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Abstract

DNA derived from transposable elements (TEs) constitutes large parts of the genomes of complex eukaryotes, with
major impacts not only on genomic research but also on how organisms evolve and function. Although a variety
of methods and tools have been developed to detect and annotate TEs, there are as yet no standard
benchmarks—that is, no standard way to measure or compare their accuracy. This lack of accuracy assessment calls
into question conclusions from a wide range of research that depends explicitly or implicitly on TE annotation. In
the absence of standard benchmarks, toolmakers are impeded in improving their tools, annotators cannot properly
assess which tools might best suit their needs, and downstream researchers cannot judge how accuracy limitations
might impact their studies. We therefore propose that the TE research community create and adopt standard TE
annotation benchmarks, and we call for other researchers to join the authors in making this long-overdue effort a

Success.

Why does transposable element annotation
matter, and why is it difficult?

Transposable elements (TEs) are segments of DNA that
self-replicate in a genome. DNA segments that origi-
nated from TE duplications may or may not remain
transpositionally active but are herein referred to simply
as TEs. TEs form vast families of interspersed repeats
and constitute large parts of eukaryotic genomes, for ex-
ample, over half of the human genome [1-3] and over
four fifths of the maize genome [4]. The repetitive nature
of TEs confounds many types of studies, such as gene pre-
diction, variant calling (i.e., the identification of sequence
variants such as SNPs or indels), RNA-Seq analysis, and
genome alignment. Yet their mobility and repetitiveness
also endow TEs with the capacity to contribute to diverse
aspects of biology, from disease [5], to genome evolution
[6—8], organismal development [9], and gene regulation
[10]. In addition to dramatically affecting genome size,
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structure (e.g., chromatin organization), variation (e.g.,
copy-number variation), and chromosome maintenance
(e.g., centromere and telomere maintenance) [11], TEs
also provide the raw material for evolutionary innovation,
such as the formation of new protein-coding genes [12,
13], non-coding RNAs [14-16], and transcription factor
binding sites [17, 18]. With the growing deluge of genomic
data, it is becoming increasingly critical that researchers
be able to accurately and automatically identify TEs in
genomic sequences.

Accurately detecting and annotating TEs are difficult
because of their great diversity, both within and among
genomes. There are many types of TE [19, 20], which
differ across multiple attributes, including transposition
mechanism, TE structure, sequence, length, repetitive-
ness, and chromosomal distribution. Moreover, while re-
cently inserted TEs have relatively low within-family
variability, over time TE instances (specific copies) accu-
mulate mutations and diverge, becoming ever more dif-
ficult to detect. Indeed, much of the DNA with as yet
unknown origins in some genomes (e.g., human) might
be highly decayed TE remnants [2, 8]. Because of this
great diversity TEs within and among genomes, the
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primary obstacles to accurately annotating TEs vary dra-
matically among genomes, which have different TE si-
lencing systems and which have undergone different
patterns of TE activity and turnover. For instance, in
some genomes (e.g., human [1]) the majority of TE-
derived DNA is remnant of ancient bursts in the activity
of just a few TE families; thus, annotation is mainly
hampered by the high divergence of old and decayed TE
copies, as well as extensive fragmentation of individual
copies and the complex evolution of the TEs in the gen-
ome [6]. Other genomes (e.g., maize [4]) contain a large
variety of recently active TEs; thus, defining and classi-
fying the diverse families poses a considerable annota-
tion challenge, as well as disentangling the complex and
heterogeneous structures formed by clusters of TEs,
such as internal deletions, nested insertions, and other
rearrangements [21]. Furthermore, although libraries of
known TE sequences are definitely useful, the TE fam-
ilies that are present in even closely related genomes
may differ greatly [22], limiting the utility of such librar-
ies in annotating newly sequenced genomes. Additional
challenges to accurate annotation arise from multi-copy
non-TE (host) gene families and segmental duplications,
which in both cases mimic TEs because of their repeti-
tiveness. Low complexity sequences and simple repeats
may also be major sources of false positives [23]. To-
gether, these issues pose considerable challenges to ac-
curate, automated TE annotation.

Although the field of TE annotation may be broadly
defined to include various activities, such as the identifi-
cation and classification of TE families [19, 20], herein,
we mainly discuss the detection and annotation of TE
instances, particularly within assembled genomes, and
the computational tools used to do so. A number of
computational approaches and tools have been devel-
oped to identify TEs in assembled genomes. The two
main approaches used currently are homology-based ap-
proaches, which use similarity to known TEs, and de
novo approaches, which are typically based either on re-
petitiveness or on structural signatures (e.g., long ter-
minal repeats or terminal inverted repeats) (reviewed in
[24-26]). In addition, approaches are being developed to
detect TEs using comparative genomics (e.g., insertion
polymorphisms) [27] (Hickey et al., pers. comm.) or
other properties such as the production of specific popu-
lations of small RNAs (e.g., siRNAs, piRNAs) [28]. How-
ever, to annotate assembled genomes, most researchers
have implicitly adopted a de facto standard of tool use
that incorporates just a fraction of available tools
(Table 1), as follows: (i) Mask simple repeats (e.g., TRF
[29]); (ii) Generate a library of ostensible TE sequences
using repetitiveness-based tools (e.g., RepeatModeler,
RepeatScout [30-32]), often augmented with one or
more structure-based programs (e.g., LTR_FINDER [33],
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LTR_STRUC [34], or MITE-Hunter [35]); (iii) Classify
consensus sequences into families (e.g., RepeatModeler
[30] or RepClass [36]); (iv) Combine with an existing li-
brary of TE consensus sequences (or models) (e.g.,
RepBase [37] or recently Dfam [3]); (v) Finally, align the
TE consensus sequences (or models) to the genome
(e.g., either RepeatMasker [38] or Censor [39] with de-
pendencies on sequence similarity tools such as cross_-
match [40], BLAST [41, 42], or nhmmer [43]). Different
annotators often use and combine the tools in different
ways, using different settings and ad hoc results filtering,
library merging, and manual steps. A few groups have
developed more complete pipelines that combine a
wider selection of tools in a consistent manner (e.g.,
REPET [44]). A growing number of tools also operate
directly on unassembled short genomic reads [45-50].
Finally, there are a small number of groups using largely
manual methods to refine the libraries generated by
these automated pipelines to create high quality TE li-
braries (Table 1) [3, 37, 51].

Why do we urgently need benchmarks?

TE predictions made by various methods are often quite
divergent, with different tools having different strengths
and weaknesses, competencies, and complementarities
[8, 24, 52, 53] (Fig. 1). Why then are so few tools com-
monly used? How optimal are the various combinations
of tools that are used? Most importantly, how accurate
are the TE annotations that are produced?

In related disciplines including genome assembly [54],
multiple sequence alignment [55-57], variant calling [58,
59], and cancer genomics [60], standard benchmarks
have been successfully employed to measure and im-
prove the accuracy of computational tools and method-
ologies. For example, in the area of protein structure
prediction, researchers have taken great efforts to tackle
the benchmarking problem for over 20 years [61].

However, for TE annotation, there is currently no
standard way to measure or compare the accuracy of
particular methods or algorithms. In general, there is a
tradeoff between increased rates of true vs. false posi-
tives, both between different tools and between different
settings for any given tool, a tradeoff that should ideally
be optimized for each study. For instance, a study
attempting to describe reasonable upper bounds of TE
contributions to genome size might benefit from in-
creased sensitivity (at the cost of specificity), while a
study attempting to identify high stringency TE-derived
regulatory regions might benefit from the converse. Re-
gardless of the approach chosen for a study—even if it is
a de facto standard tool with default settings—the result-
ant tradeoff between false and true positives ought to be
quantified and reported. However, the current state of
TE annotation does not facilitate such distinctions,



Table 1 Tools and databases used to annotate TEs in the genomes of multicellular eukaryotes published in 2014

Genome Homology-based De novo Pipeline

Repbase Repeat CENSOR Repeat Repeat Repeat PILER LTR_FINDER LTR_STRUC MITE- REPET  Other Databases Other tools®  Ref.

Masker Protein  Modeler Scout Hunter
Mask
Phalaenopsis equestris Plant v v v v (81]
(tropical epiphytic orchid) (monocot)
Cyprinus carpio Animal v v v TEClass [82]
(common carp) (bony fish)
Esox lucius (northern pike) Animal v v Genbank, Custom [83]
(bony fish) UniprotKB/SwissProt
Oryza glaberrima Plant v v v MSU Repeats, custom Custom [84]
(African rice) (monocot) (rice-specific)
Callithrix jacchus Animal v v [85]
(common marmoset) (primate)
Gossypium arboreum Plant (dicot) v v v v v (86]
(cultivated cotton)
Nicotiana tabacum Plant (dicot) v v TIGR, SGN [87]
(common tobacco) (Solanaceae-specific)
Glossina morsitans Animal v v v v Genbank RECON, [88]
(tsetse fly) (insect) TARGeT
Oncorhynchus mykiss Animal v v v E-inverted, [89]
(rainbow trout) (bony fish) Manual
Tetrao tetrix (black Animal (bird) v v [90]
grouse)
Pinus taeda (loblolly pine) Plant v v v PIER 2.0 Custom [91]
(gymnosperm) (conifer-specific)

Spirodela polyrhiza Plant v MipsREdat, MIPS Custom [92]
(duckweed) (monocot) PlantsDB
Cynoglossus semilaevis Animal v v RepBase (for E-inverted, [93]
(half-smooth tongue sole) (flatfish) classification) Custom
Capsicum annuum Plant (dicot) v v v v MSU repeats [94]
L. and var. glabriusculum
(cult. and wild peppers)
Capsicum annuum cv. Plant (dicot) v v v [95]
CM334 (hot pepper)
Anopheles sinensis Animal v v Efam [96]
(mosquito) (insect) (mosquito-specific)

*Not all tools used in building TE libraries are listed (e.g., UCLUST, MUSCLE)
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Fig. 1 Variation among TE annotation tools. a TE coverage in the Arabidopsis thaliana genome resulting from three commonly used
repetitiveness-based de novo tools, compared to a reference set of TEs [8]. The total amount of TE coverage differs between the three, as does
the fraction of the reference TEs that were found or missed and the amount of non-reference putative TEs. b Full-length LTR TEs in the Drosophila
melanogaster X chromosome found by five different LTR-specific de novo tools, compared to a reference set of TEs [24]. Similar to a but even
more pronounced, the number of TEs found by the tools and their agreement with the reference set vary widely. ¢ A 100-kbp segment of the
Arabidopsis lyrata genome (scaffold_1:14,957,501-15,057,500) displayed on a custom UCSC genome browser [76, 77], illustrating differences among
TE annotations resulting from several approaches, as well as additional genomic data useful in identifying bona fide TEs. From top to bottom, the
tracks represent: RepeatMasker annotations using libraries from Repbase [37], RepeatModeler [30], REPET [44], or de la Chaux et al. [78]; full-length
LTR TE predictions by LTR_Finder [33] or LTRharvest [79]; tandem repeat predictions by TRF [29]; gene models predictions by FGenesH [80]; a set
of TE-specific domains [13]; mapped MRNA and small RNA short reads [77]; inter-species conservation (alignment percent identity plots) to other
Brassicaceae species [77]; and genome self-alignment depth (generated with LASTZ)

especially for non-experts. Instead, it is left up to indi- own (often unpublished) test data sets and evaluate the
vidual toolmakers, prospective tool users, or even down-  accuracy of their tools. But for many toolmakers and
stream researchers to evaluate annotation accuracy. A most users, it is in practice too onerous to properly as-
few toolmakers with sufficient resources do invest the sess which methods, tools, and parameters may best suit
significant amount of effort required to assemble their  their needs. The absence of standard benchmarks is thus
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an impediment to innovation because it reduces tool-
makers’ ability and motivation to develop new and more
accurate tools or to improve the accuracy of existing
tools. Perhaps most importantly, the absence of bench-
marks thwarts debate over TE annotation accuracy be-
cause there simply is little data to discuss. This lack of
debate has the insidious effect that many of the ultimate
end-users of TE annotation, researchers in the broader
genomics, and genetics community who are not TE ex-
perts are left largely unaware of the complexities and
pitfalls of TE annotation. These downstream researchers
thus often simply ignore the impact of TE annotation
quality on their results, leading to potentially avoidable
problems, such as failed experiments or invalid conclu-
sions. Thus, the lack of TE annotation benchmarks hin-
ders the progress of not only TE research but also
genomics and related fields in general.

At a recent conference at McGill University’s Bellairs
Research Institute (St. James Parish, Barbados), a group
of TE annotation and tools experts, including the au-
thors, met to discuss these issues. We identified, as a
cornerstone of future improvements to computational
TE identification systems, a pressing need to create and
to widely adopt benchmarks to measure the accuracy of
TE annotation methods and tools and to facilitate mean-
ingful comparisons between them. To clarify, we propose
to generate benchmarks for genomic TE annotations, not
intermediate steps such as library creation, although the
latter would also be interesting to benchmark eventually.
Benchmark creation will help alleviate all of the aforemen-
tioned issues. It will enable tool users to choose the best
available tool(s) for their studies and to produce more ac-
curate results, and it will democratize access, encouraging
tool creation by additional researchers, particularly those
with limited resources. Establishing benchmarks might
also encourage the development of experimental pipelines
to validate computational TE predictions. Perhaps most
importantly, the adoption of standard benchmarks will in-
crease transparency and accessibility, stimulating debate
and leading the broader genomics-related research com-
munity towards an improved understanding of TEs and
TE annotation. Thus, creating benchmarks may lead not
only to improved annotation accuracy but may help to de-
mystify a critical area of research that, relative to its im-
portance, is often neglected and misinterpreted. We
therefore believe that the TE research community should
resolve to agree upon, create, and adopt standard sets of
TE annotation benchmarks.

What might TE annotation benchmarks consist of?

One of the reasons the TE annotation community still
does not have accepted benchmarks may be that creat-
ing them is more challenging than in other fields. There
are many possibilities for the form of such benchmarks
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and how they could be created. Ideally, they would con-
sist of diverse, perfectly annotated, real genomic se-
quences; however, irrespective of the efforts made, a
perfect TE annotation is impossible to achieve because it
is irrevocably based on and limited by current TE detec-
tion methods. For instance, greatly decayed and rare TEs
are difficult to detect and thus are sources of false nega-
tives. Furthermore, highly heterogeneous TEs can be dif-
ficult to accurately assign to families, especially when
they are decayed. To illustrate the potential extent of the
first of these sources, it is likely that much of the unan-
notated part (about 40 %) of the human genome is com-
prised of ancient TE relics that are too diverged from
each other to be currently recognized as such [1, 2, 8,
62, 63]. At a smaller scale, low copy-number TEs are
missed by methods that rely on repetitiveness, including
most tools used for building repeat libraries, but could
be (originally) detected by structural signatures or by ap-
proaches using comparative genomics or other genomic
attributes. An example of problematic TEs with ill-
defined and highly heterogeneous structure is the heli-
tron superfamily. Helitrons were initially discovered by
computational analysis, based on the repetitiveness of
some helitron families and the presence of genes and
structural features not found in other TEs [64]. Al-
though some families in some genomes can be detected
through repetitiveness, in general, helitrons are espe-
cially difficult to detect because they do not have strong
structural signatures, are often quite large, lack “canon-
ical” TE genes, and conversely often do contain seg-
ments of low copy-number, non-TE (transduplicated)
genome sequence [65-67]. Yet in many species, heli-
trons represent one of the most frequent types of TEs in
the genome [64, 68-70]. In general, such false negatives
in annotated real genomic data are a problem for bench-
marking, since tools that manage to detect true TEs
missing from the benchmark would be wrongly penal-
ized. Conversely, false positives present in the bench-
mark would penalize tools with improved specificity.
Ideally, the benchmarks would provide support for prob-
abilistic annotations in order to help account for such
uncertainties.

To overcome such issues with annotated genomic se-
quences, various approaches can be used. False negatives
can be predicted by placing fragments of known TEs
into real or synthetic genomes, an approach that is espe-
cially important for fragmented and degraded TEs [2].
False negatives caused by TE degradation can also be
predicted using real genome sequences with known TEs
that have been modified in silico by context sensitive
evolutionary models [71]. False positive prediction is
perhaps a more difficult problem. Because we do not
have real genomic regions that we are certain have not
been derived from TEs, a variety of methods have been
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used to produce false-positive benchmarks in which no
true TE instances are expected to be found. These in-
clude reversing (but not complementing) real genomic
sequence [3, 72] (which is also useful for detecting false
extensions, i.e., predicted boundaries that extend beyond
actual TEs [73]), shuffling real sequence while preserving
mono- or di-nucleotide frequencies [2], and generating
sequence using higher-order models [74]. Higher-order
models may incorporate multiple key aspects of genome
composition, complexity, and repeats, such as the diver-
sity of TEs and their insertion patterns, the distribution
of simple repeats and GC-content (compositional do-
mains), varying rates of TE deletion, and other evolu-
tionary processes [75]. Finally, it is important in any of
these analyses to distinguish false positives (sequences
that may have been generated by chance from mutation
processes) from mis-annotation (sequences derived from
other repetitive sequence or other TEs than the one be-
ing considered).

Even greater challenges are to predict mis-annotation
or compound annotation of gene-like sequences that
may be derived from TEs, as well as low complexity re-
gions (e.g., CpG islands, pyrimidine stretches, and AT-
rich regions) [74]. Another serious challenge is to avoid
creating biases either for or against the methods used to
initially identify any TEs incorporated into the models;
for instance, if a certain tool originally identified a TE se-
quence, then that tool may have an advantage in accur-
ately (re-) identifying the TE in a simulated genome.
Furthermore, simulated genomes are not currently use-
ful in evaluating TE annotation methods that employ
additional types of data that are impractical to simulate,
such as comparative genomic data or realistic popula-
tions of small RNA sequences. Finally and most funda-
mentally, the unknown cannot be modeled, and much
about TE sequences, how they transpose, and how they
evolve remains unknown. We need to consider, for ex-
ample, how much our techniques are biased towards the
types of TEs present in taxa that we have studied most
intensively (e.g., mammals) and against TEs that have
evolved in under-represented genomes. Thus, in design-
ing and using standard benchmarks, we must remain
cognizant that while improving our ability to detect and
annotate TEs, they will also be ultimately limited by
current knowledge of TEs and genome evolution.

Although this article is intended to promote discussion
rather than providing ultimate solutions, we believe that
an ideal benchmark data set would be as follows:

e Contributed, vetted, and periodically revised by the
TE annotation community;

e Publicly available;

e A mixture of different types of simulated sequences
and well-annotated real genomic regions;
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o Sufficiently large in size to allow accurate
assessment of tool performance;

e Representative of the biological diversity of genomes
(e.g., size, TE density and family representation,
evolutionary rates, and GC-content);

e Representative of the various states of assembly of
ongoing genome sequencing projects;

e Accompanied by open-source support software that
provides both online methods and an application
programming interface (API) to compute a range of
detailed meaningful statistics on the agreement
between a user’s annotation and the benchmark
data set;

e Eventually, provide support for probabilistic
annotations that represent uncertainties, both at the
level of the benchmark itself and user submitted
annotations.

Why and how should researchers contribute?

The success of this effort depends on buy-in from the
TE community to create and contribute benchmark data
sets, to use them in their own work, and to promote their
adoption. Because of the multiple challenges involved in
the creation of these benchmarks, it is unlikely that any
first version will be completely satisfactory; however, this
should not be used as an argument to dismiss this type of
effort but rather to contribute to its improvement. In the
coming months, we would like to initiate discussions with
the wider TE community on the ideal format of a first
set of TE benchmarks and to begin collecting data sets.
We invite the entire TE research community to join us
in this effort by providing feedback on the issues raised
in this article, by commenting on specific benchmark
data set proposals as they are made available, and by
contributing their own benchmark data set proposals.
To do so, please visit the project’s website at http://
cgl.cs.mcgill.ca/transposable-element-benchmarking, or
contact the authors.
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