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Abstract

The number of software tools available for detecting transposable element insertions from whole genome
sequence data has been increasing steadily throughout the last ~5 years. Some of these methods have unique
features suiting them for particular use cases, but in general they follow one or more of a common set of
approaches. Here, detection and filtering approaches are reviewed in the light of transposable element biology
and the current state of whole genome sequencing. We demonstrate that the current state-of-the-art methods
still do not produce highly concordant results and provide resources to assist future development in transposable
element detection methods.
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Background
It has been 27 years since Haig Kazazian, Jr. published
the seminal observation of active LINE-1 retrotransposi-
tion in humans [1], and 14 years since the initial publica-
tion of the assembled human genome reference
sequence gave us a genome-wide view of human trans-
posable element content, albeit largely from one individ-
ual [2]. Because LINEs, Alus, and SVAs are actively
increasing in copy number at estimated rates of
around 2-5 new insertions for every 100 live births
for Alu [3–5], and around 0.5-1 in 100 for L1 [4–7],
it stands to reason that the vast majority of transposable
element insertions are not present in the reference gen-
ome assembly and are detectable as segregating structural
variants in human populations.
Identification of transposable element insertions (TEs)

from the results of currently available high-throughput
sequencing platforms is a challenge. A number of tar-
geted methods are available to sequence junctions be-
tween TEs and their insertion sites, and have been
reviewed elsewhere [8–10]. Similarly, there are several
methods used for transposable element identification
and annotation from genome assemblies, also reviewed
elsewhere [11–15]. This review focuses on methods for
discovering and/or genotyping transposable elements

from whole genome sequence (WGS) data. The majority
of the WGS data available today comes from Illumina plat-
forms and consists of millions to billions of 100-150 bp
reads in pairs, where each read in a pair represents
the end of a longer fragment (Fig. 1a). Detection of
small mutations, single-base or multiple-base substitu-
tions, insertions, and deletions less than one read
length, is achievable through accurate alignment to
the reference genome followed by examination of
aligned columns of bases for deviations from the ref-
erence sequence. Detection of structural variants is
more difficult, principally because using current whole
genome sequencing methods, the presence of rear-
rangements versus the reference genome must be in-
ferred from short sequences that generally do not
span the entire interval affected by a rearrangement.
Typically, structural variant detection from short
paired-end read data is solved through a combination
of three approaches: 1. inference from discordant
read-pair mappings, 2. clustering of ‘split’ reads shar-
ing common alignment junctions, and 3. sequence as-
sembly and re-alignment of assembled contigs [16].
Transposable elements represent a majority of struc-

tural insertions longer than a few hundred base pairs
[17], and require a further level of scrutiny on top of
what is normally required for SV detection, which is in-
formed by their insertion mechanism. This review is
principally concerned with the detection of non-Long
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Terminal Repeat (LTR) retrotransposons in mammalian
genomes, but many of the concepts should generalise to
other transposable element types in other species. Re-
garding the mechanism of insertion, non-LTR retrotran-
sposition in mammals is driven by the activity of Long
INterspersed Elements (LINEs) which replicate through
an mRNA-mediated series of events known as target-
primed reverse transcription (TPRT) [18]. There are a
number of important features of TPRT which one must
be cognisant of when devising methods for detecting
retrotransposon insertions. First, a message must be
transcribed, and it seems that 3' polyadenylation is a ne-
cessary feature for recognition by poly-A binding pro-
teins associated with the L1 Ribonuclear Particle (RNP)
[19–22]. This does not necessarily mean that the
message must be Pol II transcribed: for example, Alu el-
ements are Pol III transcripts [23]. Insertions are proc-
essed transcripts: the cultured cell retrotransposition
assay relies on this fact, as there is an intron in reverse-
orientation to the reporter gene in these assays, which is
spliced out when the construct is transcribed [24]. Add-
itionally, the detection of processed pseudogenes uses
the presence of splice junctions between coding exons as
a defining feature [25, 26]. Polyadenylation at the 3' end
of inserted L1 and SVA sequences is generally observed,
and shorter A tails also exist on the 3' end of Alu
insertions.
Target-site duplication (TSD) is a feature of TPRT that

is necessary to consider when detecting novel insertions.
The ORF2 endonuclease cleavage is staggered, meaning

there is some distance, typically 7-20 base-pairs [27], be-
tween the cut sites in the top strand and bottom strand.
Some software tools have been developed specifically to
detect TSDs [28, 29]. Once the insertion site is fully re-
solved at the end of TPRT through mechanisms that
likely include host DNA repair but are incompletely
understood, the sequence between the cut sites appears
on either site of the new insertion. Although insertions
without TSDs do occur due to co-occurring deletions at
the target site (about 10 % of insertions) [30, 31], or via
the endonuclease-independent pathway [32], the vast
majority of new insertions occurring through TPRT have
TSDs, and these can generally be readily identified
through sequence analysis methods when identifying
novel insertions.
Insertion of transduced sequences is another feature of

transposable element insertions that may be detected
computationally and is important to consider when
applying or designing methods for insertion detection.
When sequences immediately adjacent to the transpos-
able elements are transcribed up- or down-stream as
part of the TE message, both the TE RNA and non-TE
RNA will be reverse transcribed and integrated into the
insertion site as a DNA sequence [33–35]. As LINE in-
sertions are often 5' truncated [36, 37], sometimes trans-
duced sequences are all that is left of a message with a
severe 5' truncation. As a result, in some instances an in-
sertion may contain no recognizable transposable elem-
ent sequence, but the mechanism can be surmised from
the presence of the poly-A tail and TSDs [38].

Fig. 1 Read mapping patterns typically associated with insertion detection. Panel a shows the read mapping patterns versus a reference TE
sequence (grey rectangle, top) and the mapping of the same reads to a reference genome sequence (orange rectangle, bottom). Reads are
represented as typical paired-end reads where the ends of each amplicon are represented as rectangles and the un-sequenced portion of the
amplicons are represented as bars connecting the rectangles. Reads informative for identifying TE insertion locations are indicated by dashed
boxes, other read mappings to the TE reference are shown in light blue boxes. Within the informative reads, reads or portions of reads mapping
to the TE reference are coloured blue, and mappings to the reference genome sequence are coloured yellow. The exact location of this example
insertion is indicated by the red triangle and the dashed line. Assembly of the reads supporting the two junction sequences is indicated to the
right of the ‘consensus’ arrow, one example with a TSD and one without. If a TSD is present, the insertion breakends relative to the reference
genome are staggered, and the overlap of reference-aligned sequence corresponds to the TSD. If a TSD is not present (and no bases are deleted
upon insertion), the junctions obtained from the 5' end and the 3' end of the TE reference will match exactly. Panel b shows a typical pattern of
discordant read mappings across a genome - the colored segments in circle represent chromosomes, each black link indicates a discordant read
mapping supporting an insertion at the position indicated by the red triangle. The endpoints not corresponding to the insertion site map to TE
elements at various locations in the reference genome
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Roughly 1 in 5 LINE insertions will have an inversion of
the 5' end of the element due to a variant of the TPRT
mechanism known as ‘twin-priming’, where two ORF2
molecules reverse-transcribe the L1 RNA from different
directions, resulting in an insertion with a 5' end inver-
sion. [39]. This is an important consideration when de-
signing methods to identify insertions of these sequences,
as the relative orientation of the 5' end is not predictable
and filtering putative insertion sites without taking this
into account may lead to a 20\% higher false negative rate
for LINE detection from the 5' end.
Finally, maybe the most important feature of transpos-

able element insertions that impacts methods used for
their detection is simply their repetitive nature in the con-
text of the reference genome: due to repeated copy-and-
paste operations through TPRT, there are thousands of
elements from each active class of transposable element
present in the human genome. This is the key factor that
makes accurate detection of transposable element inser-
tions difficult: read pairs mapping to the insertion site will
have paired ends that map to various locations throughout
the reference genome where instances of the inserted
element type are present (Fig. 1b). The presence of many
copies of an element in the genome also confounds detec-
tion of new copies of that element by introducing false
positives where what appears to be a novel insertion may
actually just be a mapping artefact of an existing transpos-
able element present in the reference genome.

Review
Given whole genome sequence (WGS) data, there are
three basic approaches to looking for non-reference in-
sertions that are often used together, integrating support
from each approach: discordant read-pair clustering,
split-read mapping, and sequence assembly. It bears
mentioning that all of these are not applicable to every
WGS method; read-pairs are not necessarily present de-
pending on the library preparation method or sequencing
technology. Currently, the most widespread approach to
WGS is via Illumina HiSeq technology using paired-end
reads. In the future, as methods for long-read sequencing
mature, new computational methods for insertion detec-
tion may be required, or previous methods for detecting
insertions from capillary sequence or comparative whole-
genome assemblies [4] may be repurposed.

Discordant read-pair mapping
A discordant read pair is one that is inconsistent with
the library preparation parameters. During library prep-
aration, genomic DNA is sheared physically or chem-
ically, and fragments of a specific size are selected for
library preparation and sequencing. Given an expected
fragment size distribution, anything significantly outside
of that range may be considered discordant. What is

significantly outside of the expected range of fragment
sizes can be determined after sequencing and alignment
based on the distribution of distances between paired
reads. Additionally, given the library prep method and
sequencing platform, the expected orientation of the
ends of the read-pairs is known. For instance, Illumina
read pairs are ‘forward-reverse’ meaning that relative to
the reference genome, the first read in a pair will be in
the ‘forward’ orientation and the second will be ‘reverse’.
Reads inconsistent with this pattern may be considered
discordant. Finally, reads pairs where one end maps to a
different chromosome or contig than the other are con-
sidered discordant.
When using discordant read pairs to inform structural

variant discovery, typically multiple pairs indicating the
same non-reference junction must be present. For events
between two regions of unique mappable sequence such
as chromosome fusions, deletions, duplications, etc. the
locations of both ends of the collection read pairs sup-
porting an event should be consistent. As transposable
elements exist in many copies dispersed throughout the
genome, typically one end will be ‘anchored’ in unique
sequence while the other may map to multiple distal lo-
cations located within various repeat elements through-
out the genome (Fig. 1b). In general, there are two
approaches to analysing discordant reads where one end
maps to repeat sequence. One is to map all reads to a
reference library of repeats, collect the reads where only
one end in the pair aligns completely to the reference re-
peat sequences, and re-mapping the non-repeat end of
these one-end-repeat pairs to the reference genome
(Fig. 1a). A second approach is to use the repeat annota-
tions available for the reference genome to note where
one end of a pair maps to a repeat and the other does
not (Fig. 1b). In either case, once ‘one-end-repeat’ reads
have been identified, the non-repeat ends of the read
pairs are clustered by genomic coordinate, and possibly
filtered by various criteria concerning mapping quality,
consistency in read orientations, underlying genomic
features, and so forth. For example, TranspoSeq filters
calls where greater than 30 % of clustered reads have a
mapping quality of 0 [40], while Jitterbug excludes reads
with a mapping quality score of less than 15 [41]. Most
tools filter out insertion calls within a window around
transposable element annotations in the reference gen-
ome. It is important to note that discordant read mapping
alone does not yield exact junctions between the insertion
and the reference sequence, therefore sites localised by
discordant read mapping are typically refined through
local sequence assembly and split-read mapping.

Split-read mapping
Split reads are where one segment maps to some location
in the reference genome, and the remaining segment
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maps to one or more locations distal from the first, or is
unmapped (i.e. does not match anything in the reference).
This term may also refer to a longer assembled contig
which can be split into multiple mapped locations distal
from one another. The ability to detect split reads is highly
dependent on the choice of aligner. Some short read
aligners (e.g. BWA MEM [42]) have the ability to partially
align (‘soft’ or ‘hard’ clip) reads and give alternate mapping
locations for the clipped portion as secondary or supple-
mentary alignments. Aligners intended for lower through-
put and longer reads (BLAT [43], LAST [44], BLAST
[45]) are natural choices for detecting split reads, espe-
cially from longer assembled sequences. Since split
reads are the means for identifying the exact insertion
location at base-pair resolution, analysis of split reads
is critical for identifying features indicative of TPRT activ-
ity including transductions, target site duplications, endo-
nuclease cleavage site, and the addition of untemplated
bases. Additionally, it is possible to take advantage of over-
laps between reads supporting an insertion and use se-
quence assembly in an attempt to generate longer contigs
of sequence that better resolve the junctions between the
insertion and the reference genome, essentially creating
very long split reads which have the potential to span both
the 5' and 3' junctions of an inserted sequence. This is par-
ticularly useful for elucidating transduced sequences and
studying untemplated base incorporation at the junctions
in detail. In general, it is highly advisable that TE detection
methods incorporate split-read analysis as this is the pri-
mary means to detect 5' and 3' junctions with nucleotide
resolution, and thus the primary means to detecting many
hallmarks of TE insertion necessary both for filtering false
positives and for biological inferences.

Filtering putative insertions
Given the challenge associated with detecting structural
variants from short-read data, compounded with the
difficulty of detecting insertions of sequences into a
background that already contains thousands of similar
interspersed copies, any scheme purporting to detect
transposable element insertions with reasonable sensitiv-
ity must implement filters to control for false positives.
Most methods use the number of reads supporting an

insertion as a first cutoff - either as a parameter or as a
function of local sequence depth. For WGS data, split
reads and discordant read support may be considered in-
dependently when filtering insertions. The target allele
fraction (i.e. fraction of cells in which an insertion is ex-
pected to be present) is an important consideration: som-
atic insertions arising later in the history of a tissue or a
tumour may be supported by fewer reads than germline in-
sertions expected to be present in 1-2 copies per mononu-
cleated cell. In addition to the quantity of reads, the quality
of reads should be considered both in terms of their

alignment and base quality. Base quality (e.g. phred score)
over clipped bases is particularly important when consider-
ing soft clipped read mappings: if the clipped bases have
poor quality, it is likely they do not represent transposable
element sequence and can be ignored. Mappings of high-
quality sequence with a high number (e.g. > 5 %) of mis-
matches versus either the genome around the insertion site
or versus the consensus transposable element are often as-
sociated with false positives, but this cutoff should be im-
plemented according to the expected divergence of the TE
insertions with respect to the reference TE sequence: if the
available TE reference is not a good representation of the
expected insertions (e.g. the reference is constructed from
a different species) this filter should be relaxed.
A second major consideration when filtering transpos-

able element insertions is the nature of the genome at
the insertion site. As with any attempt at annotation or
mutation detection versus a reference genome, the con-
cept of mappability (or alignability) is important [46, 47].
A sequence is considered ‘mappable’ (or ‘alignable’) if it
aligns to one and only one location. For a given segment
of the reference genome, mappability can be calculated
by considering the number of uniquely mapping k-mers
(i.e. sequences of length k) corresponding to commonly
encountered read lengths (e.g. 35 bp, 50 bp, 100 bp),
possibly allowing for some number of mismatches. Fil-
tering insertions that overlap annotated transposable ele-
ments is often done and may serve as a proxy for
mappability as TE sequences often have relatively fewer
unique k-mers relative to the non-repeat genome.
As mentioned, it is usually advisable to filter TE inser-

tions that map onto the coordinates of TEs of the same
subfamily represented in the reference genome. This is due
to low mappability over recent transposable element inser-
tions due to their similarity to the active consensus elem-
ent, which can be addressed using a mappability filter as
described, and it also guards against artefacts due to simi-
larity between the insertion site and the inserted element.
Finally, in instances where the goal is detection of somatic
or novel germline insertions, a good database of known
non-reference insertion sites is essential. Existing published
resources to this end include dbRIP [48] and euL1db [49].
As the former has not been updated in some years and the
latter only considers L1 insertions, a simple listing of re-
ported non-reference insertion coordinates derived from
the supplementary tables associated with most current
studies reporting non-reference human retrotransposon in-
sertions is included as Additional file 1: Table S1 (see
Addtitional file 1 for table legend).

Considerations for analyses in non-humans
Many of the methods listed in Table 1 have been suc-
cessfully applied to species other than human, and to
transposable element varieties other than the non-LTR
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Table 1 Software for detecting transposable element insertions from WGS data

Name of method Detection target Ref. Notes or use case Implementation Availability

TranspoSeq Transposable elements [40] Analysis of Tumour/Normal WGS pairs, extension to
analyse WES data as well

Java, R https://www.broadinstitute.org/cancer/cga/transposeq

Tea Transposable elements [65] Analysis of Tumour/Normal WGS Pairs R http://compbio.med.harvard.edu/Tea/

TraFiC Transposable elements [66] Analysis of Tumour/Normal WGS Pairs, detection of
transduced sequences

Perl https://github.com/cancerit/TraFiC

RetroSeq Transposable elements [50, 51] Used for analysis of mouse strain genomes, also
demonstrated on human, has genotyping and
discovery modes

Perl https://github.com/tk2/RetroSeq

Tangram Transposable elements [75] Demonstrated on 1000 Genomes Project samples,
includes genotyping capability

C, C++ https://github.com/jiantao/Tangram

VariationHunter Structural Variants [76, 77] Among the first methods to detect polymorphic Alu
insertions from WGS

C++ http://compbio.cs.sfu.ca/software-variation-hunter

GRIPper Retrotransposed mRNAs [78] Used to detect non-reference gene retrocopy insertions.
Demonstrated in humans, mice, and chimpanzees.

Python https://github.com/adamewing/GRIPper

T-lex/T-lex2 Transposable elements [52, 53] Detects both insertions versus the reference and
absences of reference elements in other genomes.
Demonstrated on Drosophila TEs.

Perl http://petrov.stanford.edu/cgi-bin/Tlex.html

HYDRA-SV Structural rearrangements [79] General-purpose SV detection, also detects TE insertions C++, Python https://github.com/arq5x/Hydra

RelocaTE Transposable elements [80] Demonstrated on mPing insertions in Oryza sativa (rice) Perl https://github.com/srobb1/RelocaTE

ITIS Transposable elements [81] Used to detect Tnt1 insertions in Medicago truncatula Perl http://bioinformatics.psc.ac.cn/software/ITIS/

ngs_te_mapper Transposable elements [82] Requires TSDs, demonstrated in Drosophila R https://github.com/bergmanlab/ngs_te_mapper

TE-Locate Transposable elements [83] Used to examine TE insertions in Arabidopsis populations Java, Perl http://sourceforge.net/projects/te-locate/

TIGRA Structural rearrangements [84] Assembly-based SV detection method, demonstrated to
identify TE breakpoints

C++ https://bitbucket.org/xianfan/tigra

Mobster Transposable elements [85] Demonstrated on WGS and WES data, Illumina and
ABI SOLiD data.

Java http://sourceforge.net/projects/mobster/

TEMP Transposable elements [86] Geared towards population-level TE detection from
pooled data

Perl https://github.com/JialiUMassWengLab/TEMP

TE-Tracker Transposable elements [87] Attempts to determine source elements in reference.
Demonstrated on Arabidopsis.

Perl http://www.genoscope.cns.fr/externe/tetracker/

Jitterbug Transposable elements [41] Demonstrated on Human and Arabidopsis. Python http://sourceforge.net/projects/jitterbug/

DD_DETECTION Transposable elements [88] Does not require input of canonical TE sequences
(Database-free)

C++ https://bitbucket.org/mkroon/dd_detection

MELT Transposable elements [89] Used for comprehensive analysis of 2504 participants
in the 1000 Genomes Project

Java http://melt.igs.umaryland.edu/
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elements focused on in this review so far. For example
Retroseq [50] has been applied to mouse genomes to de-
tect LTR elements such as IAP and MusD in addition to
the mouse varieties of LINE (L1Md) and SINE (B1/B2)
elements [51]. T-lex [52] and T-lex2 [53] have been ap-
plied to Drosophila genomes, detecting a wide variety of
different TE families. While non-LTR TEs in human
have a consensus insertion site preference that is wide-
spread in the human genome, other TE families have
more specific integration site preferences. For example,
the Ty1 LTR retroelement strongly prefers integration
near Pol III transcribed tRNA genes and seems to asso-
ciate with nucleosomes [54], while Tf1 elements (also
LTRs) prefer nucleosome-free regions near Pol II pro-
moters [55]. Hermes elements (a type of DNA trans-
poson) also prefer nucleosome-free regions and have a
characteristic TSD sequence motif (nTnnnnAn) [56].
Non-LTR retroelements can also have strong insertions
site preferences as well, a prominent example being the
R1 and R2 elements from Bombyx mori, which target
28S ribosomal genes [57] and have been used to dissect
the biochemical steps involved in non-LTR integration
[18]. These various propensities to insert proximal to
genomic features and have defined sequence characteris-
tics at the insertion site could be used to filter insertion
detections from WGS data for these TE families in non-
human species, in combination with the general ap-
proaches already covered for non-LTR elements that
have weaker insertion site preferences. Additionally,
some of the characteristics of non-LTR retrotransposi-
tion presented so far may not apply to other TE classes
and families and could lead to false negatives if putative
insertions are inappropriately filtered against certain
characteristics. For example, some DNA transposons
(e.g. Spy) do not create target site duplications, so soft-
ware that requires TSD will miss these [58]. Other TEs
have fixed TSD lengths, e.g. the Ac/Ds transposons in
maize, famously initially described by McClintock in the
1950s [59], create an 8 bp TSD [60, 61], so a detector
that allows Ac/Ds predictions with other TSD sizes
might be more prone to false positives.

Comparing methods
When it comes to detecting mutations, especially som-
atic mutations, different methods and/or different para-
metrisations yield markedly different results [62–64],
and transposable element detection is no exception [5].
Publications presenting new tools often include compar-
isons where a number of competing methods are run by
the authors of the new tool. While valuable, these exper-
iments may not reflect optimal parametrisations of the
competing tools for the dataset used as a basis of com-
parison, whereas by virtue of having developed a novel
method, the authors will have better parametrisations of

their own tools, leading to the usual outcome of the new
tool outperforming previously published methods.
To illustrate the extent of the differences in TE inser-

tion calls from different methods run on the same data,
we present comparisons between somatic TE detections
from three recent studies. In each case, two different
methods were used to call mutations on the same data,
yielding substantial overlap and an equally if not more
substantial amount of non-overlap. Importantly, these
calls were generated by the developers of their respective
TE detection methods. Coordinates and sample iden-
tities were obtained from the supplemental information
of the respective studies, and one [65] needed to be con-
verted from hg18 to hg19 coordinates via liftOver. Inser-
tion coordinates were padded by +/- 100 bp and compared
via BEDTools v2.23. Lee et al. [65] (Tea) and Helman et al.
[40] (TranspoSeq) share 7 samples, Tubio et al. [66] (Tra-
FiC) and Helman et al. (TranspoSeq) share 15 samples. No
samples are shared between Lee et al. and Helman et al.
The overall Jaccard distance between TranspoSeq and Tea
results across shared samples was 0.573 (Additional file 2
and Additional file 3: Table S2a), and between Transpo-
Seq and TraFiC the distance was 0.741 (Additional
file 2 and Additional file 3: Table S2b), indicating that
TranspoSeq and Tea seem to yield more similar re-
sults than between TranspoSeq and TraFiC. Summing
counts for intersected insertion calls and method-
specific calls yields the overlaps shown in Fig. 2. While
this comparison is somewhat cursory and high-level, it is
clear there is a substantial amount of difference in the re-
sults of these methods: in both comparisons, more inser-
tions are identified by a single program than by both
programs. Given that all three studies report a high valid-
ation rate (greater than 94 %) where samples were avail-
able for validation, this may reflect a difficulty in tuning
methods for high sensitivity while maintaining high speci-
ficity. This also suggests that perhaps an ensemble ap-
proach combining calls across all three (or more) methods
may be preferable where high sensitivity is required.
In addition to the tools already highlighted, a rapidly

increasing number of tools exist with the common goal

TranspoSeq

Tea

79
40

66

TranspoSeq

TraFiC

104
192

106

15 Samples7 Samples

Fig. 2 Intersections between somatic insertion detection methods.
Overlap and non-overlap between insertion sites from reported in
publications using the indicated software tools on the same data.
The number of samples included in the comparison shared between
the each pair of studies is indicated
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of detecting transposable element insertions from WGS
data. As indicated in Table 1, these include purpose-built
methods aimed specifically at transposable elements in
addition to more general methods that identify a wide var-
iety of structural alterations versus a reference genome,
transposable element insertions included. Table 1 is
not intended to represent an exhaustive listing of cur-
rently existing methods - the OMICtools website
(http://omictools.com/) currently supports an up-to-
date database of TE detection tools, and the Bergman
lab website also hosts a list of transposable element
detection tools which includes tools aimed at a wide
variety of applications, a subset of which are relevant
for TE detection from WGS data [11].

Conclusions
Transposable element insertions are a subset of struc-
tural variants that can be identified from WGS data. Al-
though generalised SV discovery methods sometimes
support TE detection, specialised software is often used
by those interested in studying the specific peculiarities
of the insertion mechanism and mitigating the false
positives associated with their high copy number. TE
discovery methods developed in the last 5 years are pre-
dominantly aimed at short-read paired-end WGS data,
most often generated on Illumina platforms, and use a
combination of paired-end, split-read, and sequence as-
sembly approaches to identify insertions. Technological
and methodological developments will change how the
ascertainment of transposable element insertion sites is
carried out. Long-read sequencing has the potential to
both improve resolution of TE insertions, especially
those located in repetitive regions [67], and to improve
the information available regarding the sequence of the
insertion itself. Currently this technology has been suc-
cessful for de novo assembly of microbial genomes [68],
but for human genomes, high sequence coverage [69]
and a combination multiple sequencing approaches [70]
and sophisticated error correction models [71] may be
required to get a good consensus sequence given the
currently high error rates associated with long-read se-
quencing technologies. Over time, it is expected that
throughput will increase and error rate will decrease,
making this a viable option. Even if relatively higher
error rates for long-read single-molecule sequencing ap-
proaches persist, the key may be to obtain good whole-
genome assemblies of individual genomes accomplished
through higher throughput. Methodologically, new soft-
ware tools will be published when new sequencing tech-
nologies or new alignment methods and formats attain
widespread acceptance. Additional new software tools
utilising current sequencing technology will also continue
to be developed and published - that said, it is important
that new methods offer some demonstrable, substantial

improvement over the many existing methods, and there
does appear to be room for improvement given the low
concordance currently observed between different tools
on the same data. For those seeking to develop additional
methods, an improved focus on software engineering and
usability would also be welcome. The subfield of transpos-
able element insertion detection from WGS data currently
lacks standards against which authors of new tools can
benchmark their methods. Some recent tools have been
tested on high-coverage trios e.g. NA12878/NA12891/
NA12892 which is probably a step in the right direction as
these are high-quality and readily available. Establishing or
extending standardised datasets such as those already de-
veloped for variant calling [72, 73] would be a further step
in the right direction. Going beyond this, a “living
benchmark” similar to what exists for protein structure
prediction through CASP [74] or more topically what
currently exists through the ICGC-TCGA DREAM
Somatic Mutation Calling Challenge [64] would provide
a publicly available “proving ground” for existing and
novel TE insertion detection methods.
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