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Abstract

Dfam is an open access database of repetitive DNA families, sequence models, and genome annotations. The 3.0–
3.3 releases of Dfam (https://dfam.org) represent an evolution from a proof-of-principle collection of transposable
element families in model organisms into a community resource for a broad range of species, and for both curated
and uncurated datasets. In addition, releases since Dfam 3.0 provide auxiliary consensus sequence models,
transposable element protein alignments, and a formalized classification system to support the growing diversity of
organisms represented in the resource. The latest release includes 266,740 new de novo generated transposable
element families from 336 species contributed by the EBI. This expansion demonstrates the utility of many of
Dfam’s new features and provides insight into the long term challenges ahead for improving de novo generated
transposable element datasets.

Introduction
Significant portions of many genomes are composed of
transposable element (TE) copies. TE-derived sequence
decays in the genome over time, making its discovery and
characterization challenging. However, accurate annota-
tion and description of these elements is crucial in under-
standing their impact on the genome in which they reside
and the evolution of a species as a whole. The influence of
TEs on the genome and/or species can be direct, such as
insertions into coding regions, exaptation to new func-
tions, or chromosomal rearrangements as a consequence
of non-homologous recombination, or indirect, as with an
“arms race” between the host and resident parasite. TE in-
stances have long been identified in genomes through a
combination of two complementary strategies: de novo
detection, and database-driven annotation. In de novo de-
tection, a variety of methods are used to recognize and
categorize remnants of TE activity. The families identified

in this fashion are typically further curated and cataloged
in databases such as Dfam. In database-driven annotation
each sequence in that database is aligned to the genome
being annotated, with the best-scoring alignment deter-
mining the label of the genomic sequence. Such databases
have long used consensus sequences to represent each
family. However, such searches tend to miss highly-
diverged sequences, prompting us to explore the utility of
profile methods [1, 2] to increase sensitivity.
In 2012, we released Dfam [3], a database of TE fam-

ilies from the human genome in which each family was
represented by a multiple sequence alignment (MSA)
and a profile hidden Markov model (HMM). Profile
HMMs [4, 5] yield sensitivity gains in part by modeling
the position-specific residue and indel (insertion and de-
letion) variability found in family MSAs. The first release
of Dfam was based on the design of similar databases of
protein (Pfam) and RNA (Rfam) families [6, 7]. In
addition to improving annotation sensitivity through the
use of profile HMMs, Dfam demonstrated decreased
false discovery rates through rigorously defined thresh-
olds [8]. An additional advantage of these databases is
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the preservation of a multiple sequence alignment of
representative family members, the seed alignment. The
seed alignment is model-agnostic, provides details on
coverage and fragmentation, and supplies essential prov-
enance for the family.
Subsequent releases of Dfam refined the prototype

database and modestly expanded the curated libraries to
five model organisms (4150 families). In 2018, Dfam re-
ceived funding to move from a proof-of-principle to a
production community resource by (1) scaling the sys-
tem architecture, (2) supporting multiple model types
(HMMs and consensus sequences) derived from the seed
alignment, (3) improving annotation speed and quality,
and most importantly (4) engaging the community in its
further development. In this paper we will describe ac-
complishments represented in the latest release series
(Dfam 3.0 through 3.3) and the challenges that lay
ahead. These accomplishments include support for con-
sensus models, a hierarchical TE classification system
with an interactive explorer, a TE termini library encom-
passing various DNA transposon classes, and a frame-
work for “uncurated” or “raw” data sets in Dfam
alongside the existing curated data sets.
Dfam 3.3 currently houses 273,655 families: 112,455

retrotransposons, 101,711 DNA transposons, and 59,489
other repeats that include interspersed repeats of un-
known origin, satellite regions and/or other non-TE en-
tries to avoid annotating non-coding RNA genes as TEs.
At present, Dfam’s coverage of organismal diversity is
smaller than that of Repbase, owing to Repbase being a
closed database and having two decades longer to accu-
mulate data; with the development of an open frame-
work for community contribution, the pace of data
acquisition in Dfam is expected to close that gap
quickly.

Consensus models
While the use of HMMs allows for improved detection
of TE copies in genomes, most sequence analysis algo-
rithms (Smith-Waterman, Needleman-Wunsch etc.) and
popular sequence analysis tools (BLAST, BLAT etc.) act
directly on string representations of sequences (e.g. con-
sensus sequences). Likewise, programs used to define
new TEs (de-novo repeat finders), to extend fragmented
models, to unravel the relationship of related TEs, to
classify elements or to describe biological features like
exons are not typically able to generate or take advan-
tage of HMMs directly. Each TE model in Dfam there-
fore should be accompanied by a simple sequence
model; a consensus sequence derived from the seed
alignment is the logical candidate.
The use of a consensus sequence as a first-order

model for sequence families has a rich history of demon-
strated utility [2, 9–11]. A consensus is typically made

by considering the occupancy and composition of col-
umns in a multiple sequence alignment of TE copies. A
basic consensus caller might assign for any given column
the majority nucleotide found in the column regardless
of occupancy (the number of homologous nucleotides in
the column vs the number of gaps). A more sophisti-
cated caller would account for gaps and make base calls
reflecting the observed rates of substitutions in the given
genome.
Most TE-derived sequences are under no functional

constraint and accumulate mutations in a random and
neutral fashion. Given this random noise, an informed
consensus for a sufficient number of properly aligned
copies may be expected to reproduce the original active
TE sequence. This bears out particularly well for most
“class II elements” or “DNA transposons” in eukaryotes;
due to the trans-activity of the transposase on the gen-
omic copies, these do not tend to evolve during their
short life in a genome, and thus create copies that have
a star-like phylogenetic relationship to the original se-
quence (Fig. 1) [12]. The situation is more complicated
for most class I elements, which duplicate via a reverse
transcription step; thanks to the cis-activity of the re-
verse transcriptase on its own mRNA, they may evolve,
e.g. to escape the host’s defense mechanisms, and propa-
gate in a genome for hundreds of millions of years. For
these elements, careful clustering of copies into so-called
subfamilies will result in a series of interrelated consen-
sus sequences that can be interpreted as snapshots of
the TE sequence during its evolution, though each may
still be a composition of divergent active elements.
The concept that consensus sequences approach the

original TE sequence has been demonstrated by the res-
urrection of recently extinct TEs through modification
of a dead copy to the consensus [13, 14] and by the re-
covery of expected sequence features for ancient ele-
ments. For example, the consensus sequences of many
coding TEs that were active > 100 MYA in our genome
contain full-length ORFs [15], despite the fact that their
individual copies have accumulated so many mutations
that they on average share less than half the original nu-
cleotides with each other and often cannot be pairwise
aligned.
While Repbase was initiated as a reference database

containing (single copy) prototypes of genomic inter-
spersed repetitive DNA [16], we began developing con-
sensus sequence representations by 1994 [11]. Not only
did this endeavor explain the biological origin of most
repetitive DNA, the use of consensus sequences rather
than genomic copies improved the detection of older
and therefore more diverged copies as well. A collection
of genomic copies has redundancy and contains low
complexity sequences like simple repeats expanded in
individual copies, both of which result in lower
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specificity. More importantly, individual copies of a TE
are separated by, on average, twice as many mutations as
they are from the original sequence approached by a
consensus, improving sensitivity dramatically.
In Dfam we now provide both profile HMM and auxil-

iary consensus sequence models for each family in the
database. Both are derived from a single seed alignment,
allowing for provenance to be maintained and both
models to be simultaneously improved. Most importantly,
Dfam maintains a correspondence between consensus and
HMM positions so that alignments produced by either
may be compared directly. In Dfam, consensus sequences
are generated for each family using a caller that we origin-
ally employed to build many of the consensus sequences
for Repbase. It assigns the base with the highest score
using a log-odds substitution matrix that reflects neutral
substitution patterns in a genome, including e.g. the
strong GC- > AT bias in mammals. It also infers ancestral
CpG sites by accounting for the frequency of TG and CA
dimers in neighboring columns [17].

Classification system
Without classification, a TE library is of limited use.
While entries in Dfam have always been classified, in
this release series we developed a new classification sys-
tem for repetitive sequences in eukaryotic genomes. In
addition, an interactive tool was developed for the web-
site to assist in exploring the new system in the form of
an identification key (Fig. 2).
Classification of TEs poses specific problems that may

prevent a universal solution to be found [18]. A purely
cladistic approach is impossible as TEs are polyphyletic
(they have many independent origins) and because their
relationship is reticulated (sections of TEs can have

entirely different evolutionary histories, due to recombi-
nations, gene captures and nested insertions). Classic
SINEs, which have originated many times from fortuit-
ous positioning of an internal promoter (e.g. in a small
RNA gene) and the 3′ fragment of an active LINE [15,
19] provide an example for both these issues. Neverthe-
less, most currently-used classification systems for
eukaryotic TEs are very similar and are based on hybrids
of cladistic, mechanistic, and structural approaches.
In 1989, David Finnegan introduced an early classifica-

tion with just four classes [20]. His basic division between
TEs that transpose via an RNA intermediate (class I) and
those that “transpose directly from DNA to DNA” (class
II) is still used by most. Considering the fundamental im-
pact of the trans-activity of class II proteins on their tran-
scripts and the cis -activity of class I proteins on their
genomic copies, this is indeed a primary division (Fig. 1).
At the time, very few types of eukaryotic TEs were known,
and his further divisions of class I elements into those
with and without long terminal repeats (LTRs), and divi-
sions of class II elements into those with short and long
terminal inverted repeats (TIRs) has not survived the on-
slaught of new data, although LTR and non-LTR (LINE)
elements still form valid clades, at least from the reverse-
transcriptase point of view [21].
When we introduced RepeatMasker in 1995, we

needed a succinct classification to fit in the slightly
modified cross_match format [22] that we used to anno-
tate genomic DNA. We chose a three-level form coded
as “level1/level2-level3” (e.g. “DNA/hAT-Charlie”). We
adopted Finnegan’s LTR, LINE and class II (“DNA”) di-
visions and added SINE and a number of non-TE classes
for the first divisions, the three class I elements reflect-
ing a bias towards the frequency of elements

Fig. 1 Typical phylogenetic structure of retroposon and DNA transposon families. After multiple mutations have occurred in the evolving class I
TE, the relative ordering of copies may be distinguished by these changes as they cosegregate. The presence of such clusters or “subfamilies” of
TE copies is a good indication that they arose via retrotransposition
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encountered in the human and other mammalian ge-
nomes. Second and third divisions represent clades of el-
ements based on reverse transcriptase (RT) or
transposases phylogenies. Non-autonomous elements
whose movement depends upon the coding capacity of
autonomous elements, were grouped within the autono-
mous elements’ classification, based on similarities of the
LTRs or TIRs in the absence of any coding sequence.
Entries in Repbase more or less inherited this simple
classification hierarchy. In later years, attempts were
made to reflect as much as possible of the classification
in the name of the elements [23]. The classification sys-
tem suggested in 2007 by researchers with a primarily
plant genomics background [24] has the same basis in
Finnegan and follows a similar logic; in order to display
compact classification on an annotation line, they sug-
gested a three-letter class-order-superfamily code to add
to each “family” classification. The “subfamily” was sug-
gested to be used in the TE’s name itself.
Our classification, like those before, combines a mechan-

istic, cladistic and structural approach. Where possible, the
relationship of the RT in class I elements and transposase,
helicase, or DNA polymerase in class II elements guides
the tree. While non-autonomous LTR elements tend to re-
main dependent on the autonomous element from which
they formed and can be classified with these, LINE-
dependent non-autonomous elements have a variety of

origins. They are separated by those with a small RNA de-
rived pol III internal promoter (the SINEs) and other ele-
ments. The latter category is a grab bag of sorts, classified
by the type of LINE they depend upon, and contains ele-
ments mostly consisting of LINE-material to hodgepodges
like SVA [25]. The modular, classic SINEs are organized by
their 5′ small RNA-derived, core, and 3′ LINE-derived
modules. Class II elements are divided in the four funda-
mental mechanisms of propagation so far known in eu-
karyotes, “cut-and-paste” via a linear or circular dsDNA,
“rolling circle”, and “self-synthesizing” groups, after which
the phylogenetic relationship of the transposase, recombin-
ase, helicase, or DNA polymerase, respectively, takes over.
Like non-autonomous LTR elements, most non-
autonomous DNA transposons can be classified based on
their TIR combined with their target site duplication (TSD)
pattern. We therefore do not provide structural categories
like LARD (large LTR retrotransposon derivatives) or
MITE (miniature inverted–repeat transposable elements).
The Dfam classification system does not display a

ranked hierarchy as there will never be satisfying defini-
tions for what a class, order, family or subfamily of TEs
constitutes, while with the addition of new elements and
growing knowledge of their relationship, the number of
branches, and therefore subdivisions, along some parts
of the tree will remain in flux (see Supplementary Figure
1 and Table S1). Wicker et al. proposed to define a

Fig. 2 Dfam TE classification system and visualization tool. a A small portion of the Dfam TE classification tree depicted using the dynamic
visualization found at the Dfam website. Filled in circles represent internal nodes of the tree while hollow circles are leaf nodes in the
classification tree. A classification is specified by concatenating the path through the classification tree. For example, the classification
“Interspersed_Repeat;Unknown” is highlighted in the tree. b In addition, wherever possible a mapping is provided between classification systems.
The Dfam classification for the L1 group of LINEs is shown with the equivalent classifications in several other systems
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family as a group of TEs that can be aligned over at least
80 bp and show 80% + identity covering 80% or more of
the alignment [24]. Meant as a pragmatic definition, it
has been pointed out that applying it would lead “to an
unpredictable mix of monophyletic, paraphyletic and
polyphyletic groups” [26]. Strictly following this rule will
also not be practical, as, for example, newly identified
TEs intermediate between known families will force
these to be merged over time and the aforementioned
reticulate relationship of TEs could join radically differ-
ent TEs in one family. Also, some of the ranks are
already in use for other purposes: the term “family” is
often used for any group of aligned TE copies for which
a consensus or HMM has been derived and, in animal
TE annotation, “subfamilies” either indicate subsets of
class I TE copies that share multiple co-segregating dif-
ferences from the rest (Fig. 1) or sets of particular in-
ternal deletion products of an autonomous class II
transposon. With its lack of taxonomic ranks, our
schema avoids these issues.
TEs may also be classified by their transposition mech-

anism and classification systems based on the mechan-
ism of integration and chemistry of the transposition
reaction have been proposed [27, 28]. These have the
benefit of being able to integrate the wide variety of TEs
active in prokaryotes, but are somewhat hampered by
the lack of knowledge on the details of transposition by
new, bioinformatically discovered TEs. Furthermore,
written specifically to include prokaryotic TEs, the
mechanistic classifications do not have the fundamental
division in cis-active and trans-active elements, brought
about by the separation of transcription and translation
in eukaryotes. While the focus of the RepeatMasker/
Repbase/Wicker classification on eukaryotes and on re-
verse transcriptase phylogeny has been criticized [29], a
unified eukaryotic/prokaryotic TE classification would
be unwieldy. In the future, we will explore the use of an
independent classification for prokaryotic TEs.
A TE family can be classified as belonging to any node in

the classification tree by concatenating the names along the
path from the root to the designated node. For example,
the highlighted node in Fig. 2 is referenced with the string
“Interspersed_repeat;Unknown”. This enables partial classi-
fications to be made and node labels to be reused. All clas-
sifications are linked to the corresponding RepeatMasker,
Repbase, Wicker-et-al. or Curcio-Derbyshire classification,
where they are available.
While most interspersed repeats identified by de novo

repeat finding programs are derived from TEs, alterna-
tive origins include (i) simple tandem repeats, originat-
ing independently at many sites, (ii) long tandem repeats
like satellites, found at multiple (sub)telomeric and
centromeric sites, (iii) segmental duplications, (iv) com-
mon coding motifs like zinc fingers, and (v) gene

families. In mammals, the most common non-TE source
of interspersed repeats are retro(pseudo)genes that have
been accidently copied by the LINE1-mechanism; some
small structural RNAs occur with over a thousand cop-
ies [30]. While our classification system includes these
categories for annotation purposes, most of these entries
should not be part of Dfam. Satellites and small struc-
tural RNAs are included in Dfam, but shorter tandem
repeats are better detected by specialized programs like
TRF [31] and ULTRA [32] and the inclusion of segmen-
tal duplications, cellular transcripts or coding regions
would lead to much false annotation.

Transposon termini
Most methods to categorize newly identified TEs are
pipelines that rely heavily on finding homology to exist-
ing classified TEs [17, 33–35]. When a curated library of
a related species exists, near-full-length matches at the
DNA level are often found that allow proper class as-
signment. A translated comparison to a TE protein data-
base can classify many models with (remnants of)
coding sequence. However, due to the recombinant and
modular tendencies of TEs, sequence homology is not
always sufficient evidence for classification, especially if
similarities are fragmentary or weak. For example, many
non-autonomous class I and II elements carry insertions
or fragments of non-related TEs, while a model match-
ing the 3′ end of a LINE element may represent a SINE
instead. Even functional TE coding regions can be mis-
leading as related proteins have been repurposed in dis-
parate TEs; for example, the transposases of the cut-
and-paste Ginger transposons are closely related to the
integrases of both Gypsy retrotransposons and Maver-
ick/polinton self-synthesizing elements [36, 37]. Needless
to say, TEs without (remnant) coding sequence or re-
lated entries in the database will remain unclassified
using this method alone.
There are fortunately other characteristics and se-

quence features of TEs that can confirm the mechanism
by which the element propagated, and in turn, how it
should be classified. Clusters of copies with co-
segregating mutations generally imply that the TE is a
class I element, and, given enough copies, their complete
absence suggests a class II element. A simple-repeat tail
and TSDs of variable length indicate movement via
target-primed reverse transcription, which requires the
protein products of LINEs. When models have TG…CA
termini and carry a poly-adenylation signal, while their
copies are flanked by 4–6 bp TSDs, they likely represent
solitary LTRs, which, through homologous recombin-
ation, can vastly outnumber complete LTR elements in a
genome.
In our experience, many models that resist automatic

categorization represent non-autonomous class II
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elements that actually can be classified in detail based
on the pattern of the terminal 20–50 bp. This is particu-
larly true for the ubiquitous TIR transposons: their
transposases specifically recognize and bind the terminal
sequences, to the point that these are sufficient for an
element to retain or obtain mobility [38, 39]. As a result,
transposons with similar transposases (the basis of their
classification) have similar termini. While these terminal
homologies are too short to appear significant in a whole
database search, they can be found by comparing the
30–60 bp termini of new elements to the 30–60 bp ter-
mini of all classified class II elements and filtering the
output by orientation and position. Characteristic TSDs
can cement classification. Over the years, we classified
thousands of short sequences in Repbase this way, in-
cluding ancient elements that were active in the com-
mon ancestor of all amniotes.
In Dfam, we now provide terminal sequence signatures

for 64 categories of class II elements, for use in

classifying new TE models. To create these signatures, we
lined up the 5′ and 3′ 60 bp of all members of a particular
type that seem to have clearly defined ends (e.g. as indi-
cated by the presence of the expected TSDs, Fig. 3). Minor
modifications were made to some of the nearly 12,000
remaining consensus sequences in order to have each start
at the true beginning or end of the TE. This most com-
monly involved removing (partial) target site duplications
or adding one or more Ns when comparison to others
showed the sequence to be short. The alignments are
ungapped, however, and it is possible that more signal can
be obtained by allowing a few indels. We used HMMER
(hmmbuild) to develop HMMs for the 5′ ends, the 3′
ends, and, in case of TIRs, the combined termini.
The LOGOs of the termini can be viewed on the

“Classifications” page on the Dfam website, and are or-
ganized by class II subclasses (e.g., Crypton, Helitron,
TIR, etc.). This allows for easy visualization of the base
conservation at each position in the terminal sequences

Fig. 3 Generation of HMMs and sequence LOGOs for DNA transposon termini. The first/last 60 bp of family consensi belonging to a single
classification of DNA Transposons are piled up and aligned (without gaps) by hand. Profile HMMs are developed for each end and for the
combination of the two to determine if a stronger signal may be obtained in that fashion. Finally, LOGOs are generated for each HMM and
displayed on the Dfam website
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and comparisons between the 5′ and 3′ termini. The full
set of profiles may be downloaded and will be updated
as new elements are added to each class.

Dfam growth
The development of a curated TE library for a given spe-
cies is a specialized and mostly manual task that has
only incrementally improved since the inception of TE
databases. We recognize that as reference genome se-
quencing increases at a faster rate, and until automated
curation methods improve, uncurated datasets (mostly
de novo generated TE libraries) will far outpace the de-
velopment of curated libraries. There are some advan-
tages to making uncurated datasets available through a
resource such as Dfam: (1) they can be used as simple
genome masking libraries, and the fragmentation and re-
dundancy that are the hallmark of datasets derived from
de novo discovery tools are not detrimental in that con-
text, (2) cataloging uncurated families provides a shared
starting point for community curation efforts, and (3)
these datasets will provide a resource for developing
per-family and per-library quality metrics as well as im-
proved automated curation tools.
In the latest release of Dfam we have added support

for uncurated datasets, denoting these families using
the new accession prefix “DR” and limiting/altering
the analysis and metadata displayed for these families
(Fig. 4). For instance, a DR family has both a

consensus and a profile HMM generated for it, but
does not have rigorously characterized false discovery
rate thresholds as for curated families [3] due to the
lack of pre-calculated assembly annotations. However,
uncurated families do contain provenance for the seed
alignment, standard metadata (description, classifica-
tion, taxa, citations etc), TE protein matches, relation-
ships with other families, and model details. By
limiting the analysis for DR families to those that fa-
cilitate future curation efforts, we can scale Dfam to
handle this growing data category and provide early
access to newly discovered TE families.
To demonstrate the new features in the latest release

of Dfam and the challenges/opportunities this type of
dataset will create, we imported RepeatModeler results
generated by the EBI on 336 assemblies (Fig. 5). This
import of 266,740 families dwarfed the existing Dfam by
40-fold. The seed alignments typically produced by
RepeatModeler were not available from these runs,
therefore we used the RepeatModeler consensus libraries
to generate new seed alignments from annotated in-
stances identified by RepeatMasker. By using a library-
based approach rather than individual family searches,
we avoided assigning TE instances to more than one
family. This step was followed by an iterative extension
process (manuscript in preparation) that is based upon
an approach used in RepeatScout [42] to further extend
fragmented families.

Fig. 4 Dfam analysis pipeline. The full Dfam analysis pipeline consists of a set of sequential analysis steps depicted above with examples of the
products produced. For uncurated families only the first portion of the pipeline (colored in blue) is initially conducted

Storer et al. Mobile DNA            (2021) 12:2 Page 7 of 14



Due to the scale of the dataset, only minimal prefilter-
ing of the families was performed before import. Fam-
ilies with > 80% tandemly repetitive sequence and less
than 100 bp of contiguous non tandemly repetitive se-
quence (according to TRF) were removed. This filtered
894 families. TRF was run with a maximum period of
20 bp to preserve common and complex satellite se-
quences in the dataset.
The number of TE models in Dfam has grown from

6915 to 273,655, largely because of the RepeatModeler
libraries for 336 additional species contributed by the
EBI. Table S2 contains statistics for these EBI additions
alone. 116 bony fish, 133 bird and 47 mammalian spe-
cies form the bulk of the additions, and numbers for
these clades alone are displayed in the table. A generally
higher variety of recognizable TEs in fish and lower var-
iety in birds is reflected in the data: bony fish (35% of

the new species) contributed 58.4% of the added models,
while mammals and birds (14 and 40% of the new spe-
cies) each contributed about 9.3% of the new models
(Table S2). The remaining 10% of the EBI dataset, and
therefore 23% of the TE diversity, belong to other groups
outside of bony fish, mammals, and birds that include:
plants, cartilaginous fish, turtles and lizards.
An analysis of the TE classes and superfamilies in each

of the aforementioned clades depicted that bony fish con-
tribute a large number of models across class II TE super-
families, and are consequently enriched for class II TEs
(Supplementary Figure 2 and Table S2). Birds and mam-
mals contribute to and are enriched for LINEs (CR1 and
L1, respectively), in addition to endogenous retrovirus
(ERV)-like LTR elements.The EBI dataset confirms large-
scale patterns visible in addition to providing data regard-
ing TE expansion for individual organisms.

Fig. 5 The phylogenetic distribution of species in Dfam release 3.3. A subset of species are named and species-rich groups are collapsed into
triangles, with the number of species indicated. Major branch points have been labeled according to the NCBI taxonomy. Branching times and
order of the tree are roughly following that of the OneZoom project [40] with modifications based on more specific research; for example, the
branching order within the birds is according to Prum et al. [41]
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Examples of the seed alignments generated as part of
the aforementioned pipeline can be observed in Fig. 6.
The seed alignment for any model provides researchers
with a wealth of information including sequence cover-
age, length, and number of sequences contributing to
the model. From a curator’s perspective, information like
divergence patterns and blocks of seemingly truncated
sequences are also evident. For example, a block of se-
quences in an LTR alignment that show a different di-
vergence pattern and/or appears to be truncated at the
same position relative to the consensus sequence are
likely to indicate a subfamily structure within the model
(Fig. 6a, red box). This alignment pattern reflects the
biology of the TE, as LTR sequences regularly recombine
their 5′ and 3′ ends to form new families [43]. Similarly,
blocks of outwardly truncated sequences close to the 5′
end in an L1 seed alignment reflect a tendency for differ-
ing patterns present in the 5′ UTR regions [44] (Fig. 6b).
Closer inspection of these sequence blocks within the
alignment is warranted to determine if a subfamily struc-
ture is present.
By providing the RepeatModeler output for the add-

itional 336 species, Dfam encourages the TE community
to lend their expertise, thus improving this dataset so
that it moves from a raw dataset to a highly curated one.
We are working on providing tools for the community
to curate and improve upon these and existing curated
datasets.

Architectural and Interface improvements
The architecture of Dfam was refactored in Dfam 3.0 to
prepare the resource for housing TE families, seed align-
ments, and sequence models at scale. The Dfam website
(https://www.dfam.org) has been updated to provide
both (i) a front end intended for human interaction
through a web browser (the ‘portal’) and (ii) an API
served over HTTP to support programmatic access to
Dfam data. The source code for both projects is available
on GitHub (https://github.com/Dfam-consortium/) and
released under the CC0 public domain dedication. The
API uses computer-friendly data formats such as JSON
and tab-separated values (as appropriate), which makes it
more suitable as a data source for community-developed
tools than the human-oriented format of the website.
The portal has gained several significant new features.

To support the massive scale of family data we replaced
the old one-page-per-letter approach to family
organization with a “Browse” page that supports sorting
and filtering on multiple criteria such as name, classifica-
tion, taxon, or keywords. Some similar filters have also
been added to the “Relationships” tab to restrict results
to related species. The “Features” tab has been added to
the per-family page to display curated features (binding
sites, hand-curated coding sequences etc), as well as

blastx matches against other known TE protein
sequences.
The architectural changes also facilitated the merger

of Dfam and Dfam_consensus [45], creating a single re-
source for both consensus and HMM sequence models
for each family. During the merger, Dfam inherited the
seed alignment visualization from Dfam_consensus. This
visualization shows both coverage (how many represen-
tatives cover each portion of the alignment) and the con-
servation patterns within the alignment, shown as a
heatmap indicating how closely each member aligns to
the consensus (as seen in Fig. 6).
Dfam also now includes an authentication system and

public data submission system; this is the first step in a
planned development of a curation workbench that will
provide users with tools to edit and curate data uploaded
by themselves or (eventually) others.

Software/tool distribution improvements
One of the main hurdles with using bioinformatic pipe-
lines and tools is the complexity of the installation and
configuration necessary to use them. Software containers
are an increasingly popular way to tackle this problem,
by delivering an executable user environment that comes
with pre-installed and pre-configured software packages.
In order to support community curation efforts we have
developed containers for Docker and Singularity,
housing pre-installed versions of our latest tools (e.g.
RepeatMasker, RepeatModeler, Coseg, RMBlast) and de-
pendencies as well as external open-source tools (e.g.
HMMER, mafft, cdhit, TRF). More information along
with instructions for use are available at https://github.
com/Dfam-consortium/TETools/. As part of our out-
reach efforts, we will be eliciting recommendations for
including additional packages in future releases.
Notably these containers include FamDB, a new

HDF5-based Dfam export format and associated query
tools for offline access to Dfam. FamDB files contain
family consensi/HMMs and the NCBI Taxonomy data
related to these families in a format that allows for fast
offline access from the command line. The current re-
lease of FamDB includes all Dfam consensus sequences,
HMMs, metadata, and 61,003 taxa from NCBI’s tax-
onomy database [46] related to these families. Lookups
for information on a single taxon or family complete in
about a second; extraction of consensus sequences
(FASTA, EMBL) or HMMs for all TE families found in
Human (including ancestral repeats) complete in about
3 to 4 s. Due to indexing, the run time for data queries is
largely independent of the total number of TEs in the
database: it takes about the same amount of time to ex-
tract the human library from a FamDB file including
only the curated subset of Dfam (6915 entries) as for the
full database (273,655).
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Fig. 6 Seed alignment examples from raw Dfam 3.3 entries. A) ERV1 (LTR) (DR0086957.1; Eulemur macaco (black lemur)). The red bracket indicates
a group of sequences differing in length and divergence patterns. 506 sequences contribute to the seed alignment for this 503 bp model. B) L1
sequence (DR0215804.1; Phyllostomus discolor (pale spear-nosed bat)). The red brackets indicate two groups of sequences that differ in their 5′
alignment. One thousand one hundred eighty-six sequences contribute to the seed alignment for this 7353 bp model. Each sequence is
represented by a single row (sorted by start position) where the color gradient indicates alignment quality (red = low; blue = high) over 10 bp
non-overlapping windows. The solid green shape over the two seed alignments indicate the coverage along the model consensus sequence.
Note: the two panels differ in scale
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Future challenges/directions
The curation of multi-species TE databases involves
many manual tasks (e.g. defragmentation, classification
validation, lineage assignment) and many subjective de-
cisions (e.g. redundancy removal, pseudogene removal,
subfamily characterization) that have not been univer-
sally standardized into protocols. With the growth of
uncurated TE libraries and their inclusion in databases
such as Dfam, it has become necessary to develop proto-
cols for many of these tasks and to consider the chal-
lenges introduced by this data growth. Here, we discuss
two of these topics that we will be focusing on in the
near term.

Subfamilies
When a family is believed to exhibit subfamily structure,
there are a variety of methods available to cluster the
family copies into subfamily groups. A subfamily struc-
ture is suspected when there is a wide divergence distri-
bution of family members, or directly observing distinct
groups of co-segregating subsequences in a seed align-
ment. Wicker used the aforementioned 80/80/80 rule to
cluster sequences into subfamilies: sequences are clus-
tered such that all members of the subfamily share at
least 80% sequence identity and at least 80% sequence
coverage with length greater than 80 bp. A strategy to
define subfamilies was used in the analysis of bread
wheat subgenomes by applying a 90/90 or 95/95 rule in
which 90 or 95% sequence identity and 90 or 95% se-
quence coverage was used to cluster sequences into sub-
families [47, 48]. However, further testing should be
completed to determine if this type of threshold accur-
ately splits sequences into subfamilies of all TE types
across a wide array of species.
The methods used to develop subfamily models vary

widely, from the manual clustering of copies in a mul-
tiple sequence alignment by eye, to automated clustering
algorithms [49], and network-based approaches [50].
Wildly different subfamily sets can be produced by these
alternative methods, or even by using slightly different
parameterizations within one method. The large number
of fine-grained subfamilies produced by some of these
methods is not of practical use for identifying copies of
the superfamily in a genome or specifically labeling indi-
vidual copies confidently [51] with current sequence
similarity search algorithms. Still, in aggregate the tree
structure and subfamily membership are valuable data-
sets for studying family evolution and databases can play
a role in the standardisation of this data.
For future releases of Dfam we will explore ways to set

a minimum sequence distance threshold for inclusion in
Dfam as a subfamily. The threshold should reflect the
current sensitivity and specificity of both HMM and
consensus based search algorithms and act on the

detailed subfamily tree to cluster closely-related subfam-
ilies (lumping their copies together). The original de-
tailed tree structure and individual copy membership
need not be lost (Fig. 7), but stored alongside the super-
family as a combination of newick data and fine-scale
seed alignment sequence subfamily labels for further
study and use.

Redundancy/fragmentation detection
Ideally, a TE database should contain a single full-length
entry for each transposing family. Unfortunately that
overly simple definition doesn’t account for the fine de-
tail of subfamily expansions, recombinations, deletion
products, and mosaicism exhibited by many TE families.
These processes lead to necessary redundancy in a li-
brary. Another form of redundancy, that is not desirable,
is the direct result of (1) re-detection of ancestral fam-
ilies in the de novo analysis of two or more related spe-
cies, (2) the confounding effects of sequence variation
on de novo detection methods leading to rediscovery,
and (3) inadequate clustering in pipelines that run mul-
tiple discovery methods and merge the results (Fig. 8).
In addition, differences in the representative set of TE
copies, in the alignment parameters, and the selection of
model building parameters will lead to subtle differences
between models generated for the same family; making
automatic redundancy detection difficult.
Through the expansion of the Dfam database via the

addition of diverse sets of species and their associated
TEs, it will become necessary to detect redundancy auto-
matically. One approach would be to use a comparative
genomics approach to assess TE insertions at ortholo-
gous sites to resolve interspecies redundancies while im-
proving the taxonomic labels for each family (Fig. 8).
Fragmentation is an additional problem apparent in

most de novo datasets. In some cases this directly relates
to the structure of the observed TE copies appearing as
distinct patterns within a genome (e.g. full length LTRs
with internal sequence, and solo LTRs) or coverage bias
in a families copies (e.g 5′ end of LINE families). In ei-
ther case joining these fragments into a complete family
is the desired result. Fragmentation is often identified
during manual curation as a family fragment is extended
and subsequently matched to another fragment in the li-
brary over the extended region. Another approach would
be to use genome annotations for the uncurated library
to identify significant collinearity among family pairs
and automatically group families together.

Conclusion
The new Dfam release has expanded the number and
scope of species included in the database, allowing for
enhanced genome annotation while fostering the devel-
opment of highly curated TE libraries for use in
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Fig. 7 Database subfamily representation. Proposed database representation for TE subfamilies maintaining a detailed phylogenetic structure
while reducing the representative models for practical genome-scale annotation. The TE seed alignment (1) from a family with evidence of
subfamily structure is analysed by a clustering method to produce a detailed subfamily structure and membership (2). Sequence models are
developed for subfamilies and lumped (3) if model performance isn’t improved by the subdivision of two or more subfamilies. The lumped
families and their corresponding seed alignments are added to the database (4) with metadata holding the detailed tree structure and seed
sequence membership for each subfamily

Fig. 8 Redundancy/Fragmentation removal challenges. Both inter- and intra-library redundancy is present in de novo datasets and are currently
resolved through manual curation. Interlibrary redundancy is often the result of unresolved subfamily structure (e.g. internal deletion products of
DNA transposons) that confounds discovery and produces both redundant and fragmented families. Intra library redundancy is an inherent
aspect analyzing a single species in isolation. For each new species these ancestral families need to be resolved by comparison to existing
families, and by considering presence at orthologous sites
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research. In addition, a unified eukaryotic TE classifica-
tion scheme and HMMs for DNA transposon termini
now on Dfam, provide additional details for researchers
to utilize in their TE research. Combined with an ex-
panded TE library, the new database architecture, im-
proved interfaces, and simplified software distribution,
Dfam offers a collaborative platform for the TE research
community. Collaborative efforts and increased datasets
will be necessary to tackle problems such as those men-
tioned above: subfamily identification, library redun-
dancy and fragmentation. We invite the TE research
community to provide feedback on the challenges dis-
cussed here and to join us in these efforts to further
Dfam development.
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