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Abstract

Background: Retrotransposed genes are different to other types of genes as they originate from a processed mRNA and
are then inserted back into the genome. For a long time, the contribution of this mechanism to the origin of new genes,
and hence to the evolutionary process, has been questioned as retrogenes usually lose their regulatory sequences upon
insertion and generally decay into pseudogenes. In recent years, there is growing evidence, notably in mammals, that
retrotransposition is an important process driving the origin of new genes, but the evidence in insects remains largely
restricted to a few model species.

Findings: By sequencing the messenger RNA of three developmental stages (first and fifth instar larvae and adults) of the
pest Helicoverpa armigera, we identified a second, intronless, long-wavelength sensitive opsin (that we called LWS2). We
then amplified the partial CDS of LWS2 retrogenes from another six noctuid moths, and investigate the phylogenetic
distribution of LWS2 in 15 complete Lepidoptera and 1 Trichoptera genomes. Our results suggests that LWS2
evolved within the noctuid. Furthermore, we found that all the LWS2 opsins have an intact ORF, and have an
ω-value (ω = 0.08202) relatively higher compared to their paralog LWS1 (ω = 0.02536), suggesting that LWS2
opsins were under relaxed purifying selection. Finally, the LWS2 shows temporal compartmentalization of expression.
LWS2 in H. armigera in adult is expressed at a significantly lower level compared to all other opsins in adults; while in
the in 1st instar stage larvae, it is expressed at a significantly higher level compared to other opsins.

Conclusions: Together the results of our evolutionary sequence analyses and gene expression data suggest that LWS2
is a functional gene, however, the relatively low level of expression in adults suggests that LWS2 is most likely not
involved in mediating the visual process.
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Findings
Background
Gene duplication is a fundamental process in genome
evolution generating new biological functions and pro-
moting adaptation to the changing environment [1–6].
The classical model predicts that after gene duplication,
one of the two genes usually degenerates in a few million
years, or, in rare cases, one of the duplicates might evolve
new gene functions [7]. There are four well established
mechanisms by which the DNA duplicates. These are: 1)
unequal crossing-over, 2) duplicative (DNA) transposition,

3) polyploidization, and 4) retrotransposition [8]. The con-
tribution of these mechanisms, (with the exception of
retrotransposition) to the origin of new genes is well-
established. Retrotransposition is different to the other
three mechanisms as it includes an intermediate RNA
step. That is, a mature mRNA is reverse transcribed into a
complementary DNA copy without introns and then
inserted back into the genome randomly [9]. The location
of insertion is presumed to be random, thereby implying
that the copy usually lacks the regulatory apparatus
responsible of driving the correct gene expression. This is
one of the main reasons why, until recently, retrotran-
sposed genes were not considered to be functional
[10–12]. However, recent work has challenged this
view suggesting that several retrotransposons have
been important for the evolution of novel phenotypes
[9]. Interestingly, Marques et al. proposed that between
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0.5 and two retrogenes are fixed every million years in flies
and mammals, respectively [13–15]. The integration of
statistical and molecular methods can be employed to as-
sess the retrotransposons functionality. As reviewed by
Kaessman et al. [16] a ratio between non-synonymous and
synonymous mutation (ω value) of less than 1 suggests
that the gene is under selection and hence still functional.
Additionally, other features such as the presence of an
open reading frame (ORF), conserved sequence to other
species and expression (e.g. qPCR or RNA-seq) are indica-
tive of their functionality.
Opsins are a subfamily of G-protein coupled receptors

crucial for the visual process in all the metazoans [17].
In insects, this process is mediated by four paralogs:
Long wave sensitive (LWS), Ultraviolet sensitive (UV),
Blue sensitive (B) and probably Rh7 [18, 19]. Addition-
ally, it is believed c-opsin might be involved in circadian
rhythms [20]. Mechanistically, photoreceptors expressing
opsin of different wavelengths signal to the brain, which
then perceive colours [21]. The type of wavelength and
the separation between maximum peak of absorbance de-
fines the visual capability [18, 19, 22]. Opsin retrotranspo-
sons have been identified in various species, including the
diurnal moth Callimorpha dominula (superfamily Noctui-
dea) [19], the jellyfish Tripedalia cystophora [23], in cepha-
lopods [24], and in teleost fish [25].
In this work, we investigated the evolutionary history of

an opsin retrogene in 7 species of nocturnal moth (Noc-
tuidea). Firstly, we sequenced the whole transcriptome for
3 different developmental stages and adults of the pest
Helicoverpa armigera, including first instar larvae, fifth in-
star larvae and adults. We identified that in addition to
the traditional opsin repertoire (LWS, B and UV), H.
armigera possesses a second intronless LWS gene (that we
call LWS2). Subsequently, we investigated the phylogen-
etic distribution of this gene in six other Noctuidea spe-
cies, one Crambidae, 15 Lepidoptera and 1 Trichoptera
species. Our results suggest that 1) LWS2 evolved within
Noctuidea and 2) the ω-value is less than 1, suggesting a
relaxed purifying selection acting on LWS2. Finally,
expression levels of LWS2 in H. armigera strongly differ
between developmental stages, suggesting that most likely
this gene is not involved in the visual process.

Material and methods
Transcriptome, annotation and opsin identification
Using RNA-Seq, the transcriptome of the whole bodies of
first instar larvae (four groups and n = 30 for each gourp),
fifth instar larvae (four groups and n = 10 for each group),
and adults (four gourps and n = 10 for each group) of the
nocturnal moth H. armigera was sequenced with paired-
end and 100-nt read length on the channels of an Illumina
HiSeq™ instrument. Assembled contigs were annotated
using BLASTx to align with the database of NR, String,

Swissprot and KEGG (see Additional file 1 for details). The
RNA-Seq data were submitted to the NCBI GEO database
(accession number: GSE86914). Primers were designed
and PCR undertaken to (Additional file 1: Table S4) amp-
lify the full-length cDNA of LWS2. To understand whether
this duplication was specific to H. armigera or species from
Noctuidae, we amplified LWS2 in six other species of
Noctuidae moth: Agrotis ypsilon, Agrotis segetum, Mames-
tra brassicae, Mythimna separata, Spodoptera exigua,
Spodoptera litura and one species of Crambidae: Ostrinia
nubilalis. Additionally, we employed BLASTn algorithm to
investigated the presence of LWS2 in other 15 complete
Lepidoptera and 1 Trichoptera complete genomes from
LepBase [26], spanning at total of 12 insect families
(see Additional file 1: Table S5). Sequences were identi-
fied as follow: LWS1 and 2 were used as seed in a BLASTn
search. Each sequences with an e-value <10−20 was retained
a putative good opsin. To discriminate between opsin and
other GPCRs after the translation in protein using Transla-
torX [27] and using InterProScan we identified all the
sequences with the retinal binding domain.

Alignment, phylogenetic and evolutionary analysis
The data set including the newly identified LWS2 from
Noctuidea, Callimorpha domicula opsins, Ostrinia
nubilalis opsins and putative LWS2 from LepBase (81
sequences in total available in Additional file 2) was
aligned using the codon model as implemented in
PRANK [28]. The resulting alignment was manually cu-
rated to remove gap-rich regions. GTR-G was identified
as the best-fitting substitution-model accordingly to the
AIC as implemented in Modelgenerator [29]. The phylo-
genetic reconstruction was performed using Maximum
likelihood (ML) using Iqtree [30] and confirmed using
Bayesian analysis (BA) under site heterogeneous model
CAT-G model as implemented Phylobayes 3.3e [31]. In
ML reconstruction the nodal support was evaluated using
UltraFast bootstrap (BS) and abayes (aBS) [32] while in
BA using the Bayesian posterior probability (PP). In the
BA the convergence among chains was estimated using
bpcomp and chains were considered converged when the
maxdiff value was < 0.3. The phylogenetic analyses were
performed using a rooted tree i.e. the LWS tree was
rooted using Rh7, UV and Blue opsin. Finally, in order to
account for the possible misleading effect of using distant
related outgroup, we repeated the analyses without
outgroup.
In order to estimate whether LWS2 is under evolu-

tionary constraint we estimated the ratio between non-
synonymous and synonymous substitutions (ω-value)
using a maximum likelihood approach [33] as imple-
mented in CODEML [34]. If the ω < 1, this is indicative
of purifying selection However, if the retrogenes were
under relaxed purifying selection, we expect an elevated
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Fig. 1 Maximum likelihood under GTR-G. Support values at nodes are from left to right aBayes, Ultrafast bootstrap and Bayesian Posterior Probability.
LWS2 opsins of noctuid species denoted in red color. Noctuidae LWS1 opsins denoted in green color
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ω-value relative to its paralog LWS1, which suggests that
it may be neo-functionality or sub-functionalization. We
evaluated five hypotheses: (1) one ω-ratio for all
branches (one-ratio model; assuming that all branches
have been evolving at the same rate); (2) ω-ratio = 1 for
all branches (neutral model; neutral evolution for all
branches); (3) moth LWS2 lineage and LWS1 lineage
have different ω-ratio (ω2 and ω1; two ratio model; allow-
ing foreground branch to evolve under a different rate); (4)
neutral evolution for moth LWS2 lineage (ω2 = 1); and (5)
the free-ratio model with free ω-ratio for each branch. In
addition, we used branch-site models: moth LWS2 lineage
was defined as the foreground, rest lineages were defined
as the background branch, and these were then specified in
the tree file by using branch labels. Likelihood-ratio test
(LRT) was employed to determine if the alternative model,
indicating positive selection, was superior to the null
model. We also performed CODEML test on H. armigera
LWS2 lineage to see if nature selection acted on any of the
LWS2 branches.

Quantitative expression of opsin
To test the expression of the opsin in H. armigera, we
investigated the relative level of expression in the 3
different developmental stages using fragments per kilo-
base of exon per million fragments mapped (FPKM)
[35]. Differential gene expression between paralogs at
different developmental stages was evaluated using STATA
v.9.0 and ANOVA. Bonferroni multiple comparisons were
used to determine the level of significance between the
relative levels of mRNA expression.

Results and discussion
We obtained about 4 gigabase (Gb) of sequence each
sample from the RNA-Seq (total 63 Gb for 12 samples),
and a total of 99,711 contigs (See Additional file 1 for

details; with a total of 73, 709 unigenes). Using func-
tional annotation, we were able to identify that in
addition to the traditional insects opsin genes of LWS,
UV and Blue [19, 36]. H. armigera possesses an add-
itional opsin gene, named LWS2. Using PCR we con-
firmed the presence of this gene in H. armigera and in 6
other Noctuidea species. The phylogenetic analysis
displayed in Fig. 1 supports the paralog relationship
between the newly identified opsin and LWS2 from
other species and LWS1 (PP = 0.76, BS = 1, aBS = 100,
see Fig. 1). Additionally, our phylogenetic trees suggests
that LWS2 orthologs are present only in Noctuidea. The
analysis of the intron content suggests that while LWS1s
noctuid species have seven introns, no introns are
present in the LWS2s (Additional file 1: Figures S2a and
S2b), this finding together with the monophyly of LWS1
and 2 suggests that the later (i.e. LWS2) originated as a
retrocopy from LWS1 [8, 16]. Furthermore, our results
strongly support the monophyly of intronless opsin in
Noctuidea (PP = 0.9, BS = 100, aBS = 1) (Fig. 1). The tree
topologies are invariant in respect to the sequences
used for rooting the tree (compared to Additional file
1: Figures S3, S4, S5 and S6).
In the next section, we investigated whether these

LWS2 are functional. First we observed that all the
LWS2 genes identified in this study have intact ORFs
(see Additional file 1: Figure S2) arguing in favor of
LWS2 functionality. Furthermore, our results suggest
that LWS2 have an ω-value <1 (ω = 0.08202) indicating
that is evolving under purifying selection as expected in
functional genes. Finally we did not detect signal of posi-
tive selection acting on LWS2 (Table 1). These findings
together indicate that LWS2 it is a functional genes.
Subsequently, we investigated whether the LWS2

might contribute to the evolution of visual capability in
Noctuidea. The data from RNA-seq expression level in

Table 1 Selective patterns for LWS opsins

Model npa Ln Lb Estimates of ω Models compared LRTc P Values

Branch model

A: one ratio 175 −41372.52 ω = 0.06527

B: one ratio ω = 1 174 −47529.36 ω = 1 B vs. A 12313.68 0.0

C: the LWS2 branch has ω2, the LWS1 branch has ω1 177 −41347.92 ω2 = 0.08202 A vs. C 49.2 0.0

ω1 = 0.02536

D: the LWS2 branch has ω2 = 1 176 −41783.48 ω2 = 1 D vs. C 871.12 0.0

ω1 = 0.02515

E: each branch has its own ω 347 −41045.37 Variable ω by branch A vs. E 654.3 0.0

Branch-site models

G: the LWS2 branch 178 −41152.48

H: the LWS2 branch has ω = 1 177 −41152.48 H vs. G 0.0 1.0
aNumber of parameters
bThe natural logarithm of the likelihood value
cTwice the log likelihood difference between the two models
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H. armigera suggested that LWS1, and more generally
UV and Blue opsins in H. armigera, were significantly
higher expressed in adults than LWS2 (Fig. 2a). The re-
sult suggested that LWS2 migth be not involved in the
visual system of the adult. However, surprisingly, LWS2 in
1st-instar larvae has an higher relative level of expression
compared to the other three opsins (Fig. 2b). The reasons
for higher level of expression of LWS2 at the 1st-instar lar-
vae are unclear. This finding is conceivable with a function
of LWS2 other than vision [37, 38], another alternative is
that observed level of expression represents transcrip-
tional noise. The retrotransposed opsins are expressed as
results of transcriptional activity in the new genomic loca-
tion. However, additional experiments would be necessary
to clarify between the competing hypothesis.
In conclusion we report the existence of LWS2, origin-

ating as retrocopies from LWS1, in seven moths from the
superfamily Noctuoidea. Furthermore, the intact ORF, the
ω < 1, the phylogenetic conservation and expression inde-
pendently suggests that LWS2 opsins are functional.

Additional files

Additional file 1: Materials and methods Detailed description of materials
and methods used in RNA-seq and PCR amplification. Results Description
of the results in RNA-seq and PCR amplification. Table S1. Summary of the
sequence assembly after Illumina sequencing. Table S2. The opsin genes
from H. armigera by RNA-seq. Table S3. The FKPM values of opsin genes in
H. armgiera. Table S4. Primers used in this study. Table S5. The species with
complete genome sequence used in this study. Figure S1. The discription
of RNA-seq. (a) The distribution of sequences length. (b) The E-value
distribution of the top matches in the nr database. (c) The species
distribution of the matches in the nr database. (d) The sequence similarity
distribution. Figure S2. The genomic sequence of LWS opsins in seven
noctuid species. (a) LWS1 opsins showed seven introns. (b) The fragments
od LWS2 opsins from seven noctuid species showed no introns in the
region. The red letters showed the homology region of primers for
amplifying partial sequence of LWS2 using DNA as templete. The introns
are shaded. “.” = identical nucleotides; “-” = absence of nucleotides. AS =
Agrotis segetum, AY = Agrotis ypsilon, HA = Helicoverpa armigera, MB =
Mamestra brassicae, MS =Mythimna separata, SELWS1 = Spodoptera exigua,
SL = Spodoptera litura. (c) The genomic sequence of LWS1 in O. nubilalis. (d)
The genomic sequence of LWS2 in O. nubilalis. The exons were showed
using black letters and the introns were showed using red letters. Figure
S3. Maximum Likelihood tree with outgroup. Figure S4. Bayesian tree with
outgroup. Figure S5. Maximum Likelihood tree with outgroup. Figure S6.
Bayesian tree with outgroup. (DOC 2650 kb)

Additional file 2: Alignment of sequences used in this study. (PHY 100 kb)
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