1), endonuclease
(p.2), and reverse transcriptase (p.3) domains from selected non-long termi-
nal repeat retrotransposons analysed in Figure 4.

Additional file 2 Nucleotide sequences of Hebe elements obtained in this
study.
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Additional file 3 Analysis of non-synonymous to synonymous substitu-
tion ratios in open reading frame (ORF) 1 and ORF2 of Hebe.
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