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Abstract

Background: Transposable elements (TEs) are powerful creators of genotypic and phenotypic diversity due to their
inherent mutagenic capabilities and in this way they serve as a deep reservoir of sequences for genomic variation. As
agents of genetic disruption, a TE’s potential to impact phenotype is partially a factor of its location in the genome.
Previous research has shown TEs’ ability to impact the expression of neighboring genes, however our understanding
of this trend is hampered by the exceptional amount of diversity in the TE world, and a lack of publicly available
computational methods that quantify the presence of TEs relative to genes.

Results: Here, we have developed a tool to more easily quantify TE presence relative to genes through the use of
only a gene and TE annotation, yielding a new metric we call TE Density. Briefly defined as the proportion of
TE-occupied base-pairs relative to a window-size of the genome. This new pipeline reports TE density for each gene in
the genome, for each type descriptor of TE (order and superfamily), and for multiple positions and distances relative to
the gene (upstream, intragenic, and downstream) over sliding, user-defined windows. In this way, we overcome
previous limitations to the study of TE-gene relationships by focusing on all TE types present in the genome, utilizing
flexible genomic distances for measurement, and reporting a TE presence metric for every gene in the genome.

Conclusions: Together, this new tool opens up new avenues for studying TE-gene relationships, genome
architecture, comparative genomics, and the tremendous diversity present of the TE world. TE Density is open-source
and freely available at: https://github.com/sjteresi/TE_Density.
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Background
Transposable elements (TEs) are mobile, repetitive DNA
sequences that are major contributors to genome size and
are found in almost every eukaryotic genome [1–4], with
a possible exception being the protozoan P. falciparum
[5]. Despite their ubiquity, they have historically been
understudied and considered “junk” or “filler” DNA due to
practical and theoretical reasons. Until recently, sequenc-
ing and assembling the repetitive portion of the genome
was challenging and led to a lack of research within that
section of the genome. Furthermore, the notion that the
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evolution of TEs is primarily shaped by their ability to
replicate within a given host genome led researchers to
overlook their capacity to create novel genotypic and
phenotypic diversity, and thus contribute to adaptive evo-
lution [6].
TEs also possess a rich taxonomic and phylogenetic

history. This is best summarized by the sheer diversity
of replication strategies, sequence structure, and genome
distribution (reviewed in [7, 8]). At the most basic level,
eukaryotic TEs can be broken into Class I and Class II ele-
ments based on their transposition mechanism and can
be best summarized as “copy-and-paste” and “cut-and-
paste”, although there are exceptions. Class I elements,
also known as retrotransposons, utilize an RNA inter-
mediate; whereas Class II elements, also known as DNA
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elements, utilize a DNA intermediate [7, 8]. Within each
class, TEs can be further divided into order, superfamily,
and family level descriptors. While a TEs’ class repre-
sents the presence or absence of an RNA transposition
intermediate, a TE’s order represents major differences in
insertion mechanism, organization, and enzymology, and
the superfamily represents differences in protein-level and
target site duplication (TSD) groupings. Finally, families
represent commonalities in DNA sequence conservation.
TEs can impact the expression, directly or indirectly,

of genes through a number of processes. For example,
TEs can act as novel regulatory elements [9–16], promote
alternative splicing [17], foster exon shuffling [18], dupli-
cate nearby sequences (and sometimes entire genes) [19],
influence ectopic recombination [20], create mutations
through insertional mutagenesis [21–24], drive chromo-
somal rearrangements and gene transposition [25], pro-
mote sequence transduction [26], and become exons
through exonization [27, 28].
As sources of mutation and genetic diversity, TEs are

engaged in a number of interesting genotypes and pheno-
types. In humans TEs are an active area of research as they
are implicated in the development of cancer [23, 29–32].
They are also involved in a diverse set of congenital dis-
eases such as hemophilia and cystic fibrosis to name a few
[23, 33–37]. In animals, TEs have shaped peppered moth
melanism [38], aided in the identification of subgenomes
in the polyploid frog Xenopus laevis [39], evolved into cir-
cadian rhythm enhancers in mice [40], and were used to
experimentally disrupt thousands of genes in Drosophila
[41–43]. In plants, TEs have contributed to the wrin-
kled phenotype found in Mendel’s peas [44], grape color
[45, 46], pepper disease resistance [47], apple color [48],
wheat pathogen response [49], secondary metabolite vari-
ation in tomato [50], shaped coevolution between plants
and microbes [51, 52], and are hypothesized to be asso-
ciated with subgenome dominance in Monkeyflower and
octoploid strawberry [53, 54].
The location of a TE profoundly influences its capac-

ity to create variation. Generally, most TEs are located
away from genes in the heterochromatic regions of the
genome [55–58], and previous research has shown that
gene expression is negatively correlated with TE presence
[53, 59, 60]. TEs are transcriptionally silenced through a
variety of mechanisms (reviewed in [61, 62]). However,
sometimes the genes near TEs are also affected by this
process, reducing their expression [60, 63–66]. This
“collateral damage”, inflicted on genes via the spread of
repressive chromatin marks associated with neighboring
TEs, is an evolutionary trade-off that remains poorly
understood. Exciting progress has been made in maize
regarding the spread of methylation as it relates to differ-
ent TE families but it remains unclear how generalizable
these findings are between systems [63, 65, 67], especially

when systems such as maize, rice, and Arabidopsis differ
greatly in their TE content and epigenetic landscape. For
example, TE-features associated with methylation spread
in rice were ill-suited to predicting methylation spread in
maize [65, 68].
The exceptional diversity of TEs within individual

genomes and between genomes impedes the study of their
effects on gene expression and genome evolution, which
dovetails with a lack of standardized tools and approaches
for analyzing TE presence relative to genes. Previous
research has examined TE presence relative to genes but
these methods have taken a path that is hard to compare
and synthesize between systems. Biologically significant
TEs are usually discovered and studied on a case by case
basis; while bioinformatic approaches tend to focus on
one specific type of TE, use a complicated TE presence
metric, use inflexible genomic distances for measurement,
and/or do not provide source code [30, 69].
Here, we present a new tool that enables the com-

munity to easily quantify TE presence relative to genes
in any genome with an available gene and TE annota-
tion. The TE Density tool calculates TE density values for
all genes, upstream, intragenically, and downstream over
any sequence of user-supplied windows. Our new met-
ric, TE density, can briefly be defined as the summation
of all TE-occupied base-pairs (for a given type of TE)
taken in a measurement window (a discrete value of base-
pairs, such as 500 base-pairs) relative to a given gene’s
start or stop positions. See the implementation section
(Implementation) for a more in-depth explanation of this
metric.
Below, we provide five examples of how the tool may

be used to investigate TE and gene biology. We utilize
the human genome and a number of plant genomes as
input datasets to illustrate the broad utility of the tool, and
suggest potential applications of its output datasets. The
analysis scripts for the examples and graphics described
below are available along with the source code, and have
been documented so that the user may easily utilize and
expand off of them for their own research. First, we exam-
ine the average TE density of all genes as a function
of window size and location in the Arabidopsis thaliana
genome to describe general trends genome-wide. Second,
we examine the relationship between gene expression and
TE density in blueberry (Vaccinium corymbosum) as it
changes according to TE type and position relative to
a gene. We also examine the relationship between gene
expression and TE density in Arabidopsis and how the
status of a gene belonging to centromere/pericentromere
or not impacts patterns. Third, we compare TE density
between syntelogs of two closely related rice genomes
(Oryza glaberrima and Oryza sativa) and show major TE
differences amongst these positionally conserved genes.
Fourth, we demonstrate how the tool may be used to
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quickly generate a summary table of TE density given a
list of user-supplied genes; in particular, these genes are
associated with cancer in humans when they are disrupted
by TEs. Lastly, we show how TE density values may be
used as a method to identify TE-impacted genes, poten-
tially serving as a new procedure to generate lists of that
could further analyzed by gene ontology (GO) enrichment
analysis.We perform a (GO) enrichment on a set of excep-
tionally TE-dense genes and show that specific functional
characteristics are underrepresented.

Implementation
TE Density is open-source and freely available at: https://
github.com/sjteresi/TE_Density. The code used to ana-
lyze and create the figures for the usage and application
examples shown in this manuscript is also freely avail-
able within the code repository. Users are encouraged to
re-use and extend that code for their own analyses. This
section includes the usage, design, and implementation
of the toolkit. Users are encouraged to visit the project’s
GitHub README for more of an in-depth description of
usage.

Design
The goal is to calculate TE density for the combination of
(superfamily ‖ order) × (left ‖ intra ‖ right), with respect
to a window length and an individual gene. The output
matrices, representing the TE density data for each pseu-
domolecule, are of size |identity| × |windows| × |genes| ×
|direction|, where identity is the set of either the TE super-
families or orders, windows is the set of window lengths,
and genes is the set individual gene names. The direction
is the relative location of the window to a gene’s start and
stop position, where direction ∈ left, intra, right. Since
genes are typically organized within annotation files with
their start position as the least-greatest base-pair value,
regardless of whether or not the gene is in an antisense
or sense facing direction, we chose to use the terms “left”
and “right” during development, as that more appropri-
ately corresponds to increasing or decreasing base-pair
values. Left corresponds to a window sweep of base-pairs
less than the gene’s start position, intra between a gene’s
start and stop position, and right for a sweep greater than
the gene’s stop position. The left and right directions are
later converted during postprocessing to correctly corre-
spond to upstream and downstream, discussed in 3. The
knowns are the start / stop locations of the TEs and genes,
the names of the genes, and the superfamily / order iden-
tity of the TEs. The problem is simplified by splitting each
density calculation with respect to each pseudomolecule,
as there can be no overlap of TEs and genes between said
pseudomolecules.
The main software design goal was to allow for the

analysis of other larger genomes which translated to

improving testability and execution speed. Improving the
testability makes the toolkit easier to use and simpli-
fies the data cleaning stage. Improving speed expands
the number of genomes that would be feasibly ana-
lyzed by reducing the time required to obtain results.
This speed was achieved through numpy best prac-
tices, see Performance for a discussion. The package
was tested on a CPython implementation of Python
3.8.0. The standard requirements.txt file is within
the requirements directory and the package is named
transposon.

Pipeline
See process_genome.py -h for the main entry point
and description. This calculates density and writes the
results to disk for later analysis. Callers must clean and
reformat their annotation files as described in 3 and
the README. These reformatted annotation files are the
primary inputs to process_genome.py. Cleaning the
data should be sufficient, however for a more complete
demonstration of usage please refer to the examples
directory and 3.
The data pipeline stages are: preprocessing, process-

ing (overlap, summation), and post-processing as seen in
Fig. 1. Preprocessing reformats and cleans the input gene
and TE annotations for downstream computation. The
processing stage begins with calculating TE overlap within
the search window and its sum. The overlap outputs are
the number of base pairs occupied by the transposable ele-
ment within a window offset from the gene. Overlaps are
summed across the identity of the TE, which is the super-
family or order identity for this stage. This sum is then
normalized according to the search window. Finally, the
post-processing stage modifies the left and right direction
values to better correspond to sense and antisense gene
orientations of upstream and downstream.Wewill discuss
the stages of the pipeline in order of operation.

Preprocessing
The preprocessing stage is responsible for reformatting
and cleaning the input data. It requires two principal input
data files: a gene annotation and a TE annotation. The
user must minimally reformat each annotation for usage
in the pipeline; this corresponds to the “Gene Annota-
tion Filtration” and “TE Annotation Filtration” portions of
Fig. 1.
We provide scripts and guides within the project

README to accomplish this. During this stage the user
may reclassify or omit TE groupings (orders and super-
families) found in the TE annotation file. For example,
the user may want to perform a simple rename of a TE
grouping such as changing “EnSpm_Cacta” to “CACTA”,
change the main grouping of a TE to its own indepen-
dent grouping, or merge it into another grouping. During
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Fig. 1 Flowchart of the TE Density pipeline

the preprocessing of the Arabidopsis dataset we rede-
fined LINE/Penelope elements into their own order of
PLE/Penelope in order to correspond to the classification
scheme proposed by Wicker et al. ([7]) and better reflect
the differences of the two TE groupings.

Annotation Revision One preprocessing activity of par-
ticular importance is revision where TEs are “revised”
to eliminate overlapping TEs. During development, we
found that TEs can frequently overlap with other TEs in
a given TE annotation. This could either be through TEs
inserting within other TEs or due to artifacts arising from
the annotation software. Since TE density is defined as the
total number of TE-owned base-pairs divided by the rel-
evant base-pair window, overlapping TEs would lead to
some base-pairs being double-counted. If you assume that
each base-pair in a given window can only be occupied by
one entity (gene, TE or other), this double-counting vio-
lates that assumption, and would inflate TE density values
past 100% density. While some of these TEs may be bio-
logically real, we chose to modify the TE annotation in
a preprocessing manner rather than discard overlapping
TEs and lose data. Thus, in order to avoid creating this
math and interpretation error without compromising our
ability to quantify TE presence, we merge the positions of

similar (using the TE’s order and superfamily identities)
TEs prior to computation of TE density in order to sim-
plify the mathematics of our pipeline. Below, we describe
the merging process in more detail.
Briefly, overlapping TEs in the annotation are con-

densed into a singular TE if their identities match. For
example, when calculating superfamily values if two
individual TEs, both of the LTR/Copia type, appear in
the dataset with partially overlapping positions, we merge
them into one contiguous TE by redefining the start and
stop positions of the TEs. Please see Supplemental files
Test_SingleC_SingleElongate_Superfam_Re-
vision.tsv and SingleC_SingleE_Super.tsv
for one example of the input and output of the revision
process. Below we describe the revision process in more
detail.

Dealing with Overlapping TEs The revision process is
done on a separate basis for all order, and superfamily
groupings. It is performed a third time for all TEs and
given the grouping “Total TE Density” so that we can
accurately calculate total TE density irrespective of TE
groupings. As previously stated, the process takes place
in 3 independent steps: first, only TEs of the same Order
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grouping are merged, second only TEs of the same Super-
family grouping are merged, third all TEs are merged
together to create a new entry with the “Total TE Den-
sity” grouping. For each revision process the original TE
annotation is broken into subsets which are comprised
of the same TE grouping. This subset is then searched
recursively one entry at a time in order to locate all pos-
sible merges for the seed TE. Candidate TEs are merged
together resulting in an intermediate dataframe com-
prised of non-overlapping TEs, all of the same grouping.
Once the search space is exhausted, the code moves on to
the next entry (TE) and the process begins anew. Once this
process is completed for all TE identities, the dataframes
are concatenated into the resultant revised annotation.
A dummy category is introduced during the merging
operation to distinguish which grouping is being actively
merged, hence the usage of S_Revision in the files pro-
vided. This dummy category of TE density can later be
discarded during postprocessing.
Overall the revision process method creates at maxi-

mum three entries (individual TEs) for every single entry
in the original annotation; the first would be a TE sig-
nifying any relevant merges along the Order identity,
the second would represent any relevant merges along
the Superfamily identity, and the third would represent
a merged TE resulting from any other overlapping TEs
regardless of identity. An individual TE may result in less
than the maximum of 3 new entries if it happens to merge
with another TE along a certain grouping. The resulting
“revised” TE annotation, allows the pipeline to accurately
calculate TE Density for all TE groupings and for the
total TE Density category while keeping values bounded
between 0 and 1.

Processing
Overlap for left (Ol), intra (Oi), right (Or) are shown in
(1) (2) (3) respectively. The inputs are w = windowSize,
g0 = geneStart, g1 = geneStop, t0 = transposonStart, and
t1 = transposonStop. The overlap is simple albeit verbose
in order to account for the different directions whilst clip-
ping the bounds accordingly. The intra overlap is a special
case that is not swept with respect to the window but
instead the bounds of the gene.

w0 = max(w1 − w, 0)
w1 = g0 − 1
b0 = max(w0, t0)
b1 = min(w1, t1)
Ol = max(0, (b1 − b0 + 1))

(1)

b0 = min(g0, t0)
b1 = max(g1, t1)
Oi = max(0, (b1 − b0 + 1))

(2)

w0 = g1 + 1
w1 = w0 + w
b0 = max(w0, t0)
b1 = min(w1, t1)
Or = max(0, (b1 − b0 + 1))

(3)

Left and right density (ρl, r) is shown in (4), and intra
(ρi) in (5). These are generalized for one direction, win-
dow, gene, and identity. The subscript (i) is the index of
said TE identity, such as the superfamily or order for this
analysis. Note that the density ρl and ρr is normalized
by w + 1 and not w. This is because the search window
[w0 . . .w1] for calculating the bounds is offset by one in
w0,w1 of (1) (3). Note also that the intra density is normal-
ized by the element count of the gene in question, which is
g1 − g0 + 1 as the elements are zero indexed and inclusive
on both sides.

ρl, r = 1
w + 1

N−1∑

i=0
O (4)

ρi = 1
g1 − g0 + 1

N−1∑

i=0
O (5)

Algorithm 1 shows pseudo-code for the overlap and
summation stages. It is simplified for one pseudomolecule
as each are independent. The directions left, intra, right
are omitted for brevity. The overlap calculation is essen-
tially a subtraction between the bounds shown in (1) (2)
(3) applied for all genes and TEs, and swept over the win-
dows. The density calculation is essentially a sum over
the overlap results that are indexed with respect to the
identity, also swept over the windows.
Processing the genome yields a density file for each

pseudomolecule formatted in HDF5. Each represents the
TE density values for an individual pseudomolecule in
the annotation. The output densities have the dimen-
sion |identities| × |windows| × |genes| × |direction|. The
DensityData class is used in postprocessing and pro-
vides access to the sub-arrays of the result and generates
the tables shown in Table 2 and Supplemental Table S1.

Post processing
Post-processing, the left and right density values of anti-
sense genes are swapped to accurately correspond to the
traditional upstream and downstream descriptions of a
gene. The DensityData class performs this step upon ini-
tialization. As previously stated, due to the convention
that start and stop positions are presented in annotation
files with the start position always being less than the stop
position, even if the gene is in the antisense orientation,
we chose to use the left, intra, right terminology in the
implementation of the pipeline.
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Algorithm 1: Calculate Density
CalculateDensity

inputs : set of windowsW
output : density ρ

dataset: pseudomolecule C
get genes from C
get transposons from C
initialize overlaps O
foreach geneName gj ∈ genes do

foreach window wj ∈ W do
// see (1) (2) (3)
o = Overlap(gj, wj, transposons)
O[ gj, wj]= o

initialize densities ρ

foreach geneName gj ∈ genes do
foreach TE identity tj ∈ transposons do

foreach window wj ∈ W do
// see (4)
d = Density(gj, tj, wj, Oj)
ρ[ gj, wj, tj]= d

Testing
The pipeline was tested with pytest to verify the mathe-
matics and system. Tests include but are not limited to: the
creation of the revised TE annotations, the calculation of
TE base-pairs within a window (overlap and summation),
the importation of gene and TE annotations, and the cal-
culation of density. One may run the tests like so in the
project root directory: python3 -m pytest.

Performance
Performance was a high risk at the start of this work as
analysis of large genomes might not be feasible if the exe-

cution time is too long, i.e. days or weeks. One reason for
this is that this work contains the inner loop problem as
seen in Algorithm 1. This is exacerbated as Python can
be particularly susceptible to it, and the calculations also
have to be repeated for left / right directions as well as
the superfamily / order identity. Thankfully this risk was
mitigated using multiprocessing and numpy vectorization
and a formal optimization was not necessary. While this
work is not optimized nor should it necessarily be used
as a canonical example, it is worth noting that there are
simple steps one can take to achieve reasonable results.
Multiprocessing was an easy first solution as each pseudo-
molecule (chromosome) is independent. Vectorization in
numpy was important for calculating the overlap bounds
as well as summing the overlaps given a matching TE
identity. Finally, HDF5 file format was chosen for efficient
I/O to the output density files. Future work may consider
fleshing out profiling, using a split / merge pattern, and /
or numba.
Table 1 displays the performance metrics for the

genomes used example applications in this paper. Fac-
tors such as the number of windows, the number of
unique TE order groupings, and the number of unique
TE superfamily groupings likely have the most impact on
the performance of the tool, as they each add an array
to the output. Notably, the human example took a rel-
atively long time when compared to the other genomes
present. We suspect that the number of TE calculations,
which increases with additional unique TE groupings, is
the primary factor in its increased computation time. For
example, there were many TEs with family-level identities
being treated as individual superfamilies, such as “hAT-
Ac”, “hAT-Blackjack”, “hAT-Charlie”, “hAT-Tag1”, “hAT-
Tip100” etc, that likely could have been condensed into
the already present “hAT” group. Simple steps to mitigate

Table 1 Table of tool performance. Performance was estimated using an Intel Xeon CPU E5-2670 v2 possessing a processor base
frequency of 2.50 GHz. Statistics were acquired using the “seff” command on the SLURM workload manager for the computing cluster
at Michigan State University. TE Density calculations are performed over chromosomes (pseudomolecules) independently, each
chromosome can only utilize one processor at a time. * Chromosomes 7 and 13 were used for the human genome dataset, the
genome size is the sum of the lengths of the two chromosomes. The repeat content was not reassessed on a
chromosome-by-chromosome basis, and the percentage is referenced from publications [70]. † For the other genomes, repeat
annotations and content estimates were derived using the de-novo TE annotator EDTA and may differ from each genome’s respective
datasets. Wall time and CPU hours are in day-hh:mm:ss format. Default windows were used (n=20) and the variable, “Max TE
Calculations” is defined as the maximum number of unique TE order or superfamily names, whichever is greater

Genome Chromosome
Number

Processors
Used

Genome
Size (GB)

Repeat
Content

Wall Time CPU Hours Memory
Utilized
(GB)

Window X
Max TE
Calculations

A. thaliana 5 5 ∼0.135 14.91% † 00:51:31 02:32:16 32.18 20 X 13

V. corymbosum 48 20 ∼1.630 46.50% † 19:34:19 1-23:02:32 603.77 20 X 14

O. sativa 12 12 ∼0.500 49.46% † 03:17:23 07:20:49 243.54 20 X 13

O. glaberrima 12 12 ∼0.358 39.90% † 02:15:09 04:53:56 154.18 20 X 13

H. sapiens 2* 2 ∼0.274* 66% * 5-22:20:15 6-00:07:52 164.80 20 X 35
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this issue could include condensing TEs of similar groups
into a singular group, as described in 3. This would reduce
the amount of calculations needed, speed up the tool, and
arguably simplify downstream analyses.
In the interest of completeness, we provide the memory

utilized statistic for each genome in Table 1, however the
statistics may be misleading due to the fact that our goal
was to run each genome through the complete pipeline
as fast as possible. This mean that we used as much
memory (RAM) and processors as we could reasonably
request. In practice, users may have less processors and
less RAM. Additionally, users only need to generate the
revised annotation, as described in Preprocessing section,
once; however this calculation was included in the time
estimates for Table 1, and inflates the time needed. This
will save time if users plan to generate TE Density data
more than once, for example users may wish to generate
data for a different set of windows than the ones initially
used.

Examples
Version controlled documentation and code related to
recreating each analysis can be located in the project
GitHub repository within the examples/ directory.
There is a Makefile within each genome’s directory that
can be used as a reference to see how analyses and scripts
were executed.

Repeat annotations
EDTA was used to generate a TE annotation for the
Arabidopsis thaliana, Vaccinium corymbosum, Oryza
sativa, and Oryza glaberrima genomes [71]. The scripts
for recreating each genome’s EDTA annotation can be
found within its respective src/ directory within the
examples directory. EDTA was run with a genome
FASTA file and a CDS FASTA file. For each genome
other than Vaccinium corymbosum, a CDS FASTA file
was created using GFFRead version 0.12.6 [72]. Default
options were used for EDTA in all cases except for the
usage of the -cds, -sensitive 1, and -anno options.
The -sensitive 1 option tells the program to use
RepeatModeler to identify remaining TEs that were
missed by structure-based methods following the normal
progression of the pipeline [73]. Following the creation of
the EDTA annotation, a custom script was used to modify
some of the TE groupings in order to reorganize and con-
form to the naming system presented in [7] for simplicity
in analysis. An example of this script can be found in
examples/Arabidopsis/src/replace_names_
Arabidopsis.py.
The Homo sapiens repeat annotation was downloaded

from https://genome-euro.ucsc.edu/cgi-bin/hgTables and
filtered into a TE Density-appropriate format with
src/import_human_te_anno.py. After importing

the TE information, a custom script was used to modify
someof theTEgroupings in order to remove low confidence
entries, reorganize and conform to the naming system
presented in [7] for simplicity in analysis, which can
be found inexamples/Human/src/replace_human
_TE_names.py, some TE groupings were left intact in
order to assess pipeline performance on a genome with a
large amount of groupings.
For all genomes, TE Density was run with default

options, yielding an HDF5 file for each chromosome con-
taining TE density values for each gene, for each window,
for each TE order, and for TE superfamily.

Arabidopsis example methods
The Arabidopsis genome and gene annotation files were
taken from TAIR V10 [74]. Total RNA was extracted
from fresh young leaf tissue using the Invitrogen Pure-
Link RNA Mini Kit, converted into an Illumina library
using the TruSeq RNA kit (Illumina), and paired-end 100-
bp reads were sequenced on the HiSeq- 2000 instrument
at the University of Missouri DNA core. The NextGENe
V2.17 (SoftGenetics, State College, PA, USA) software
package was used to remove low-quality data, aligned to
the Arabidopsis thaliana TAIR10 genome [74], and FPKM
(fragments per kilobase million) normalized.
Thesrc/compare_centromeric_densities.py

script was used to analyze the relationship between TE
density and a gene’s location within or outside of the peri-
centromere. A gene’s status of belonging to centromere
or pericentromere was assessed using data from Colomé-
Tatche et al. [75]. The src/generate_dotplots.py
script was used to analyze average TE Density values of
genes as window size increases.

Blueberry example methods
The blueberry genome and gene expression datasets were
derived from [76]. The Vaccinium_corymbosum.faa
FASTA file and Vacc_c_CoGe_CDS.fasta CDS
FASTA file were downloaded from CoGe [77], and
used as primary inputs to the EDTA pipeline. The
src/compare_expression.py script was then used
to analyze the relationship between gene expression and
TE density.

Rice example methods
Rice FASTA files and gene annotation were derived
from the https://ensemblgenomes.org/ website. The
Release 50 version was used for both Oryza sativa
and Oryza glaberrima [78]. Each genome was uploaded
to https://genomevolution.org/coge/ and the https://
genomevolution.org/coge/SynMap.pl tool was used to
identify syntelogs between the two genomes [79]. The
analysis can be replicated using the following link https://
genomevolution.org/r/1how2. The syntelogs were then

https://genome-euro.ucsc.edu/cgi-bin/hgTables
https://ensemblgenomes.org/
https://genomevolution.org/coge/
https://genomevolution.org/coge/SynMap.pl
https://genomevolution.org/coge/SynMap.pl
https://genomevolution.org/r/1how2
https://genomevolution.org/r/1how2
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filtered using the import_syntelogs.py script which
primarily filtered out any pairs with an E-value greater
than 0.05. The src/compare_density.py script was
then used to analyze TE density differences among the
syntelog pairs. Applying a percentile cutoff and identify-
ing the genes that met the cutoff was done within the
src/find_abnormal_genes.py. Once a TE density
percentile cutoff value was determined and an array of
genes was created, we ran the genes through PANTHER
[80, 81].

Human example methods
Human datasets (Version 38) other than the TE annota-
tion were derived from the UCSC Genome Browser at
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/ [82].
The info_of_gene method in the DensityData

class was used to generate the tables for the BRCA2 and
CFTR genes.

Results
TE density can reveal underlying trends of how TEs are
positioned relative to genes
The TE Density tool’s data and associated analysis scripts
can reveal small and large scale patterns of transposon

presence. We ran the Arabidopsis genome through the TE
Density tool and created Fig. 2 to show the average TE
density values, using the TEs’ order identity, for every gene
in chromosome 1 as they correspond to the various TE
types, and how these values change as the measurement
distance relative to the gene increases. Figure 2, parts A
and C, show one way in which the TE Density data may
be used to examine genome-wide trends of TE positioning
relative to genes, and interrogate upstream versus down-
stream differences. Figure 2 part B shows how intragenic
TE density may be examined.
For example, Fig. 2A shows greater average upstream

Helitron TE density values than downstream; the total
TE density metric replicates this as well. However these
observed density differences in upstream and downstream
values are not significantly different based on a chi-square
test (χ2 = 0.0056; p-value ≥0.9). Upstream LTR TE den-
sity values are lower than completely unknown TEs (TEs’
whose order and superfamily identities were unable to be
determined) for small window sizes, but they are greater
than the unknown TEs by the 2 KB window. However,
this trend is different when considering downstream val-
ues, both groupings start out at very similar levels, but
LTR elements quickly overtake completely unknown TEs

Fig. 2 Average TE Density of All Genes as a Function of Window Size and Location: Data represents average TE Density values for all genes for a
given window and direction for Arabidopsis chromosome 1. Panel A represents the TE density values upstream of genes, panel B represents the
intragenic TE density of genes, and panel C represents the TE density values downstream of genes

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/
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to occupy a greater share of base-pairs by the 1.5 KB win-
dow. Similar to Helitron TEs, these observed differences
in up and downstream density values for LTR elements are
not significantly different based on a chi-square test (χ2

= 0.3347; p-value ≥0.5). The intragenic subplot (Fig. 2B)
generally replicates the upstream and downstream trends,
in that each TE type maintains its relative position in
density values compared to other the TE types. How-
ever, there is one exception, genes have a higher average
intragenic density for completely unknown TEs than they
do for LTR TEs. One possible explanation for this phe-
nomenon is that the completely unknown TEs represent
TEs that are decayed and inactive, and that the intragenic
space possesses a higher share of these TE “graveyards”
than the upstream and downstream locations, due to a

greater force of selection purging TEs in close proximity
to exons.

TE density and its relation with gene expression
The TE Density tool can easily be used in conjunction
with gene expression data to investigate the relation-
ship between TE presence and gene expression. Here,
we examine how gene expression profiles change as TE
density increases or decreases. Using previously pub-
lished gene expression data from the high-bush blueberry
Vaccinium corymbosum genome [76], we plotted gene
expression values as a function of binned TE density val-
ues for all non-lowly expressed genes in the genome.
Similarly, we plot the expression values of Arabidopsis
thaliana genes as a function of binned TE density values

Fig. 3 Violin Plots of TE Density vs Gene Expression: Density values are derived from the TIR TE grouping for the 500 BP window upstream of each
gene. Underneath each violin plot is the interval of TE density values that bins the genes being plotted. Underneath each density bin is N, the
number of genes for that given bin. Lowly expressed genes, genes with less than 0.1 TPM, were excluded from the plot. The solid dark band inside
each violin represents the interquartile range (IQR) of the expression values. The white dot inside the IQR represents the median. The “whiskers”
extend 1.5x past the IQR in both directions
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while distinguishing between those belonging to the cen-
tromeric/pericentromeric region and those that do not.
These data are further discussed below.

Expression Profiles of Genes with High Density Are
Not Too Dissimilar From Low Density Genes Figure 3
shows how the number of genes and their expression
profiles change as TE density increases. Generally, the
expression profiles of the high density genes are similar
to the low density genes, as the median expression and
inter-quartile range are roughly similar, however the high
density bins tend to have fewer genes. As window size
increases the number of genes decreases and their range of
expression values becomes more constrained. This trend
is best shown when examining the Copia 500 BP and
Copia 10 KB plots (Supplemental Figs. S1 and S2).
We also examined the expression profiles of genes

binned by TE density while distinguishing between
genes that reside in the centromere/pericentromere and
those outside in Fig. 4. The genes inside the cen-
tromere/pericentromere sometimes have a more con-
strained range of expression values and generally have

more genes with greater TE density. The increased num-
ber of genes in more dense bins may be better be visual-
ized in Supplemental Fig. S3.

The Number of Expressed Genes Generally Decreases
as TE Density Increases Interestingly, the number of
genes in a given TE density bin does not consistently
decrease as TE density increases. Figure 3 demonstrates
this trend well, there is a local maxima in the number of
genes per bin for the (0.2, 0.3] interval of density values.

The Number of Genes in Each TE Density Bin
Decreases Differently When Comparing Different TE
types Comparing Figs. 5 (LTR elements) and 6 (TIR ele-
ments) demonstrates this trend. In Fig. 5 the number
of expressed genes consistently decreases as TE density
increases, save for a tiny local maxima at the most dense
bin of (0.9, 1.0]. On the other hand, Fig. 6 shows how the
number of expressed genes remains relatively stable for
about the first 5 bins before the number of genes starts
to drop. Taken together, Figs. 5 and 6 suggest that there

Fig. 4 Violin Plots of TE Density vs Gene Expression in Arabidopsis: Density values are derived from the LTR TE grouping for the 1000 BP window
upstream of each gene. Underneath each violin plot is the interval of TE density values that bins the genes being plotted. Underneath each density
bin is N, the number of genes for that given bin. The solid dark band inside each violin represents the interquartile range (IQR) of the expression
values. The white dot inside the IQR represents the median. The “whiskers” extend 1.5x past the IQR in both directions. Subplot A represents the
genes that do not belong to the centromere or pericentromere. Subplot B represents the genes that do belong the pericentromere or centromere
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Fig. 5 Bar plots of the number of genes in a given TE density bin as TE density increases. The density of LTR elements 5KB upstream of genes is
shown. The number of genes was log10(x+1) transformed to better display the y-axis data. Subplot A represents the number of genes in each
density bin for all genes. Subplot B represents the genes that are lowly expressed (less than 0.1 TPM) or non-expressed (0 TPM). Subplot C
represents the genes that are expressed (expression greater than or equal to 0.1 TPM)

are transposon presence patterns that are not necessarily
affected by gene expression status.

Syntelog TE density differences (Rice)
The TE Density tool can also be used to compare TE pres-
ence values between genes of different genomes. In this
way, the tool may be used to examine presence-absence
variation of TEs between genomes, and used as a screen to
identify potentially TE-impacted genes. Pangenome anal-
yses have largely focused on gene-space differences and
have generally outpaced the analysis of the TE-space. This
tool allows for a reproducible comparison of gene-centric
TE-variation amongst genomes. Here, we compared TE
levels of syntelogs belonging to two closely-related rice
genomes, Oryza glaberrima and Oryza sativa, and found
major differences in TE density values. We calculated the
difference in TE density values on a syntelog-pair basis
and found that values were as great as |1.00|, suggesting
complete presence/absence variation of TEs.

Figure 7 shows a histogram of these differences in TE
density values. Here, the TE density differences were
calculated using the Mutator TE grouping, the 500 bp
upstream window, and genes derived from chromosome
1 of the two rice genomes. Interestingly Fig. 7 shows a
general greater TE density surrounding the Oryza sativa
syntelog compared to the Oryza glaberrima syntelog.
Previous work in Arabidopsis highlights interesting

trends in TE and gene expression divergence between
closely related species; comparing Arabidopsis thaliana
and Arabidopsis lyrata, Hollister et al. showed that
orthologs possessing zero TEs within 1KB did not differ
significantly in expression, but when both orthologs had
any TE within 1KB the A. thaliana copy was significantly
lower expressed [83]. They also showed that when only
one ortholog had any TE the expression divergence was
significant only if the TE was targeted by siRNAs [83]. The
TE Density tool provides an easy-to-use, reproducible
platform to further explore the effect of TEs on divergent
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Fig. 6 Bar plots of the number of genes in a given TE density bin as TE density increases. The density of TIR elements 5KB upstream of genes is
shown. The number of genes was log10(x+1) transformed to better display the y-axis data. Subplot A represents the number of genes in each
density bin for all genes. Subplot B represents the genes that are lowly expressed (less than 0.1 TPM) or non-expressed (0 TPM). Subplot C
represents the genes that are expressed (expression greater than or equal to 0.1 TPM)

gene expression in a diverse set of genomes, using specific
TE groupings and a finer-scale system of measurement.

Human genome interesting genes and their TE density
levels
As previously mentioned, the TE Density tool and anal-
ysis scripts can be used to calculate and inspect the TE
presence values of specific genes; in this case the tool was
used to quantify and explore the TE levels of genes that
are known to cause various diseases in humans when dis-
rupted by TEs, such as cancer, reviewed in [84]. In the
near future as personalized medicine will likely generate
reference genomes for individual patients, this tool could
be used for screening TE variants distributed across the
genome. The TE Density tool contains a convenient anal-
ysis script that produces a summary table for each gene in
a user supplied list of genes which reports the greatest and
least dense TE groupings along with their values. Here, we
used that script to generate Table 2 which represents the
TE density information of the BRCA2 gene.

Inspection of the BRCA2 gene
The BRCA1 and BRCA2 genes, are best known as breast
cancer susceptibility genes [34, 37, 85, 86]. It has previ-
ously been shown that breast cancer can be caused by
genomic rearrangements of the BRCA genes [37], and that
transposable elements may sometimes be the culprit. In
some cases, these genomic rearrangements can lead to
exon skipping, and Alu insertions near BRCA2 have been
implicated in exon skipping [34, 37, 86]. Interestingly, the
BRCA1 gene’s intronic regions are also known to be rich
in Alu sequences [87].
Table 2 represents the output of the analysis script. It

displays the TE levels surrounding the BRCA2 gene in the
human reference annotation and may be used as a quick
diagnostic to see if a locus has changed from an expected
value. It appears that the BRCA2 gene has 0 TE presence
1KB downstream, but has relatively high (0.401) upstream
SINE density. Its intragenic density is an amalgamation
of multiple TE types with the SINE and LINE categories
taking up most of the space.
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Fig. 7 Histogram of differences in TE Density values of syntelogs of chromosome 1 for Oryza sativa and Oryza glaberrima. The density values for the
TE type being shown are derived from the Mutator superfamily grouping of TEs, and values were collected in a 500 bp window upstream of genes.
TE Density difference values were calculated by subtracting Oryza sativa values from Oryza glaberrima values. Negative values reflect a higher TE
value for the Oryza sativa syntelog and positive values reflect a higher TE value for the Oryza glaberrima syntelog. Values were binned into groupings
reflecting 10% increases or decreases in TE Density. All but the last (most positive) bin is half-open. For example, the leftmost bin reflects an interval
of [−1.0,−0.9) and the rightmost bin reflects an interval of [ 0.9, 1.0]. The number of syntelog pairs shown in the histogram is 322; the number of
syntelog pairs without any difference in TE density values is 2483

On a similar note, we investigated the CFTR gene, also
known as the cystic fibrosis transmembrane conductance
regulator gene. It can also be affected by aberrant Alu ele-
ment insertions, giving rise to cystic fibrosis in affected
individuals [35]. Supplementary Table S1 displays the TE
levels surrounding the CFTR gene in the human reference
annotation. The goal of this section is to highlight that the
tool is capable of inspecting TE density of target genes.
Here we showcase two genetic variants with known TE
insertions that are associated with a human disease trait.
The tool could be used to quickly screen single to mul-
tiple genes for TE density differences in a new reference
genome. The inclusion of CFTR is simply to provide an
additional example where a TE variant near a target gene
is associated with a disease trait in humans (e.g. cystic
fibrosis). This aspect of the tool can be applied to any trait
in any system (e.g. TE insertion associated with variation
in a key target trait in any crop).

Gene ontology enrichment analysis of TE-Dense genes
TE Density data may be leveraged to create a list of genes
suitable for gene ontology (GO) enrichment analyses. A
percentile cutoff can easily be used to generate a list of
genes for analysis. Here, considering all genes in theOryza

sativa genome, we selected genes whose 1KB upstream
LTR element density was within the 99th percentile. Cal-
culating this percentile generated a TE density cutoff value
of 0.863 and yielded a list of 379 genes (see Supplemental
file LTR_file_1000.tsv).
Next, we passed our list through PANTHER’s Overrep-

resentation Test (Version 16.0) using the Panther GO-Slim
Biological Process annotation data set. Table 3 displays the
output of the analysis, revealing that metabolic processes
are underrepresented in this set of TE-dense genes. This
suggests that LTR elements were selectively lost from the
upstream regions of genes belonging to those listed func-
tional classes. We also screened a random subset of the
bottom 1% of TE-dense genes and found no significant
enrichment. Functional characteristics of genes have been
hypothesized and shown as factors affecting the selection
of TE insertions near genes [10, 14, 30, 59, 69], and the TE
Density tool offers a new, a priori way to investigate this
relationship.

Discussion
One of the main strengths and limitations of the TE den-
sity tool is its reliance on gene and TE annotation files.
The organization of text data in annotation files can be
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Table 2 Table of greatest TE density values by TE type for the
BRCA2 gene in a 1 KB window upstream and downstream. SINE
elements occupy ∼40% of the 1000bp window upstream,
examining the Superfamily section reveals that it can further be
broken down into MIR and Alu elements with a ∼10% and ∼30%
share, respectively. Intragenically, LINE and SINE elements
contribute to the greatest share of TE Density

Top 5 TE Orders

Upstream:

Identity No TE No TE No TE SINE Total_TE_Density

Density 0 0 0 0.401 0.401

Intragenic:

Identity LTR TIR SINE LINE Total_TE_Density

Value 0.032 0.073 0.194 0.226 0.524

Downstream:

Identity No TE No TE No TE No TE No TE

Value 0 0 0 0 0

Top 5 TE Superfamilies

Upstream:

Identity No TE No TE MIR Alu Total_TE_Density

Density 0 0 0.1 0.301 0.401

Intragenic:

Identity TcMar-
Tigger

L2 L1 Alu Total_TE_Density

Value 0.042 0.091 0.132 0.171 0.524

Downstream:

Identity No TE No TE No TE No TE No TE

Value 0 0 0 0 0

rather variable, thus importing them to use in the pipeline
requires some basic pre-processing to acquire the correct
gene and TE identities. In order to make this process eas-
ier, we provide example scripts and guides in the source
code and project web-page. Another drawback of using
annotation files is that the boundaries of TEs and genes in

Table 3 Output from Panther GO-Slim Biological Process Analysis

PANTHER GO-Slim Biological
Process

Fold Enrichment FDR

Unclassified (UNCLASSIFIED) 1.11 0.00552

biological process (GO:0008150) 0.49 0.00276

cellular process (GO:0009987) 0.48 0.00687

organic substance metabolic
process (GO:0071704)

0.46 0.0279

metabolic process (GO:0008152) 0.46 0.0175

primary metabolic process
(GO:0044238)

0.44 0.0283

nitrogen compound metabolic
process (GO:0006807)

0.42 0.0282

cellular metabolic process
(GO:0044237)

0.42 0.0157

the annotation files can differ depending on the type and
version of software used to generate each respective anno-
tation; this may impact the ability to draw comparisons
between systems that use different annotation software.
However, this is also a strength as it allows users to use

annotation files of their choice as inputs to TE Density,
affording a degree of flexibility. In order to simplify our
calculations, we defined a gene as the inclusive space from
the start position of the first exon to the stop position
of the last exon. This disables the ability to distinguish
between a TE that is truly intronic or one that overlaps
with an exon, thus we use the term “intragenic” to describe
TEs found within the previously described boundary.
One difficulty in interpreting TE Density results is that

the relative abundance, length, and genomic distributions
of TEs in the given genome can impact the calculation of
TE density. For example, LINE elements are quite uncom-
mon in plant genomes; a plant genome would likely show
an overwhelming proportion of genes with a value of
0 LINE TE density across all combinations of windows
and positions relative to genes. This could easily lead
to the conclusion that LINE elements are not tolerated
near genes but that trend is much better explained by the
relative paucity of LINE elements in the genome. Inter-
preting the density values of short TEs (MITEs, SINES,
and others) with longer TEs such as LTRs is difficult. For
example, one genomic region with several SINEs could
produce the same density value as a region possessing one
LTR. Additionally, genomic distributions and other prop-
erties of TEs can differ at the family level; this can reduce
our ability to draw general trends from the TE groupings
used here, Order and Superfamily, as they can aggregate
potentially disparate TE families.
This tool offers an improvement over previous assess-

ments of TE presence by utilizing an algorithm that cal-
culates TE density for all genes in the genome, for all TE
types, upstream, intragenically, and downstream, over a
set of user-defined measurement windows. The tool gen-
erates an output array for each pseudomolecule of input
data, calculating TE density values for the combination of
TE (superfamily ‖ order) × (left ‖ intra ‖ right), with
respect to a window length and a specific gene. Previ-
ous attempts at quantifying TE presence failed to provide
or provided limited source code, documentation, and test
verification of software.

Conclusion
The TEDensity tool represents a new, reproducible way to
quantify TE presence surrounding genes. The tool’s data
can be used to examine TE presence genome-wide, TE
presence between genomes, and TE presence at the indi-
vidual gene scale. The data can be used as a screen to
examine changes in TE presence, or as part of a larger
analysis incorporating other datasets such as methylation
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or gene expression data. The analysis scripts used to create
the figures in this article are also provided with the source
code, and were designed with community-usage in mind
so that others may build off of what is presented here.

Availability and requirements
Project name TE Density
Project home page https://github.com/sjteresi/TE_
Density.
Operating System Platform independent
Programming language Python
Other requirements Python 3.8.0, h5py 2.10.0, numpy
1.20.2, pandas 1.0.5, see requirements directory in project
GitHub repository for more complete list of minor Python
packages
License GNU GPL 3.0

Abbreviations
TE: Transposable element; HDF5: Hierarchical Data Format Version 5: A file
format and software suite useful in storing complex heterogenous data such
as data matrices with very high dimensions

Supplementary Information
The online version contains supplementary material available at
https://doi.org/10.1186/s13100-022-00264-4.
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