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Abstract

samples from the same individuals.

other neoplasias.

Background: Gliomas are the most common primary brain tumors in adults. We sought to understand the roles of
endogenous transposable elements in these malignancies by identifying evidence of somatic retrotransposition in
glioblastomas (GBM). We performed transposon insertion profiling of the active subfamily of Long INterspersed
Element-1 (LINE-1) elements by deep sequencing (TIPseq) on genomic DNA of low passage oncosphere cell lines
derived from 7 primary GBM biopsies, 3 secondary GBM tissue samples, and matched normal intravenous blood

Results: We found and PCR validated one somatically acquired tumor-specific insertion in a case of secondary
GBM. No LINE-1 insertions present in primary GBM oncosphere cultures were missing from corresponding blood
samples. However, several copies of the element (11) were found in genomic DNA from blood and not in the
oncosphere cultures. SNP 6.0 microarray analysis revealed deletions or loss of heterozygosity in the tumor genomes
over the intervals corresponding to these LINE-1 insertions.

Conclusions: These findings indicate that LINE-1 retrotransposon can act as an infrequent insertional mutagen in
secondary GBM, but that retrotransposition is uncommon in these central nervous system tumors as compared to
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Background

Glioblastomas (GBMs) are the most common malignant
form of primary brain tumor in adults, and are typically
fatal. These are histologically aggressive gliomas, catego-
rized by the World Health Organization (WHO) as grade
IV astrocytomas; they are hypercellular with frequent mi-
totic figures, vascular proliferation and pseudopalisading
necrosis. Although morphologically indistinguishable, dis-
tinct primary and secondary types of GBM are recognized
clinically. Primary GBMs arise de novo, and usually
present as advanced cancers in patients over 50 years old.
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These are characterized genetically by amplification of
epidermal growth factor receptor (EGFR), loss of het-
erozygosity (LOH) on chromosomes 10q and 17p, and
phosphatase and tensin homologue (PTEN) mutation.
Secondary GBMs arise from preexisting low-grade tu-
mors over a period of a few years and are more com-
mon among younger patients. This class of tumors is
characterized by mutations in isocitrate dehydrogen-
ase 1 (IDHI) and p53 tumor suppressor genes as well
PDGFA amplification [1, 2].

Activation of endogenous transposable elements as a
mechanism of mutagenesis is being increasingly recog-
nized in human tumors. Retrotransposons are a class of
mobile genetic elements that use a ‘copy and paste’
mechanism to replicate in the genome through RNA
intermediates. Among these, the autonomous Long
INterspersed Element-1 (LINE-1 or Lls) are the most
active elements in humans [3]. Recently, methods have
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been developed to identify LINE-1 sequences in human
genomes that collectively underscore their ongoing po-
tential for retrotransposition in the germline [4-9] and
in malignancy [6, 10—18]. Recent studies have also impli-
cated LINE-1 expression and activity in normal brain
and in brain malformations and disease [19-22].

In this study, we mapped LINE-1 insertion sites in
GBMs and matched blood samples using a targeted
sequencing approach, Transposon Insertion Profiling
(TIPseq). We profiled oncosphere cell lines derived from
primary GBMs as compared to matched normal gen-
omic DNA from the same patients [23]. We also used
TIPseq to compare genomic DNA isolates from primary
and secondary GBMs and from normal blood DNA from
the same patients.

Methods

Consent statement

Blood and brain tumor tissue samples were obtained from
glioma patients who underwent surgery at the Johns
Hopkins Hospital under the approval of the Institutional
Review Board (IRB) and with consent. This study included
7 primary GBM and 3 secondary GBM patients.

Oncosphere cell cultures from primary glioblastoma

tissue

Fresh primary glioblastoma tissue was dissociated enzy-
matically using TrypLE (Gibco). The homogenized tissue
was passed through a narrow fire-polished Pasteur
pipette and 40 um cell strainer to obtain single cell
suspension. Primary cells were then plated at a density
of 1 x 10° viable cells in 25-cm® non-adherent flasks in
DMEM/F12 medium supplemented with 20 ng/mL of
human epidermal growth factor (EGF), and 10 ng/mL of
human fibroblast growth factor (FGF). Oncospheres of
approximately 100 um were passaged and replated.

Genomic DNA preparation and Vectorette PCRs

Genomic DNA from peripheral blood samples was iso-
lated using the QIAamp DNA blood mini kit (Qiagen).
Genomic DNA from tumor tissue and oncospheres was
isolated by Trizol homogenization, phenol-chloroform-
iso amyl alcohol extraction and ethanol precipitation.
Aliquots of ~0.5-2 pg of genomic DNA from each sam-
ple were digested individually with six different restric-
tion enzymes (Asel, BspHI, BstYl, Hindlll, Ncol, Pstl)
generating fragments averaging 1-3 kb in length. Vec-
torette matched with restriction enzyme sticky-end sites
were designed and ligated to the digested DNA frag-
ments. Vectorette PCR was performed using ExTaq HS
polymerase (Takara Bio) and a touch-down PCR pro-
gram to generate amplicons spanning the transposon
insertion end and the flanking unique genomic se-
quences [24, 25].
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Deep sequencing DNA libraries and quality control
Vectorette PCR products from each patient sample were
pooled, purified and fragmented to an average length of
300 bp using a Covaris E210. TruSeq DNA Sample
Preparation kit v2 (Illumina) was used for end-repair, A-
tailing, index-specific adapter ligation and PCR enrich-
ment. We size-selected our DNA fragments at ~450 bp
using 2 % Size-Select E-gels (Life Technologies) prior to
PCR. The enriched PCR products were purified and
checked for quality control using an Agilent Bioanalyzer.
The DNA libraries were pooled and submitted for
single-end or paired-end deep sequencing with Illumina
HiSeq 2000 platform either at Johns Hopkins high-
throughput sequencing center or the HudsonAlpha
Institute for Biotechnology (HudsonAlpha, Huntsville,
AL). The sequencing batch, facility, indexes, barcodes
and read lengths for each sample are provided in
Additional file 1: Table S1.

Computational analysis

Two analytical approaches were used. In the first, all
trimmed reads (75-100 bp) were first aligned to the hu-
man reference genome (hgl8) using Bowtie [26], and
cisGenome was used for identifying peaks. The peaks
were ranked based on the maximum base pair read
coverage. Unmappable reads from the Bowtie alignment
were used to identify the junctional reads. 35 bp from
each of the 5" and 3" end of the unmappable reads were
trimmed and aligned with the human reference genome.
Reads aligning uniquely with only one end to the gen-
ome were extracted and grouped together according to
the peak list using SAMtools. Those with at least six
consecutive As or Ts were used for further analysis to
enrich for transposon junctions. A maximum of 200
such junction reads per peak were used to generate the
consensus sequences using multiple sequence alignment
(MSA) and the bioperl AlignIO module. BLAT was used
to compare each consensus sequence to both the hgl8
reference genome and a 3" LINE-1 sequence with polyA
tail. Galaxy was used to identify lists of putative inser-
tions occurring in either a blood or tumor sample for an
individual and not both. The Integrative Genomics
Viewer (IGV) was used to visualize the read alignments
to the reference genome.

For secondary GBM TIPseq samples, a second ma-
chine learning algorithm analysis was also conducted
using paired-end read samples. Low quality sequences,
base pairs, and vectorette sequences were trimmed using
Trimmomatic software [27]. Qualified read pairs were
aligned to an L1Hs-masked reference genome (hgl9)
and the L1Hs consensus sequence using Bowtie2 soft-
ware. Candidate insertion sites were identified as peaks
with at least one junction-containing read pair. The ma-
chine learning model was trained on known LINE-1
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insertions using five sequencing features, namely the
peak width and depth; variant index for reads mapping
in the peak interval; the polyA tail purity; and the num-
ber of junction reads. The trained model was used to
predict probabilities of the candidate insertions being
the true insertion sites. This pipeline, TIPseqHunter, will
be reported in more detail elsewhere (Tang, Z., et al. in
review).

PCR validations and Sanger sequencing

Primers were designed to flank putative LINE-1 inser-
tion sites using Primer3 software. PCR products with
insertions were cut out of the gel and DNA was ex-
tracted using a QIAquick Gel extraction kit (Qiagen).
The purified PCR products were then sent for Sanger
sequencing to obtain the 5° and 3’ junction coordi-
nates, length and orientation of the inserted L1, and
target site duplication.

Copy number variation (CNV) and loss of heterozygosity
(LOH)

Genomic DNA samples extracted from primary glio-
blastoma oncosphere lines were run on an Affymetrix
Genome-wide Human Single Nucleotide Polymorphism
(SNP) 6.0 Array in the Johns Hopkins University School
of Medicine High Throughput Biology Center Microarray
Core facility. The fluorescent intensity values were used
by CNViewer and Partek software for copy number vari-
ant (CNV) and loss of heterozygosity (LOH) analysis.

Immunohistochemistry

Formalin-fixed, paraffin-embedded primary glioblastoma
tissue samples were analyzed for endogenous L1 ORF1p
expression as previously described [28, 29]. Briefly, 5-um
thick sections were deparaffinized and hydrated by bak-
ing at 65 °C for 20 min and then with xylene and ethanol
washes. Sections were heated at 98 °C in citrate buf-
fer for 20 min for antigen retrieval. Sections were
blocked at room temperature for 10 min and then in-
cubated with primary monoclonal mouse L1-ORFlp
antibody (1:1000 dilution) in Tris-buffered saline
(TBS), pH 7.2 with Tween 20 and 1%BSA overnight
at 4 °C. Sections were washed with TBS and incubated
with biotin-conjugated anti-mouse IgG for 10 min at
room temperature. Sections were developed with 3,3"-
Diaminobenzidine (DAB) chromagen mix, counter stained
with hematoxylin, dehydrated and coverslipped.

Results

Transposon insertion profiling

We obtained seven primary GBM samples from patients
50-65 years old (average age 57) as well as peripheral
blood draws from the same individuals. We established
oncosphere cultures to expand the tumor cells and
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extracted high molecular weight genomic DNA from
both the oncospheres and peripheral blood mononuclear
cells. Primary tissue directly from these resections was
available in sufficient quantity to assay directly for four
cases. We digested these samples with restriction en-
zymes, ligated vectorette oligonucleotides to their ends,
and selectively amplified LINE-1 genomic insertion sites
using vectorette PCR as previously described.

Vectorette PCR is a ligation mediated PCR that allows
for the amplification of unknown sequence downstream
of a sequence of interest. In this case, the PCR recovers
L1Hs or L1(Ta) insertions and the genomic sequence
immediately downstream. L1Hs are known to be the
most active LINE-1 in modern humans [4]; they are re-
sponsible for the most variation in human populations
as well as the largest proportion of de novo and somatic
LINE-1 insertions [3]. The specificity of this PCR for
L1Hs is imposed by the position of one of the amplifica-
tion primers located in the 3'UTR of the LINE-1 ele-
ments. The primer positioning is also advantageous
because it allows for the recovery of insertions that are
severely 5° truncated, a common feature of LINE-1
insertions.

In addition to the primary GBM oncosphere cultures,
we also acquired three secondary GBM samples and
matching blood samples from patients 33-53 years old
(average age 44). These tumors are less readily expanded
in vitro, so tissue from the resected tumors was used dir-
ectly to make genomic DNA for TIPseq in each case.
Figure 1 illustrates the TIPseq workflow and Additional
file 1: Table S1 summarizes the sequencing batches,
TIPseq library indices, and total reads obtained from
each sample for this study.

Germline LINE-1 insertions not found in oncosphere
cultures

We sequenced 14 TIPseq amplicons preparations from
primary GBM oncosphere cultures and matching per-
ipheral blood samples from 7 patients in 3 different se-
quencing batches. We compared TIPseq profiles from
blood and oncosphere samples for each individual, and
identified numerous putative LINE-1 insertions in the
blood samples that were absent from the corresponding
oncosphere cultures. We validated 11 of these by PCR;
in 8 we were also able to Sanger sequence the LINE-1
insertion and report both the 5" and 3’ ends and the tar-
get site duplication (Tables 1 and 2, Fig. 2a). Instances of
this occurred in six of our seven cases. The size of these
LINE-1 elements ranged from full-length insertions of
6059 bp to 5 truncated insertions as short as 684 bp.
Several of these were in gene introns, namely guanylate
cyclase 1, soluble, beta 2 pseudogene (GUCYIB2),
neuronal PAS domain 3 (NPAS3), the uncharacterized
KIAA159-like gene (KIAA1549L), sterile alpha motif
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Fig. 1 Transposon Insertion Profiling by sequencing (TIPseq)
workflow. High molecular weight genomic DNA was extracted from
primary and secondary glioblastoma (GBM) tumors, oncosphere
cultures expanded from primary GBM, and matched blood samples
from the same patients. Genomic DNA was then digested in six
parallel reactions each using one of a panel of restriction enzymes.
In the diagram, LINE-1 insertions are depicted as orange segments
of the genomic DNA; restriction enzyme cuts sites are illustrated
with different symbols. Vectorette oligonucleotides designed to
match each restriction enzyme sticky end were ligated to the DNA
fragments, and the 3’ ends of LINE-1 sequences and downstream
DNA were amplified. Genomic DNA fragments without binding sites
for the LINE-1 amplification primer are not enriched in this PCR.
Amplified DNA was then randomly sheared and prepared for

lllumina sequencing

domain 12 antisense RNA-1 (SAMDI2-ASI), and secl
family domain 1 (SCFDI). None were in exons.

One of these insertions, the LINE-1 at the KIAA1549L
locus, was found in two unrelated patient blood samples,
although it was absent from the corresponding onco-
sphere cell lines. Several others, including the insertions
at GUCY1B2, NPAS3, SAMDI12-AS1 and SCFDI loci
had been previously reported to be polymorphic LINE-1
insertions [30]. Knowing that these LINE-1 insertions
are segregating in human populations, we could not at-
tribute the discordance between blood and oncosphere
cell culture genotypes to somatically acquired insertions
resulting in mosaicism in these patients. Rather, it
seemed likely that these represented polymorphic and
heterozygous germline copies that were lost in the glio-
blastoma, e.g. by loss of heterozygosity.

Table 1 Candidate L1 insertions tested

Sample ID Tumor Blood

Primary glioblastoma

714 0/19 0/6
750 0/18 2/9
772 0/24 /11
832 0/9 1/19
847 0/8 2/6
897 0/2 4/23
922 0/11 1/7
Secondary glioblastoma

007 0/93+0/13 0/0
023 0/25 0/0
083 1/44 0/0

Number of candidate L1 insertions detected in either tumor or peripheral
blood DNA and tested by PCR from putative insertions in primary
glioblastoma cell cultures, secondary glioblastoma tissue and matched
blood samples

Numerators indicate numbers of productive PCR reactions. Denominators
indicate candidate loci tested. Non-zero numerators are in bold
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Table 2 PCR validated L1 insertions
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Sample ID  Chromosome 5" junction coordinate 3" junction coordinate L1 strand Length of inserted L1 Length of TSD Gene name CN LOH
Blood specific insertions

750 5 34495746 + 1 Y
750 13 50488000 50487984 + 4162 bp 17 bp GUCY1B2 1 Y
772 14 33209876 33209888 - 5422 bp 13 bp NPAS3 1 Y
832 10 31557469 31557476 - 6059 bp 8 bp . 1 Y
847 1 33626714 33626699 + 1281 bp 16 bp KIAAT549L 1 Y
847 1 94317493 - 1 Y
897 8 24982467 24982461 - 2845 bp 7 bp 2 Y
897 8 119790870 119790884 - 965 bp 15 bp SAMDI12AST 2 Y
897 13 85238154 85238150 - 684 bp 5 bp . 1 Y
897 14 30220577 - . . SCFD1 2 Y
922 11 33626714 33626699 + 1281 bp 16 bp KIAAT549L 1 Y
Tumor specific insertions

083 17 47881841 47881832 + 1839 bp 10 bp NT NT

List of L1 insertions validated by PCR in glioblastoma patients’ samples

TSD target site duplication, CN copy number, LOH loss of heterozygosity, NT not tested

To distinguish between sample contamination and the
possibility that these germline insertions had been lost
in the GBM cell lines, we assessed copy number and
heterozygosity in the oncosphere cell lines using Affyme-
trix SNP 6.0 microarrays. All LINE-1 insertions that we
detected uniquely in blood were indeed located in re-
gions where the corresponding oncosphere cell lines
showed loss of heterozygosity (LOH). LOH was seen at
some loci with maintenance of copy number (2n) and
was seen at others where deletions resulted in reduced
copy number (1n) (Table 2, Fig. 2b). We conclude that
our findings reflect deletions of genomic LINE-1 associ-
ated with LOH events that had occurred either in the
primary GBM or in vitro as oncosphere cultures of these
tumors were established.

No tumor-specific LINE-1 insertions in primary GBM

We found no evidence of somatically acquired, tumor-
specific insertions in primary GBM samples. We com-
pared the seven TIPseq profiles from oncosphere cul-
tures to those from matched peripheral blood gDNA.
Additionally, for four of these samples, we had suffi-
cient primary resected tumor to conduct tumor:nor-
mal comparisons without in vitro GBM expansion.
We used an analytical pipeline that ranks peaks by
numbers of contributing reads and manually reviewed
hundreds of candidates. Although most lacked evi-
dence of junction reads (i.e., reads spanning the 3’
end of the LINE-1 and adjacent, unique genomic se-
quence), we tested a total of 91 putative tumor-
specific insertions in spanning PCR assays and could
not detect any with a LINE-1 insertion (Table 1). This

is the same approach we used to identify somatically
acquired insertions in pancreatic ductal adenocarcinomas
and malignancies of the nearby tubular gastrointestinal
tract [13].

Infrequent tumor-specific LINE-1 insertions in secondary
GBM

LINE-1 sequences code for two proteins essential for
their retrotransposition; these are termed open reading
frame 1 and open reading frame 2 proteins (ORF1p and
ORF2p). We previously reported that about 33 % of
cases in a tissue microarray collection of glioblastomas
(GBM) express LINE-1 ORFlp [28]. This was higher
than for low grade gliomas. When we distinguished be-
tween primary and secondary GBM cases in this study,
it was clear that this frequency reflected the numbers of
secondary GBM cases included in our survey. These sec-
ondary GBMs showed the greatest proportion of LINE-1
ORF1p positivity by immunohistochemistry (74 %, n = 39).
Although many cases showed weak immunoreactivity, we
viewed this as evidence that perhaps these secondary
GBM tumors would be relatively permissive for retrotran-
sposition (Fig. 3a-b).

To test secondary GBM for somatically acquired
LINE-1 integrations, we obtained 3 tumor samples from
neurosurgical resections and matched peripheral blood
DNA from the same individuals. We analyzed these se-
quencing data using two approaches. For the first, we
used the same strategy described above which ranks
peaks on the basis of the numbers of contributing reads.
We manually reviewed these and identified a total of
162 putative tumor specific somatic insertions carried
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Fig. 2 TIPseq in primary glioblastoma GBM oncosphere lines and corresponding blood samples. a. TIPseq data. (Leftmost panel) The schematic
depicts a minus (-) strand L1 as a leftward facing orange arrow. The LINE-1 sequence ends with a 3" polyA tail, shown as a homopolymer of
thymine (T) on the complementary strand. The gray right triangle illustrates the shape of sequencing reads piling up (vertically, downward) when
mapped against in the reference genome (i.e., with genome coordinates depicted on the horizontal axis). (Central panel) TIPseq read alignments
corresponding to an insertion detected in blood and not the patient’s oncosphere cell line. The insertion is in an intron of the NPAS3 gene
(14913.1). Read depth is illustrated on the top (gray) and individual reads are represented as blue and red bars denoting orientation. (Rightmost
panel) An agarose gel electrophoresis of a validation PCR. The open arrowhead (lower) marks the pre-insertion allele and the solid arrowhead
(upper) marks the amplicon spanning the LINE-1 insertion. The insertion is detected in the blood (B) sample for this patient and not the
corresponding tumor cells (C). The LINE-1 is 5.4 kb. b. Copy number and loss of heterozygosity (LOH) studies on the oncosphere cell
lines. Results for chromosomes 8, 11 and 14 are shown in Circos plots. The seven samples are each depicted as two circular tracks of
data. The blue track indicates copy number; medium blue is diploid, darker blue shows amplifications, and lighter blue shows deletions.
The orange track highlights regions with LOH. (Leftmost circle) Two insertions on chromosome 8 are marked with arrowheads at 25 and
120 MB; both were identified in a blood sample and not the corresponding patient’s oncosphere cell line, which showed a copy neutral
LOH of the entire chromosome (847). (Central circle) Three LINE-1 insertions on chromosome 11 found in blood only are marked; two are
the same insertion at 33.6 MB found in two different patient samples (847, 922). Both tumor cell lines had deletions with copy number
decreases and LOH at this site. One of these cases (847) also had loss of material near 94.3 MB associated with deletion of a second
LINE-1. (Rightmost circle) Two LINE-1 are marked with arrowheads at 30.2 and 33.2 MB on acrocentric chromosome 14. These were found
in genomic DNA from blood, but were lost owing to LOH in the corresponding oncosphere lines (897, 772)

chr14

forward to validation studies (Table 1). Although most
lacked evidence of junction reads (i.e., reads spanning
the 3" end of the LINE-1 and adjacent, unique genomic
sequence), we tested these in spanning PCR assays.

We validated a single tumor-specific insertion at
17q22. Sanger sequencing showed that this insertion
had all of the features of a LINE-1 retrotransposed by
target primed reverse transcription (TPRT). The elem-
ent has an intact 3" polyA tail and 3" LINE-1 se-
quence and is flanked by a 10 bp target site
duplication. The insertion is 5° truncated to a length
of 1839 bp, which includes a 662 bp inversion of its
5" end (Fig. 3c-f). These features are characteristic of

many somatically acquired LINE-1 insertions [13].
The insertion is intergenic, and to our knowledge, no
heritable or somatically acquired element variants have
been reported at this position.

To confirm this finding and more thoroughly review
the entirety of these data, we also analyzed these se-
quences using a more advanced machine learning based
approach. This algorithm combines five types of infor-
mation at each locus to identify insertions. The pipeline
imposes requirements for 3’ LINE-1 sequence and in-
corporates metrics to reflect the quantity, quality, and
distribution of read alignments to the reference genome
as well as measures of polyA tail purity and the numbers
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marks the pre-insertion allele and the solid arrowhead (upper) marks the amplicon that spans the LINE-1 insertion. The insertion is detected in the
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for the LINE-1 insertion is shown in colored text: flanking unique genomic DNA (black), target site duplication (red), LINE-1 5" inversion (blue), and
LINE-1 3" sequence and polyA tail (orange). Lowercase letters denote lower quality basecalls. These were confirmed by manually examining the

of junction reads. It is trained on known LINE-1 inser-
tions recovered within the same run of the same sample,
and then used to predict other insertions. The outcome
was 26 low probability insertions called in one sample
(007); no predicted somatic insertions in the second
sample (029); and only the chrl7q22 insertion in the
third sample (083). For samples 029 and 083, this out-
come agreed perfectly with our previous PCR valida-
tions. In light of these new predictions for sample 007,
we designed 13 additional pairs of spanning PCRs to test
half of the 26 putative insertions. Gel electrophoresis of

these PCR products provided no support for somatically
acquired transposition events. All amplicons matched
the predicted sizes for an empty site.

Thus, although we examined only a few cases of sec-
ondary GBM, our data suggest that somatic LINE-1 ret-
rotransposition is not prominent in these malignancies.

Discussion

Somatic retrotransposition of LINE-1 leading to cancer
was first described by Miki et al. in 1992 [31]. It would
take more than 20 years to demonstrate the potential of
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next generation sequencing technologies to find such
events [6]. Since that time, progress has been quick, with
both targeted and whole genome sequencing demon-
strating LINE-1 instability in a large number of human
cancers. Chief among these has been the gastrointestinal
tract tumors, including colon [10, 12, 15], esophagus
[32, 33], hepatocellular carcinomas [11], and pancreatic
ductal adenocarcinomas [13]. Lung and ovarian cancers
also demonstrate LINE-1 retrotransposition [6, 14, 17, 18].
In contrast, surveys of selected hematolymphoid tumors
and glioblastomas have indicated that these malignancies
are not as prone to somatic LINE-1 reintegration [14].

To test this conclusion using a targeted sequencing
approach, we profiled LINE-1 insertion sites in 10 cases
of GBM. Our samples included 7 primary GBM cases;
each was represented by an oncosphere cell line, and 4
primary GBM tissue biopsies were also assayed. We also
profiled LINE-1 insertions in 3 secondary GBM tissue
samples. In each case, normal brain tissue was not avail-
able for comparison, and peripheral blood draws were
used to infer the normal genetic make-up of LINE-1 in
each of these individuals.

We found no evidence of somatically acquired LINE-1
insertions in primary GBM cases in this study. We do
not think that this is attributable to limitations of our
assay. In previous studies, the same assay and analyses
in our hands have been effective in detecting somatic
LINE-1 insertion [13] (Zuojian Tang, et al. in review).
Indeed, in this study, our approach was effective in
identifying LINE-1 insertions deleted in loss-of-
heterozygosity events, which effectively shows that we
can detect elements present in one sample and absent
from the other. Similar targeted sequencing studies, per-
formed by an orthogonal method, reported in Mobile
DNA by the Faulkner laboratory also reveal no canonical
LINE-1 retrotransposition events (Carreira, et al. MDNA-
D-16-00017).

Our work does suggest an interesting distinction be-
tween primary and secondary GBM. Unlike primary
GBM, a majority of secondary GBM cases show some
immunoreactivity for the LINE-1 encoded RNA binding
protein ORF1p. Here, we also report finding a single, ap-
parently somatically-acquired LINE-1 insertion in a case
of secondary GBM. This insertion has several sequence
features to indicate it resulted from a canonical, LINE-1
retrotransposition event. It is a 5° truncated LINE-1 in-
sertion, with a 5" inversion and a 3" polyA tail; the inser-
tion is flanked by a short target site duplication.

When this LINE-1 was acquired is an open question.
Our finding of increased ORF1p in secondary GBM im-
plies that these tumors may provide a cellular context
permissive for LINE-1 expression and retrotransposition
that is unlike the normal adult brain or primary high
grade gliomas. Although we favor this possibility, there

Page 8 of 9

is also evidence for somatic retrotransposition in the
central nervous system as well as genetic variation
within the brain reflecting retrotransposition events in
early development. Since in all cases, we used blood as
the germline comparison, genetic mosaicism antedating
tumor initiation cannot be excluded. In either scenario,
we presume that this LINE-1 integration has had no dir-
ect role in promoting tumor development in this case; it
is an intergenic insertion several tens of kilobases away
from the nearest gene and in a location with no recog-
nized significance for the development of brain cancer.

Conclusions

Our findings indicate that LINE-1 retrotransposon
events are infrequent in glioblastomas. While examples
of driving mutations mediated by target-primed reverse
transcription (TPRT) are being recognized in some types
of malignancies, we expect these to be relatively uncom-
mon in glioblastoma.

Additional file

Additional file 1: Table S1. Sequencing information and statistics.
(XLS 33 kb)
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