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Abstract

Background: Previously, 3% of the human genome has been annotated as simple sequence repeats (SSRs), similar
to the proportion annotated as protein coding. The origin of much of the genome is not well annotated, however,
and some of the unidentified regions are likely to be ancient SSR-derived regions not identified by current
methods. The identification of these regions is complicated because SSRs appear to evolve through complex cycles
of expansion and contraction, often interrupted by mutations that alter both the repeated motif and mutation rate.
We applied an empirical, kmer-based, approach to identify genome regions that are likely derived from SSRs.

Results: The sequences flanking annotated SSRs are enriched for similar sequences and for SSRs with similar motifs,
suggesting that the evolutionary remains of SSR activity abound in regions near obvious SSRs. Using our previously
described P-clouds approach, we identified ‘SSR-clouds’, groups of similar kmers (or ‘oligos’) that are enriched near a
training set of unbroken SSR loci, and then used the SSR-clouds to detect likely SSR-derived regions throughout the

genome.

Conclusions: Our analysis indicates that the amount of likely SSR-derived sequence in the human genome is
6.77%, over twice as much as previous estimates, including millions of newly identified ancient SSR-derived loci.
SSR-clouds identified poly-A sequences adjacent to transposable element termini in over 74% of the oldest class of
Alu (roughly, AluJ), validating the sensitivity of the approach. Poly-A’s annotated by SSR-clouds also had a length
distribution that was more consistent with their poly-A origins, with mean about 35 bp even in older Alus. This work
demonstrates that the high sensitivity provided by SSR-Clouds improves the detection of SSR-derived regions and
will enable deeper analysis of how decaying repeats contribute to genome structure.
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Background

Simple sequence repeats (SSRs) are 1-6 bp tandem re-
peats that have been estimated to comprise 3% of the
human genome [1, 2]. SSRs are notable for their unusual
mutation process; after they reach a threshold length
(3-5 tandem motif repeats), the rate of slippage during
DNA replication dramatically increases, resulting in
rapid expansion or contraction of SSR loci. These events
may occur at a rate of 1 x 1073 per locus per generation
[3, 4], many orders of magnitude faster than point muta-
tion rates, and can modify structural and regulatory

* Correspondence: David.Pollock@CUAnschutz.edu

“Department of Biochemistry & Molecular Genetics, University of Colorado
School of Medicine, Aurora, CO 80045, USA

Full list of author information is available at the end of the article

B BMC

functions, contributing to disease [5]. In addition, be-
cause they are enriched in promoters, highly mutable,
and provide a rich source of heritable variation, SSRs
were proposed to be evolutionary “tuning knobs” [6-10].
Numerous recent studies have highlighted the potential
functional role of SSRs in gene regulation [11-14] and a
better understanding of SSR evolution may therefore
allow insights into how function can arise from con-
stantly changing genomic structure.

A proposed life cycle for SSRs includes intertwined
stages of birth, adulthood, and death [15-18]. De novo
birth of an SSR at a location occurs when a short series
of repeats arises by chance mutations, and aided and ex-
tended by the tendency of duplications to occur via nor-
mal (non-SSR) slippage events that result in tandem
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duplication of short motifs [15, 18]. If the number of
simple sequence repeats exceeds some threshold length,
which can depend on the composition and purity of the
repeated motif [19], then the probability of slippage will
increase with a slight bias towards increasing numbers
of repeats [4, 20—22]. Additionally, although there is a
clear lower bound on repeat lengths (zero, obviously)
and the slippage rates for small numbers of repeats is
low, there is no upper bound on repeat lengths unless it
is biologically imposed. These factors together are
thought to result in rapid expansion in the number of
motifs at SSR loci and suggests that accurately describ-
ing the length and distribution of SSRs may provide a
new source of insights into genome biology.

It is thought that during SSR “adulthood”, slippage-
induced expansions and contractions (usually one repeat
at a time) can rapidly alter the length of SSR loci, but
mutations that disrupt the composition of tandem re-
peats also accumulate and slow or stop the slippage
process [23, 24]. The SSR life cycle is potentially compli-
cated by rare multiple-motif copy number mutations
that are thought to be biased towards large deletions,
and by selection against long repeat lengths that may
lead to upper size limits [20, 21, 25]. Transposable ele-
ments (TEs) also contribute to SSR generation by intro-
ducing pre-existing repeats at the time of TE replication,
by introducing poly-A tails (in the case of some retroele-
ments), or by repeatedly introducing sequences that are
likely to give birth to new SSRs [16, 26, 27].

SSR death presumably occurs after either sufficiently
large deletions at a locus have occurred or after enough
mutations have accumulated so that there are no longer
uninterrupted tandem motif stretches above the thresh-
old length [17]. After the death of an SSR, remnants of
the formerly active SSR locus may remain in the gen-
ome, sometimes spawning an active SSR locus (with the
same or similar motif) capable of expansion by slippage;
this phenomenon has been observed but not character-
ized in great depth [15].

The abundance of active SSRs in the genome and their
finite lifetime suggest that dead SSRs may also be abun-
dant, although their high slippage mutation rate and com-
plex, motif-dependent evolution makes modeling their
evolutionary outcomes difficult. The identification of dead
SSRs remains important if for no other reason than be-
cause their presence in the genome can confound the de-
tection and annotation of other genomic elements [28].
Several reports have noted that the sequence composition
near SSRs is biased towards the adjacent SSR motif, and it
has been proposed that such sequences are SSR-derived
[29, 30]; however, the origin of this biased sequence has
not been explored in detail. Part of the problem is that
Tandem Repeats Finder (TRF) [31], the current predom-
inant method for finding genomic repeats, although
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mathematically elegant and computationally efficient, is
designed to detect perfect and near-perfect repeats, and
provides little information about more degenerate SSR-
derived loci. The ability to better identify degraded SSRs
at various ages and stages of their life cycle would thus aid
in annotation of the genome and inform on the origins
and history of regions in the genome where they reside.

Here, we report a new method to detect SSR-derived se-
quence using a probability-clouds (P-clouds) [32, 33]
based approach. This approach uses empirical counts of
oligonucleotides (oligos) to find clusters (or clouds) of
highly enriched and related oligos that, as a group, occur
more often than predicted by chance. The P-clouds
method has been applied to identify various repetitive
structures in the human genome [32, 33], including trans-
posable elements, but has not yet been applied to identify
SSRs (which were specifically excluded from the original
method). The use of empirical oligo enrichment, coupled
with alignment-free and library-free detection, makes P-
clouds both fast and particularly well-suited to annotate
regions resulting from the complex mutational processes
associated with SSR loci. We obtained sets of p-clouds in
regions flanking perfect live SSRs under the hypothesis
that such regions will be enriched in the mutated detritus
of the SSRs [34]. These SSR p-clouds, called SSR-clouds,
were then used to re-define the spans of active SSR re-
gions and locate dead SSR loci that were not previously
identified. We also provide further evidence that SSRs fre-
quently spawn new SSR loci with similar motifs, presum-
ably because the low sequence degeneracy of SSR detritus
regions makes them fertile spawning grounds.

Results

Characterization of perfect SSR loci in the human genome
Uninterrupted perfect SSR loci abound in the genome.
SSR sequence motifs of 1-6 bp were grouped into motif
families comprised of a motif, its reverse complement,
and any possible alternate phase of the motif or its re-
verse complement (e.g, AAC, ACA, CAA, GTT, TGT,
and TTG all belong to the same motif family) to create a
total of 501 separate SSR motif families. If a longer motif
was a repeated multiple of a shorter motif (e.g,, ATAT
versus AT), that motif was assigned to the shorter motif.
The unmasked human genome (hg38) was annotated
(Additional file 6: Table S1) with these motif families to
locate every perfectly repeated contiguous SSR locus
(one that contains no point mutation, insertion, deletion,
or motif phase shift; loci separated by 1 or more bp were
assigned different loci in this analysis) at least 12 bp in
length. A total of 4,551,080 perfect (uninterrupted) SSR
annotations were found, covering 68.8 Mb (~ 2.2% of the
genome). These perfect repeats constitute over three-
quarters (77.8%) of the 88.4 Mb SSR sequence (2.85% of
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the human genome) annotated using standard TRF
settings.

The 12bp minimum length for SSR loci is consistent
with reports that established an SSR expansion threshold
cutoff at around 10 bp for motifs <4 bp [15, 35, 36], and is
consistent with our own analyses of when perfect SSR fre-
quencies significantly exceed expectations based on gen-
omic dinucleotide frequencies (see Additional file 1: Figure
S1). The most highly-represented SSR is the mononucleo-
tide repeat poly-A/poly-T (henceforth referred to as just
poly-A) with 703,012 separate loci. Consistent with previ-
ous reports [37], many (467,092, or 66.44%) of these poly-
A’s overlap with an annotated Alu, and 536,938 (76.38%)
overlap with any annotated transposable element. Some
caution is warranted in interpreting this result, both be-
cause the poly-A tail and the A-rich region in the center of
many Alus may or may not contain a perfect repeat, and
because RepeatMasker is inconsistent about whether it in-
cludes a poly-A tail in a repeat annotation. Nevertheless,
this result indicates the minimum extent to which transpos-
able elements contribute to the frequency of poly-A loci in
the genome. Other than poly-A, the next most represented
motif is CA/TG with 170,729 separate annotations, only 3,
206 (1.88%) of which are found in an Alu element. Al-
though all possible SSR motifs families have at least one
locus in the genome, the most common motif families tend
to have much simpler motifs than the least common (64%
of the 50 most common motifs contain only 1 or 2 nucleo-
tides, and only three of the most common motifs contain
all 4 nucleotides, while 82% of the least common motifs
contain all four bases (see Additional file 7: Table S2), sug-
gesting more frequent rates of origination for these simpler
motifs. There is also an enrichment of shorter motifs

Page 3 of 12

amongst the most common SSRs, a trend that is consistent
with previous observations [4, 38].

Characterization of sequence bias in the regions flanking
perfect SSRs
Sequence biases in the regions flanking SSRs are a rich
resource for understanding the evolutionary remains of
SSR activity. Perfect SSR loci are often closer to each
other than expected by chance, with an extremely high
peak under 10 bp separation, and leveling off before 100
bp (Additional file 2: Figure S2). Reasonable explanations
for close repeats include that they were previously a sin-
gle locus that was divided by imperfections, or that new
repeats were spawned from a single repeat’s detritus. In-
deed, the repeated motifs of adjacent SSR loci often
share high sequence similarity. The most represented
repeated motif near a perfect SSR locus is often the re-
peated reference motif itself, and other similar motifs
are also highly over-represented (Fig. 1). As an example
of more complex families, we considered (ATGC), loci,
and adjacent SSRs that had 1, 2, or 3 different nucleo-
tides. As with the simpler motifs in Fig. 1, similar motifs
are highly enriched at short distances from (ATGC), re-
peats (Fig. 2), while dissimilar motifs are far less
enriched. These observations suggest that SSRs can ori-
ginate from the periphery of existing SSR loci where
sequence is already biased towards simple sequences
[30]. Under this hypothesis, dissimilar families that re-
quire multiple mutations to reach a threshold slippage
length are found at lower frequencies because they are
more difficult to seed.

To better describe the extent of the periphery around
SSRs, which is known to deviate from random sequence
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Fig. 1 Clustering of SSR loci depending on motif similarity. All perfect SSRs (212 bp) were annotated in a transposable-element masked version
of the human genome (hg38) and the count of nearby SSR motifs were recorded as a function of distance from the repeat. Here, we show the 5
motifs that are most frequently found near (a) perfect poly-A SSRs (n =350,763); and (b) perfect (AC), SSRs (n = 85,161). The motifs of nearby
SSRs often differ from the repeated motif by simple mutations. To allow for overlapping non-reference motif families (i.e, a compound locus
comprised of two or more different motif families), x =0 begins 11 bp within the perfect reference motif repeat. Flat curves at x =0 reflects that
the first several bases are still part of the perfect repeat and thus can only be annotated by another family to the extent that their motifs overlap
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Fig. 2 Enrichment of similar SSR loci near ATGC repeat loci. The
average enrichment levels of perfect SSR loci within 100 bp of a
perfect ATGC repeat locus are shown for SSR families with motifs
with 1 difference (75% similar, black), 2 differences (50% similar, red),
or 3 differences (25% similar, blue) from the 'ATGC' motif.
Enrichment for SSR motifs was determined relative to the genomic

average for all possible motifs with the given difference

[29, 30] and may represent a detritus field of mutated re-
peats [34], we measured similarity to each repeated per-
fect motif within 200bp on either side of the repeat.
There are differences depending on the size and repeat
motif, but in general similarity extends at least 50—-100
bp on either side of motifs (Fig. 3). This size of detritus
field is consistent with the idea that regular SSR seeding
occurs from this detritus. As a side note, poly-A se-
quences had detritus fields on their 3" side, but not their
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5’ side, because they commonly originate from transpos-
able elements (Additional file 3: Figure S3) whose uni-
form sequence obscured the presence of detritus fields.

Construction and evaluation of SSR-clouds for detection
of SSRs
To characterize and detect oligos in SSR detritus fields,
we used the probability clouds (P-clouds) method [32,
33], which annotates empirically identified clusters (or
clouds) of related oligos that are over-represented in a
sequence. This approach has the potential to identify an-
cient repeats that have diverged considerably from their
original sequence. By using increasingly relaxed thresh-
old enrichment parameters, we built nested oligo clouds
for each SSR motif family. There are relatively few highly
enriched oligos with high similarity to the parent motif,
and larger sets of more diverse but less-enriched oligos
(Fig. 4). High count, high similarity oligos are included
in high stringency clouds, and low count, low similarity
oligos are built into lower stringency clouds. We note
here that although the largest motif families identified
over 50,000 16-mer oligos in their low-stringency clouds,
this represents only a very small fraction (0.0000116) of
all possible 16-mer oligos. We conclude that finding ex-
tended regions in the genome made up of such oligos by
chance alone is improbable. For example, if 50,000 oligos
were distributed evenly across the genome, one might
expect to find only about one oligo every 100,000 bp.
SSR-cloud loci were ranked according to the highest-
stringency oligo contained in the locus, but annotations
of high-stringency oligos can be extended using oligos
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Fig. 3 Decay of sequence similarity with distance from perfect SSR repeats. Average similarities were calculated for short segments within 200 bp
of perfect SSR repeats with a given motif. Similarity was measured as the proportion of identical nucleotides at each position for a segment of
the same length and read direction as the repeated motif shown, (AAAG), in a, (AC), in b. For example, a segment reading “ATAG" would have a
similarity of 0.75 with the repeat motif “AAAG". Average similarities were calculated for segments beginning at every nucleotide separation
distance within 200 bp of the perfect repeat beginning or end. The black line shows the average similarity to each repeat, while the gray box
shows a range of 3 standard deviations from the mean similarities calculated in 700 bp windows from 300 to 1000 bp away from both ends of
the perfect repeat loci. The dips near x =0 reflect that a non-motif base must precede and follow the perfect region of the repeat at the start
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Fig. 4 Visual of numbers of poly-A cloud oligonucleotides with
different similarities to poly-A. Each point represents a 16-mer oligo
built into the cloud set for the poly-A SSR family, with oligos
clustered into concentric rings depending on its stringency category
in the poly-A cloud (innermost circle contains perfect poly-A repeats,
the middle ring contains mid-stringency oligonucleotides, and the
outermost ring contains low-stringency oligonucleotides). Different
colors represent similarity to the perfect repeat, as indicated in the
legend. The size of each point is scaled to represent the frequency
of each oligonucleotide within the sequence used for building the
cloud set

contained in lower stringency clouds. The extension of
locus annotations with lower-stringency oligo clouds has
a striking impact on the length distributions of SSR loci
(Fig. 5). For example, poly-A SSR loci go from a highly
skewed, almost exponential length distribution with a
mean at 17.2bp when only perfect repeats are consid-
ered, to something much closer to a normal distribution
(although still right skewed) with a mean near 36bp
when extended using lower-stringency SSR-cloud sets
(Fig. 5a). The latter distribution is consistent with previ-
ous reports indicating that Alu transposition efficacy in-
creases with poly-A tail length up to 50 bp [39, 40], and
thus appears more consistent with the biology of poly-A
origins through retrotransposition than the former dis-
tribution. Thus, the lower-stringency oligos enable de-
tection of a region that is consistent with the entire
ancient sequence derived from the poly-A tail at the
time of insertion. However, it should be recognized that
some of the detected length could be due to slippage in
either direction post-insertion and prior to degradation.
The length distributions of other SSR loci are similarly
expanded, but with tails often extending to much larger
regions (Fig. 5b). Annotation and locus extension may
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occur infrequently by chance and can be accounted for
with false discovery rates. Nevertheless, to ensure that
the SSR locus length distributions we observe are not
biased towards the loci used in cloud building, we tested
the length distributions of the 10% of SSR loci that were
not used in cloud building (see Methods). Add-
itional file 4: Figure S4 shows that the length distribu-
tions of these sets of loci do not substantially change,
even at low cloud stringency.

SSR-clouds annotation of the human genome

The complete SSR-clouds annotation comprises 8,983,
547 loci covering 221.6 Mb (7.15%) of the human gen-
ome. Of these loci, 46.92% intersect a transposable elem-
ent, which includes poly-A regions annotated as part of
the transposable element. A total of 3,085,675 of the loci,
comprising 62 Mb (28.15% of all bases annotated by
SSR-clouds) do not overlap with any previous repetitive
element (including SSRs annotated by TRF), and thus
represent novel repetitive sequence. Accounting for false
discoveries adjusted for cloud stringency and locus
length (see Methods), we conclude that at least 6.77% of
the genome is made up of SSRs or is SSR-derived.

The average false discovery rate is 5.31%, but the prob-
ability of being a false discovery varies widely among
loci, depending on length. Most loci have a high positive
predictive value (the inverse of the false discovery rate),
but 3,423,735 loci covering 53.8 Mb (~ 25% of the SSR-
clouds annotation) have a false discovery rate>10%
(maximum FDR =0.175). The majority (3,020,997, or
88%) of these less certain SSR loci are either 16 bp or 17
bp in length, while the remainder are comprised of short
perfect SSR loci under 13bp in length. Although these
loci have high false discovery rates because they are
short, there are millions more of these loci than ex-
pected by chance based on dinucleotide frequencies.
This abundance of short SSRs indicates that simple se-
quences of this length may often originate during evolu-
tion but die quickly through mutation accumulation
before they have a chance to extend to create longer loci.
It is also worth noting that regardless of their origin,
these short loci are identical in sequence to areas that
have potentiated SSR expansions and likely good spawn-
ing grounds for future SSRs.

Comparison of SSR-clouds detection to tandem repeats
finder

Although the purpose of this research was not to replace
Tandem Repeats Finder (TRF), we nevertheless com-
pared the SSR-cloud annotations with TRF annotations
using the same parameters as in [2], which yielded the
widely-quoted 3% SSR genomic estimation [2] to illus-
trate how differences between SSR annotation ap-
proaches might affect downstream analyses. Table 1 (see
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also Additional file 7: Table S2 and Additional file 7: Table
S3) highlights that SSR-clouds annotations of SSRs cap-
tures nearly all TRF SSR loci as well as millions of likely
SSR-like loci that are not detected by TRF; considering all
SSR motifs with a conservative false discovery rate of 5%,
SSR- clouds recovers nearly 88% of the over 2.2 million
TREF loci and identifies over 2 million additional loci that
were undetected by TRF. The greatest increase in SSR-
cloud loci occurs where the stringency of the SSR-cloud

Table 1 SSR-clouds recovery of Tandem Repeats Finder (TRF) loci

locus is low, from about 2 million novel SSR loci (58.7
Mbp) at high stringency to 6.7 million novel loci (149.7
Mbp) at low stringency when considering all SSR motifs
(Table 1). These elements are likely missed by TRF be-
cause of their short length or divergence from a perfect
SSR sequence. SSR-clouds recovery of bases within TRF
loci tends to lag somewhat behind the rate of locus recov-
ery (SSR clouds detected 81% of TRF bases compared to
95% of TRF loci for low stringency SSR-clouds loci from

Highest Cloud Stringency of Locus FDR < %5
Perfect Repeats Mid-stringency Low Stringency
Loci bp Loci bp Loci bp Loci bp
Poly-A SSR-Clouds TRF Intersection 453128 11518426 615893 16085955 665794 17373114 660469 17,272,038
Total SSR-Cloud Recovery of TRF  67.73% 62.37% 92.06% 87.10% 99.52% 94.07% 98.72% 93.52%
Novel Clouds 244,269 13,490,320 889,630 36,272,378 2,282,559 65,260,452 1,552,401 53,363,205
(AC), SSR-Clouds TRF Intersection 120498 4,813,795 143941 5989636 148027 6,301,466 148027 6,301,466
Total SSR-Cloud Recovery of TRF  81.09% 65.02% 96.86% 80.90% 99.61% 85.11% 99.61% 85.11%
Novel Clouds 28,365 3,444,295 724,496 25393,739 1,621,096 44,746,021 1,621,096 44,746,021
All Motifs  SSR-Clouds TRF Intersection 1,741,873 59642996 1965320 67,616,136 2,119405 71,906,834 1,946,410 68,221,956
Total SSR-Cloud Recovery of TRF  78.73% 67.40% 88.83% 7641% 95.80% 81.26% 87.98% 77.10%
Novel Clouds 2046914 58,749,285 2690429 75993,192 6,702,981 149,673,223 2,008,354 70,732,930

SSR-clouds loci with a merge distance of 5 bp were divided into 3 nested sets based on the most stringent oligo used to annotate each locus and compared to
TRF loci. Comparisons were also made for SSR-clouds loci with FDR < 5%. Cells in the table report the number of loci that overlap TRF loci and the number of bp
within overlapping loci. We also report the number of novel SSR-clouds loci and bp. Recovery percentages are reported relative to the total number of TRF loci in
each comparison category (Poly-A: 669,020; (AC),,: 148,607; All Motifs: 2,212,424) and total length in bp of the TRF loci (Poly-A: 18,468,468; (AC),: 7,403,867; All
Motifs: 88,485,889)
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any motif, see Table 1). In spite of this lag, 89% of SSR-
Clouds loci that overlap a TRF locus extend beyond the
boundaries of the TRF locus on at least one side, and 59%
extend beyond the borders of TRF loci on both sides. The
discordance between the SSR-clouds and TRF annotation
strategies highlights that previous estimations of SSRs in
the genome are likely extremely conservative and fre-
quently overlook SSR-derived regions of more ancient ori-
gin. This is conservative in the wrong direction for
research questions that require eliminating as many SSR-
derived regions as possible, for example if one is trying to
identify low-copy regions of the genome or trying to dis-
criminate sequences derived from specific types of TEs,
which might themselves include SSRs.

Age characterization of SSR-derived sequences using Alu
transposable elements

The approximate ages of poly-A SSR-derived sequences
were determined by leveraging the relationship between
Alu transposable elements and poly-A SSRs [15, 37, 41].
Alu has over a million copies in the human genome, and
their relative ages can be accurately determined [42]. We
divided Alus into three age groups approximately repre-
senting the main families of Alu and assessed how fre-
quently poly-A loci detected by SSR-clouds of different
stringencies could be found in the poly-A regions of Alu
elements. While 63% of young poly-A tails tend to be an-
notated by uninterrupted poly-A clouds, older poly-A tails
from the oldest group of Alus (42,125 loci, or ~50%) are
unsurprisingly the most difficult to detect and are often
annotated only by low stringency SSR-clouds (Fig. 6).
These results support the idea that lower-stringency SSR
annotations are indeed derived from SSRs but are difficult

Page 7 of 12

to detect through other means because of their divergence
from the original poly-A repeat.

About 25% of old loci were not detected by poly-A
clouds of any stringency level, but an additional 11,821
annotations were found using SSR-clouds from any SSR
family, not just poly-A. Thus, almost 90% of the oldest
Alus (74,846 loci out of 84,346 total) had some sort of
SSR-derived locus in the expected poly-A region. It is
possible that the 9,500 old Alus without detected SSR-
clouds had their tails deleted or moved through genomic
rearrangements over time or they degenerated to the
point of being unidentifiable. The oldest group of Alus is
1.60 times older than the average age for all Alus, while
the unannotated Alus are 1.64 times older (Welch two-
sample t-test, p <2.2x 10™ '), supporting the idea that
loss of tails increases with age.

Discussion

SSR-clouds is a rapid, non-parametric method based on
P-clouds for finding SSRs and SSR-derived regions in the
genome. SSR-clouds finds numerous previously undis-
covered SSR loci whose overlap with poly-A regions of
known ancient transposable element loci provides com-
pelling evidence that these loci are indeed SSRs or are
SSR-derived. SSR-clouds analyses reveal that SSR-
derived regions comprise a larger portion of the human
genome than previously appreciated, increasing the SSR-
derived percentage from about 3% to at least 6.77%. This
increase is due to increased annotation length of previ-
ously annotated loci as well as newly annotated loci
(Table 1). The output for SSR-clouds follows a standard
bed file format (including the chromosome/scaffold and
beginning and ending coordinates for a locus), with

~N

Perfect Repeats
Mid-Stringency Clouds
Least Stringent Clouds
Any SSR

No Intersect

Oldest

Fig. 6 SSR-cloud annotation of poly-A regions adjacent to annotated Alus. Full length Alus (275-325 bp) were divided into three groups based on
their age (roughly corresponding to the three major expansions of Alu, AluJ, AluS, and AluY) and 5' overlap with poly-A SSR-cloud annotated
regions was evaluated. The region expected to carry the poly-A tail was defined as within 30 bp of the Alu terminus. Different cloud stringency
extensions are colored with dark blue indicating highest stringency poly-A annotations found, and light blue lowest-stringency poly-A
annotations. If no poly-A annotations were found, other SSR-cloud loci found are shown in light gray, and no intersecting SSR annotations found
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>chrl:506026-506082

S Il R
GTCAAAAACAACAACAACAATAACAAAAACAAAAACAACAACAACAAAAAAAACTC

0 N S (AAC),
' ]

| J S — - = —

A%

Longest consecutive
stretch of perfect
repeats

(AAAAAC),

Perfect Repeats
Mid-Stringency

Fig. 7 Anatomy of a complex SSR locus and its annotation by SSR-clouds. The sequence for an SSR locus found at bp 506,026-506,082 on
chromosome 1 in hg38 is shown. Regions annotated by the two most prevalent families, AAAAAC (top) and AAC (bottom), are shown, with
perfect repeats indicated with a black bar, mid-stringency cloud annotations with a dark gray bar, and the lowest stringency cloud annotations
with a light gray bar. The longest stretch of perfect repeats of any kind (26 bp) is indicated, and was used to determine the false discovery rate of

the locus (see Methods)

additional information about the SSR motif family
present in the locus. As seen in Fig. 7, different regions
of a locus may be annotated by the clouds of multiple
families, creating a complex locus. For complex loci,
SSR-clouds gives information about each of the families
present in the locus, including the average cloud strin-
gency of that family’s oligos in the locus and what
percentage of the locus is covered by oligos from that
family’s clouds. We consider this output, which simul-
taneously considers all families that may be present in a
locus, to more accurately reflect the true nature of SSRs,
given the propensity of SSRs to spawn different SSR
motif families during their evolution.

By identifying over three million previously overlooked
short and imperfect SSR loci, we provide evidence that
the SSR life cycle is highly flexible and show that mul-
tiple paths to SSR death exist. While some of the short
loci may be fossils of longer ancient loci that are no lon-
ger detectable, our analysis of Alu poly-A’s suggests that
only ~10% of mature SSR loci fall below detectability
even after 65 million years. It thus seems reasonable that
a substantial fraction of these short loci are more fre-
quent than expected from point mutation processes and
therefore created by some amount of slippage, but never
reached SSR maturity where slippage events would have
rapidly increased the locus size, and instead died in their
infancy. Regardless of their precise origins, it is reason-
able to think that these short loci may yet act as birthing
grounds and nurseries for future SSRs, thus creating an-
other alternate route through the SSR life cycle without
ever passing through adulthood. The abundance of these
short SSR-derived loci also indicates that SSRs may be
born much more frequently than appreciated; with
nearly 9 million separate loci, there is an average of one
SSR for every 350 bp in the human genome.

An important feature included in SSR-clouds that is lack-
ing in standard SSR annotation software is the estimation of
false discovery rates for each locus. Recently active SSR loci
can be identified with high confidence because they have

spent little time in the genomic churn caused by mutation
and fragmentation, but this is not the case for millions of
ancient SSR loci that we identified here. We note that even
the short loci with high false discovery rates may be import-
ant to identify as potential sources of new SSR loci although
they may not be derived from mature SSR loci with high
slippage rates. Furthermore, loci with high false discovery
rates can be included or excluded in downstream analyses
based on user-defined analysis-specific false discovery
thresholds and the needs and tolerances of the researchers
for both false discoveries and failure to detect relevant ele-
ments. Additional file 5: Figure S5 illustrates the effect of
different false discovery thresholds on the total number of
base pairs identified as SSRs in the human genome.

The landscape of recent easily-identifiable repeats in
the human genome is dominated by retrotransposons,
with Alu and LI elements accounting for more than 25%
of the genome [41]. As shown here and elsewhere [37],
these elements play a direct role in the creation and
propagation of SSRs. Because different species may
evolve different repeat patterns over time [43], we expect
that SSR content (motifs, proportions, and ages) will also
differ according to the different genome histories. SSR-
clouds provides an additional avenue to study the gen-
ome evolution of diverse species.

Conclusions

We extend previous reports of sequence bias near SSR loci
[29, 30] and show that the boundaries of this bias, though
motif dependent, may extend for over 100 bp to either side
of an SSR locus (Fig. 3). The length of sequence bias near
SSR loci indicates that distinct boundaries on the distance
of SSR spawning events exist, and the data presented here
suggests that such events are generally limited to within
100 bp of parent loci. Our characterization of similarity be-
tween clustered SSR loci supports this assertion and pro-
vides further evidence that the generation of new SSR loci is
greatly influenced by the evolution of locally active SSRs.
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Because the motif, purity, and length-dependent nature of
SSR locus evolution is complex, the SSR-clouds approach
presents an important and tractable method to improve
studies of the different phases of the SSR life cycle that can-
not be easily achieved through other approaches. The data
presented here reveal unprecedented detail into the pro-
posed SSR life cycle [15-18]. The signals of highly biased
sequence near SSR loci and clustered similar loci (see Figs.
1, 2 and 3) can be generated through repeated rounds of
interrupting mutations within an SSR locus to isolate re-
gions of the locus followed by expansion in regions that re-
main susceptible to slippage. This process of constant
sloughing off of SSR detritus can be likened to simultaneous
birth and death processes, and creates natural boundaries at
SSR loci, which we report here. This process also makes
predictions about SSR sequence degeneracy over time pos-
sible; long dead SSR loci resemble the derived and most de-
generate portions of active SSR loci that are near the
boundaries of the SSR locus.

A large fraction of recent (4—6 million years old) Alu
elements (~60%) have intact poly-A tails, and only a
small fraction (< 5%) have different motifs or no SSR at
all in their poly-A tail region. Notably, the remaining
nearly 40% have already begun to degenerate, even after
relatively recent successful retrotransposition. However,
although the poly-A appears to rapidly degenerate, these
degenerate regions are detectable in many of even the
oldest of Alu elements, demonstrating both a surprising
longevity of SSR character in ancient simple repeats, and
the sensitivity of SSR-clouds method.

The longevity of SSR loci is further highlighted by the
fact that a substantial proportion (~ 15%) of poly-A’s from
the oldest group of Alus spawned new SSRs with different
motifs (Fig. 6). Spawning of SSRs has not been character-
ized in great detail [15], but this evidence, combined with
the tendency of similar SSR repeats to cluster, presents a
timeline for spawning events while also characterizing the
expected motif bias for newly spawned loci.

The high degree of overlap between transposable ele-
ments and SSR loci we present here supports the hypothesis
that transposable elements play a substantial role in the gen-
eration of SSR loci [27, 37, 41]. Our estimate of SSR content
in the human genome includes both SSRs that have arisen
through random mutation and slippage events as well as
through duplication of SSRs within transposable elements.
Although these origins are the result of separate and distinct
processes, SSR-clouds classifies SSRs by their structure and
over-representation in the genome, with the origin of each
element being considered as a separate inference problem.
About half (46.92%) of SSRs intersect with an easily-
identifiable transposable element. Because about half the
genome is made up of easily-identifiable transposable ele-
ments [1], this might suggest that SSR origins are similar in
TE and non-TE regions. Evidence suggests that many
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transposable elements in the ‘dark matter’ portion of the
genome are not-so-easily-identifiable [32, 33], and it seems
likely that a large fraction of the remaining SSRs were gener-
ated through the action of the hard-to-identify old and frag-
mented elements. Due to the ability of an SSR locus to
maintain SSR character over long periods of time through
constant slippage and spawning, the SSR loci identified by
SSR-clouds may yet provide additional information in iden-
tifying the origins of ‘dark matter’ in the genome.

Methods

Annotation of perfect SSRs and surrounding regions
Oligonucleotide sequences representing all possible SSR
sequences were created in silico using a Perl script that
clusters alternate phases of the same SSR motif (ACT =
CTA =TAC) and reverse complements of each phase
into a single motif family. Perfect SSR repeat loci were
defined as uninterrupted tandem repeats of a single
motif family >12 bp in length, and perfect stretches sepa-
rated by 1bp or more non-motif nucleotides were con-
sidered different loci. Perfect SSRs, as defined above,
were annotated in an unmasked version of hg38. To
identify sequence bias in regions near perfect SSR loci,
each kmer (k-length oligonucleotide sequence) within
1000 bp of a perfect repeat locus was compared with the
kmers from different phases of the perfect motif. Mean
similarities to the closest repeat kmer were calculated
versus distance from locus boundaries, and distances be-
tween perfect SSR repeat loci were also recorded.

Constructing SSR-clouds

SSR-clouds were constructed similarly to cloud construc-
tion methods outlined in [32, 33] with modifications de-
scribed here. To construct p-clouds from SSR-flanking
regions we conservatively used 16-mer oligonucleotides
and considered only 50 bp on either side of a perfect re-
peat locus as a template for cloud formation. P-clouds for
each SSR motif family were constructed separately from
one another using a training set that consisted of a ran-
domly chosen subset of 90% of loci for each family, with
the remaining 10% of loci used as annotation tests. Loci
that were separated by fewer than 100 bp from other loci
of the same family were merged into a single locus before
cloud formation to prevent double counting oligos in the
regions between the loci. Following standard P-clouds for-
mation protocol [32], p-clouds were organized around 16-
mer core oligonucleotides, including every 16-mer oligo
with count above the threshold that was within one nu-
cleotide of the cloud core or any other oligo already in a
cloud. For each motif family, we created nested oligo-
nucleotide clouds using lower threshold counts for clouds
of lower stringency, such that all oligonucleotides of
higher stringency clouds were included in lower strin-
gency clouds. Perfectly repeated 12-mer oligonucleotides
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were also automatically added to the highest stringency
cloud. Different threshold counts were used as criteria for
inclusion in p-cloud sets for each motif family depending
on the total number of perfect loci used for cloud training,
though motif families with fewer than 100 loci in the
training set were not used in cloud building. These thresh-
olds, the number of loci used in cloud formation, and the
counts of unique oligonucleotides in each stringency level
are specified in Additional file 9: Table S4. Transposable
elements (e.g., Alu in humans) were not our targets but
are highly represented in regions flanking SSRs, and so all
transposable elements annotated by RepeatMasker [44]
(as found in the .out file ‘hg38 - Dec 2013 - RepeatMasker
open-4.0.5 - Repeat Library 2014013, found on the
RepeatMasker web server at http://www.repeatmasker.
org/species/hg.html) were removed prior to cloud forma-
tion. Because clouds were formed separately for each
family, individual oligonucleotides, including those repre-
senting perfect repeats, can belong to cloud sets for mul-
tiple families.

Annotation with SSR-clouds was performed in an
unmasked version of hg38 by simultaneously mapping
oligonucleotide clouds from all motif families, and then
merging loci within 5bp of each other into a single
locus. Annotations with merge distances of 0 bp and 30
bp were also performed and are presented as supple-
ments (Additional file 7: Table S2 and Additional file 8:
Table S3). After annotation, loci were ranked and sepa-
rated according to the highest stringency cloud found in
the locus. In analyses presented here that use only single
motif families, (poly-A and (AC),), annotation was per-
formed in the same way except that only oligonucleo-
tides created from that family were used.

Calculating false positive and false discovery rates

To obtain an estimate for how frequently SSR and SSR-
derived sequences may arise in the genome by chance, we
created a simulated genome using nucleotide and di-
nucleotide frequencies from sliding 1 Mb windows along
the human genome (hg38). The simulation proceeded by
randomly selecting nucleotides conditional on dinucleo-
tide frequencies. When the previous nucleotide was absent
or undetermined, a starting nucleotide was selected based
on independent single nucleotide frequencies. Prior to
creation of the simulated genomes, all regions annotated
as either a perfect SSR or annotated as transposable ele-
ments or other repeat regions by RepeatMasker were
masked so that nucleotide and dinucleotide frequencies
used in simulation would be representative of non-
repetitive portions of the genome. Because we expect that
some SSR and SSR-derived sequences may occur only
rarely using this simulation approach, the final simulated
genome used to determine false positive rates consists of
fifteen genomes that were simulated as described.
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With decreasing SSR-cloud stringency settings, there
are more oligonucleotides and they are increasingly di-
verse (see Fig. 4); because of this, oligonucleotides from
less stringent settings are expected to arise more fre-
quently by chance than oligonucleotides from high
stringency settings. In addition, regardless of stringency
setting, loci annotated with single oligonucleotides are
expected to arise by chance more frequently than longer
loci. We therefore calculated false positive rates for each
different stringency setting for each locus length.

SSR clouds were annotated in the simulated genomes
exactly as done for the actual genome. For each strin-
gency setting, false positive rates for each locus length
(or longer) were calculated as the cumulative amount of
simulated sequence annotated using that stringency of
SSR-clouds, divided by the amount of sequence ana-
lyzed. The length of a locus annotated by a given strin-
gency was considered to be the longest stretch of the
locus that was consecutively annotated by oligonucleo-
tides from that stringency. The false positive rates calcu-
lated from the simulated genome for each locus length
and cloud stringency category were then applied to SSR
loci in hg38 (see Additional file 5: Figure S5). False
discovery rates were then calculated as the expected cu-
mulative falsely annotated sequence, conservatively as-
suming the entire genome is not SSR, divided by the
observed cumulative length annotated for each setting.

Comparison with tandem repeats finder annotations
Tandem Repeats Finder (TRF) [31] version 4.07b was run
under the two parameter sets described in Warren et al.
2008 that were applied to the human genome (hg38) with
centromeres and telomeres masked. The two resulting an-
notation sets were merged to obtain the TRF annotation
used here. TRF SSR annotations were segregated into
groups by motif family and annotations within each family
were merged using BEDTools version 2.19.1 [45]. The BED-
Tools Intersect function was used to search for SSR-clouds
annotations that overlapped with TRF SSR annotations and
to determine the number of novel SSR-clouds annotations.

Intersection with poly-a regions of Alu elements for age
analysis

Full-length and non-concatenated Alu elements were ob-
tained by filtering RepeatMasker Alu annotations from the
hg38 assembly of the human genome. Relative ages of each
element (measured in inferred number of substitutions since
retrotransposition) were then estimated by applying the
AnTE method to this dataset [42]. We began with 823,789
individual full-length Alu elements, with each element hav-
ing an estimated age or retrotransposition relative to the
mean age of retrotransposition of all Alu elements. To
maximize the chances that the Alus tested still contained
their poly-A tail, we removed all Alus that were <275 bp
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or > 325 bp in length as well as those Alus that were within
50 bp of another TE. After filtering, 407,438 Alus remained.

The remaining Alu annotations were split into three
groups by age and roughly based on the major expan-
sions of AluY, AluS, and AlyJ. The youngest group con-
sisted of 57,873 Alu elements, ~97% of which are
classified as AluY by RepeatMasker, with a mean age of
0.51 relative to the mean age of all Alus. The second and
largest group, 99% of which are classified as AluS ele-
ments, consisted of 265,219 elements with a mean age of
0.92 relative to the mean age of all Alus. The third group
consisted of all Alu elements older than those included
in the first two groups, 90% of which are classified as
AluJ and 10% as AluS, and had 84,346 elements with a
mean age of 1.6 relative to the mean age of all Alus.

To ensure detection of only the poly-A region of Alu ra-
ther than other SSR-rich regions in Alu, we used the 30 bp
directly 3’ to each Alu tested for intersection. We used
BEDTools intersect (v2.19.1) [45] to count the number of
Alu elements that intersected each of the poly-A SSR anno-
tations, beginning with the highest stringency poly-A anno-
tations and proceeding to the lowest stringency annotations.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/513100-020-00206-y.

Additional file 1: Figure S1. Enrichment of SSRs in the human
genome. The mean enrichment of perfect repeats is shown relative to
expectation from single nucleotide frequencies. All SSR motifs of a given
length were clustered into groups, except that the Poly-A and poly-C sin-
gle nucleotide repeats are shown as separate lines. The enrichment is
shown for the number of repeats of a given size observed in tandem,
and the gray dashed lines indicate 10x, 100x, and 1000x enrichments.

Additional file 2: Figure S2. Separation distance between perfect SSRs
in the human genome. The frequency of pairs of perfect SSRs 212 bp
long with a given separation distance is shown. The separation distances
were binned into groups of 5. The results in A) are for a masked version
of the human genome, while B) shows results for an unmasked genome,
demonstrating the strong effect and particular features of transposable
element SSRs.

Additional file 3: Figure S3. Asymmetric similarity to poly-A. The fre-
quency of adenine nucleotides (A) at every site within 200 bp of perfect
poly-A repeats. The solid line shows the frequency of A in a human gen-
ome where all transposable elements have been masked and the dotted
line shows the frequency in an unmasked human genome. As a refer-
ence, the gray box represents a range of 3 standard deviations from the
mean frequencies of A calculated in 700 bp windows from 300 to 1000
bp away from both ends of all perfect repeats. The strongly varying fre-
quencies in the unmasked genome are mostly a symptom of the high
copy number of retroelements such as Alu and Linel. The asymmetric
frequency of A’s adjacent to perfect A repeats in the masked genome
likely reflects incomplete masking of transposable elements and the exist-
ence of other unmasked retrotransposed sequences in what would have
been the 5' region of the retrotransposed poly-A mRNASs.

Additional file 4: Figure S4. Cloud extension length distributions of
training and test loci. Locus length density plots of SSR loci containing
perfect repeats (black) and lengths after extension by mid- (red) and low-
stringency (blue) cloud sets. Solid lines depict the distributions of lengths
for training loci and dashed lines depict the almost perfectly overlapping
distributions of lengths for test loci.
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Additional file 5: Figure S5. Genomic SSR content annotated with
different merge distances and false discovery thresholds. The number of
bp in the human genome that were annotated by SSR-clouds under vari-
ous conditions are shown. With different merge distances and false dis-
covery thresholds. Three lines are shown for merge distances of 0 bp
(black), 5 bp (red), and 30 bp (blue), with the per-locus maximum false
discovery criterion on the X axis.

Additional file 6: Table S1. Summary statistics of perfect SSR loci in
hg38 for each SSR family.

Additional file 7 : Table S2. SSR-clouds recovery of Tandem Repeats
Finder (TRF) loci. SSR-clouds loci with a merge distance of 0 bp were di-
vided into 3 nested sets based on the most stringent oligo used to anno-
tate each locus and compared to TRF loci. Comparisons were also made
for SSR-clouds loci with FDR < 5%. Cells in the table report the number of
SSR-Clouds loci that overlap TRF loci and the number of bp within over-
lapping loci. We also report the number of novel SSR-clouds loci and bp.
Recovery percentages are reported relative to the total number of TRF
loci in each comparison category (Poly-A: 669,020; (AC),,: 148,607; All Mo-
tifs: 2,212,424) and total length in bp of the TRF loci (Poly-A: 18,468,468;
(AQ),: 7,403,867; All Motifs: 88,485,889).

Additional file 8: Table S3. SSR-clouds recovery of Tandem Repeats
Finder (TRF) loci. SSR-clouds loci with a merge distance of 30 bp were di-
vided into 3 nested sets based on the most stringent oligo used to anno-
tate each locus and compared to TRF loci. Comparisons were also made
for SSR-clouds loci with FDR < 5%. Cells in the table report the number of
SSR-clouds loci that overlap TRF loci and the number of bp within over-
lapping loci. We also report the number of novel SSR-clouds loci and bp.
Recovery percentages are reported relative to the total number of TRF
loci in each comparison category (Poly-A: 669,020; (AC)n: 148,607; All Mo-
tifs: 2,212,424) and total length in bp of the TRF loci (Poly-A: 18,468468;
(AO)n: 7,403,867; All Motifs: 88,485,889).

Additional file 9: Table S4. SSR-clouds construction summary.
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