
Garza et al. Mobile DNA            (2024) 15:8  
https://doi.org/10.1186/s13100-024-00317-w

SOFTWARE Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Mobile DNA

Look4LTRs: a Long terminal repeat 
retrotransposon detection tool capable 
of cross species studies and discovering recently 
nested repeats
Anthony B. Garza1, Emmanuelle Lerat2 and Hani Z. Girgis1* 

Abstract 

Plant genomes include large numbers of transposable elements. One particular type of these elements is flanked 
by two Long Terminal Repeats (LTRs) and can translocate using RNA. Such elements are known as LTR-retrotrans-
posons; they are the most abundant type of transposons in plant genomes. They have many important functions 
involving gene regulation and the rise of new genes and pseudo genes in response to severe stress. Additionally, LTR-
retrotransposons have several applications in biotechnology. Due to the abundance and the importance of LTR-ret-
rotransposons, multiple computational tools have been developed for their detection. However, none of these tools 
take advantages of the availability of related genomes; they process one chromosome at a time. Further, recently 
nested LTR-retrotransposons (multiple elements of the same family are inserted into each other) cannot be anno-
tated accurately — or cannot be annotated at all — by the currently available tools. Motivated to overcome these 
two limitations, we built Look4LTRs, which can annotate LTR-retrotransposons in multiple related genomes simulta-
neously and discover recently nested elements. The methodology of Look4LTRs depends on techniques imported 
from the signal-processing field, graph algorithms, and machine learning with a minimal use of alignment algorithms. 
Four plant genomes were used in developing Look4LTRs and eight plant genomes for evaluating it in contrast to three 
related tools. Look4LTRs is the fastest while maintaining better or comparable F1 scores (the harmonic average of recall 
and precision) to those obtained by the other tools. Our results demonstrate the added benefit of annotating LTR-
retrotransposons in multiple related genomes simultaneously and the ability to discover recently nested elements. 
Expert human manual examination of six elements — not included in the ground truth — revealed that three ele-
ments belong to known families and two elements are likely from new families. With respect to examining recently 
nested LTR-retrotransposons, three out of five were confirmed to be valid elements. Look4LTRs — with its speed, 
accuracy, and novel features — represents a true advancement in the annotation of LTR-retrotransposons, opening 
the door to many studies focused on understanding their functions in plants.

Keywords Long terminal repeat, Transposable elements, LTR-retrotransposons, Recently nested, Bioinformatics, 
Machine learning

*Correspondence:
Hani Z. Girgis
hani.girgis@tamuk.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13100-024-00317-w&domain=pdf


Page 2 of 21Garza et al. Mobile DNA            (2024) 15:8 

Background
Transposable elements (TEs) are genetic elements capa-
ble of replicating and inserting themselves into new 
positions within a genome. TEs were discovered in the 
1940’s by Barbara McClintock  [1] in the maize genome. 
There was controversy surrounding their involvement in 
genetic processes as they were initially believed to be junk 
DNA with no function within a genome. However, recent 
studies have shown that TEs can play significant roles 
in a genome such as being a source of genetic diversity, 
contributing their genes to the host in a form of domesti-
cation, adding redundancy in function through the dupli-
cation of genes, and providing parts of their sequences as 
promoters and enhancers to host genes [2–10].

TEs are found in nearly all eukaryotes — both animals 
and plants — and prokaryotes. The human genome is 
composed of nearly half of TEs [7, 11], in comparison to 
the coding regions which only make up approximately 
1–2% of the genome. For the wheat (Triticum aestivum) 
genome, 85% is made of repeats including TEs [12].

TEs are classified into two classes: Class I and Class 
II. Class I is composed of retrotransposons. Class II is 
composed of DNA transposons. These two classes are 
separated by their mechanism of transposition; ret-
rotransposons use a “copy-and-paste” method where 
they move through reverse transcription, using an RNA 
intermediate, while DNA transposons use a “cut-and-
paste” method where they move through a DNA inter-
mediate  [2]. Recent alternate classifications have been 
proposed; most of these classifications depend on TE 
internal genes [13].

Retrotransposons can be further split into two catego-
ries: Long Terminal Repeat (LTR) retrotransposons and 
non-LTR-retrotransposons. LTR-retrotransposons are 
characterized by their LTRs which are two very simi-
lar sequences found at the 5’ and 3’ ends of a TE and a 
polypurine tract found in the region flanked by the two 
LTRs. It is important to note that these LTRs have the 
same orientation and are not complemented or reversed. 
A primer binding site is found on the opposite end of the 
internal part from the polypurine tract [13, 14]. We will 
refer to LTRs as the 5’ and 3’ LTRs and LTR-retrotrans-
posons as the entire element (comprising of the LTRs and 
the internal part). Non-LTR-retrotransposons are com-
posed of Long Interspersed Nuclear Elements (LINEs) 
and Short Interspersed Nuclear Elements (SINEs).

The translocation of a TE into a genomic location 
may be unsafe. For example, suppose a TE inserts itself 
into a gene. This could cause the gene to become non-
functional; it could also lead to the gene producing an 
altered protein with detrimental effects. For example, in 
the plant species Ipomoea purpurea, TE insertions cause 
loss of function resulting in color variations [6]. However, 

translocation may not always cause deleterious effects. 
For example, in Brassica rapa, a TE inserted into the 
BrMYB18.1 gene result in enhanced gene expression for 
a specific leaf, identified as L7, during the Chinese cab-
bage heading state [15].

LTR-retrotransposons are the most abundant type of 
TEs in plants [16], which serves to dramatically increase 
the size of plant genomes [17]. They generally come from 
the two super-families Ty1/Copia and Ty3/Gypsy [13, 18]. 
LTR-retrotransposons can be categorized as autonomous 
or non-autonomous, where autonomous elements are 
capable of self-replication, whereas non-autonomous ele-
ments are not capable because of missing coding capaci-
ties preventing their mobilization, thus requiring external 
sources to transpose  [13]. These missing functions are a 
result of mutations over time or even as an evolutionary 
advantage.

LTR-retrotransposons carry enhancers and promoters 
that can also affect the expression of nearby genes [2, 18]. 
Different types of stress such as heat can cause activity 
in LTR-retrotransposons, resulting in genetic diversity 
and evolution [19]. According to the study in [20], LTR-
retrotransposons inserted into the introns of a gene can 
cause suppression of that gene. There is evidence sug-
gesting that LTR-retrotransposons can co-opt sequences 
from genes for their own purposes and vice versa [3, 18]. 
Further, LTR-retrotransposons make up a significant por-
tion of the repeats at the centromeres of plants [18, 21].

Tools capable of locating LTR-retrotransposons in a 
genome are therefore of great interest to researchers. 
Tools for locating TEs can be classified into six types: 
library-based, learning-based, signature-based, compar-
ative-genomics-based, de-novo-based, and pipelines of 
tools  [14, 22]. Detection of LTR-retrotransposons cur-
rently are only available through library-based, signature-
based, and pipeline tools. We note that the following is 
not a comprehensive list of tools for LTR-retrotranspo-
son detection. For a more comprehensive list, we refer 
the reader to a review paper dedicated to the topic [23]. 
Library-based tools such as RepeatMasker [24] use a 
database of known TEs such as Repbase [25] and Dfam 
[26] to identify LTR-retrotransposons. A known issue 
with library-based tools is that they are unable to identify 
novel LTR-retrotransposons. Signature-based tools such 
as LTRharvest [27, 28] and LtrDetector [29] identify TEs 
by their structural features, e.g., matching LTRs, polypu-
rine tract, etc. A new tool called Inpactor2  [30] utilizes 
neural networks in combination with the signature-based 
tool LTR_Finder  [31]. Pipelines rely on multiple tools 
from the other categories to identify LTR-retrotranspo-
sons. Two examples of this are TransposonUltimate [32] 
and LTRpred  [33]. Pipelines are powerful as they tend 
to be modular by design; as new tools are created, older 



Page 3 of 21Garza et al. Mobile DNA            (2024) 15:8  

tools can be replaced. This allows for easy maintenance 
as only parser scripts that read the output of the tools 
need to be created or modified instead of the entire tool. 
However, pipelines are known to be computationally 
expensive and time-consuming as they run multiple tools 
as well as difficult to install.

LTR_retriever  [34] and LTRdigest  [35] are post-pro-
cessing tools. These tools do not directly locate LTR-
retrotransposons. Instead, they process the output of an 
LTR-retrotransposon detection tool such as LTRharvest. 
They are used to filter out false positives from the pre-
dictions of other tools, build LTR-retrotransposon librar-
ies, or locate important structures. Further, pipeline tools 
can integrate detection and post-processing functionality 
into a singular workflow, such as TE-greedy-nester  [36] 
which utilizes LTR_Finder or LTRharvest to detect LTR-
retrotransposons and then annotates nested elements.

At this time, LTR-retrotransposon detection tools do not 
take full advantage of information within a genome as 
well as information across species. Most of the tools for 
annotating LTR-retrotransposons are designed for locat-
ing single, complete elements; such tools are not spe-
cifically designed for locating recently nested elements. 
Usually, another tool is applied to locating recently 
nested LTR-retrotransposons after applying a tool for 
detecting single elements [37, 38]. However, not all infor-
mation is carried from one tool to the next; further, some 
tools are now obsolete and unavailable [38]. Another lim-
itation of the currently available tools for LTR-retrotrans-
posons is that some of them rely heavily on alignment 
algorithms, resulting in expensive computations. To solve 
these issues, we developed Look4LTRs, a signature-based 
tool focused on the detection of LTR-retrotransposons 
genome-wide.

Results & discussion
For this study, we developed Look4LTRs, a tool capable of 
locating LTR-retrotransposons in a genome or a group of 
related genomes. Look4LTRs utilizes genome-wide infor-
mation about the repetitiveness of a sequence [22]. Such 
information can also be collected across multiple closely 
related genomes. This allows for cross-species stud-
ies of LTR-retrotransposons by comparing the results of 
Look4LTRs on a single genome to the results of Look4L-
TRs on a group of related genomes. Look4LTRs can locate 
recently nested LTR-retrotransposons with multiple 
levels of nesting. Further, as Look4LTRs does not search 
for coding domains, it is capable of finding non-auton-
omous LTR-retrotransposons such as terminal-repeat 
retrotransposons in miniatures. Finally, Look4LTRs uses 
minimal local alignment and a machine-learning-based 
approach for calculating global, pairwise identity scores 
efficiently  [39]. These innovations make Look4LTRs the 
state of the art in detecting LTR-retrotransposons com-
putationally. We will now discuss the methodology of 
Look4LTRs and its evaluation.

Look4LTRs modules
Look4LTRs annotates LTR-retrotransposons in a genome 
or a group of related genomes. The tool consists of these 
five modules (Fig. 1):

• The scorer module is responsible for scoring the 
genome by distances between k-mer copies,

• The merger module is responsible for merging simi-
lar regions of scores together into stretches,

• The detector module is responsible for merging 
stretches into candidate LTRs (not the entire LTR-
retrotransposon) by a trained classifier,

Fig. 1 Overview of Look4LTRs. Our tool takes one genome or a group of related genomes as the input and outputs Long Terminal Repeat (LTR) 
retrotransposons. Five modules comprise Look4LTRs: (i) the scorer module, (ii) the merger module, (iii) the detector module, (iv) the matcher 
module, and (v) the filter module. The scorer module scores the genomes by nearby, matching k-mers. The merger module uses the scores to begin 
assembling potential LTRs. The detector module uses repeat content learned by Red (a tool for detecting all types of repeats uncategorized) 
from the genome(s) to finish assembling potential LTRs. The matcher module matches LTRs to each other to form LTR-retrotransposon candidates. 
The filter module removes candidates that fail to meet one of our confirmation criteria, e.g., the presence of a polypurine tract



Page 4 of 21Garza et al. Mobile DNA            (2024) 15:8 

• The matcher module is responsible for matching 
pairs of candidate LTRs into potential LTR-retro-
transposons, and

• The filter module is responsible for filtering out 
potential elements that cannot be confirmed.

Look4LTRs outputs LTR-retrotransposons including 
recently nested elements.

The detector and the matcher modules utilize the tool 
Red [22], which can locate all types of repeats (tandem 
and interspersed) in a genome without grouping them 
into specific types or families. This allows Look4LTRs 
to use the repeat content found by Red to help connect 
stretches into candidate LTRs in the detector module. 
Additionally, Look4LTRs uses the repeat content for 
matching LTRs appropriately in the matcher module; 
specifically, if the internal part of an LTR-retrotranspo-
son is not repetitive — that is to say, does not repeat 
throughout the genome — this candidate is unlikely 
to be an LTR-retrotransposon. The matcher module 
utilizes another tool called Identity  [39], which calcu-
lates global identity scores of sequence pairs efficiently. 
These identity scores are incorporated as a part of our 
multi-evidence matching approach. These two tools pro-
vide APIs, allowing for their integration with the other 
five modules into one code base; Red and Identity are 
not called externally. The code of the five modules and 
the two APIs are packaged and shipped together. Thus, 
the user is not required to install multiple tools — just 
one.

Scorer: The scorer module takes a sequence of DNA 
and scores it by the distances between matching k-mers. 
This essentially allows us to find matching regions of 
DNA. We generate two sets of scores: the forward score 
that marks matching regions further in the genome, 
and the backward scores that mark preceding matching 
regions.

Merger: The merger module takes the forward and 
backward scores separately. Each score in the forward/
backward scores represents a k-mer matching another 
k-mer. If multiple scores have similar values and are 
close to each other, they may represent a larger matching 
region. The merger module groups these scores into what 
we call stretches for each set of scores (forward and back-
ward). In other words, the merger module lets us find 
large regions of nucleotides that match other, similar size 
regions of nucleotides. Ideally, these matching regions 
are LTRs.

Detector: The process of merging scores in the merger 
module is based on statistical inference of the scores 
themselves. As such, the context surrounding LTR-ret-
rotransposons are not taken into account. Such context 
includes the repetitiveness of LTR-retrotransposons. The 

detector module utilizes this missing context to finish the 
merging of scores into LTR-candidates.

Matcher: The matcher module takes the LTR candi-
dates and matches them to each other to form LTR-ret-
rotransposon candidates. A large problem when it comes 
to LTR-retrotransposon detection is multiple same-fam-
ily elements within close proximity. The matcher mod-
ule considers this situation to appropriately match LTR 
candidates to each other. Through this consideration, 
recently nested elements are able to be detected.

Filter: The filter module removes candidates that fail 
to meet our confirmation criteria, e.g., the presence of a 
polypurine tract.

Essentially, Look4LTRs searches for matching regions 
looking downstream and upstream of a sequence of 
DNA. These matching regions are potential LTR-retro-
transposons and are further processed to confirm.

Look4LTRs is capable of locating both autonomous and 
non-autonomous LTR-retrotransposons in a genome or a 
group of related genomes

Training & testing evaluation
We evaluate Look4LTRs alongside these three related 
tools: LTR_Finder  [31], LTRharvest  [27], and LtrDe-
tector  [29]. Look4LTRs was evaluated on four training 
genomes and four testing genomes.

Our training genomes consist of Arabidopsis thaliana, 
Oryza sativa japonica, Glycine max, and Sorghum bicolor. 
The testing genomes consist of Zea mays, Solanum lyco-
persicum, Solanum tuberosum, and Theobroma cacao. 
A ground truth was generated for each genome using a 
procedure described in the Implementation section. This 
procedure includes the use of RepeatMasker  [24] with 
the appropriate species name passed as an argument as 
well as the tool One Code To Find Them All [40]. These 
tools are used in conjunction to delineate LTR-retro-
transposons in a chosen genome. We apply various fil-
ters such as confirming similarity between the LTRs of an 
LTR-retrotransposon to ensure that the elements delin-
eated are truly LTR-retrotransposons. Further details of 
this procedure are found in the Implementation section. 
Table 1 shows the results of the tools on the training and 
testing genomes. Figure  2 shows the recall, precision 
and F1 scores of the tools on the testing genomes. Due 
to time constraints, we did not run LTR_Finder on Zea 
mays. Previous experience with LTR_Finder shows that 
Zea mays would take many days of uninterrupted run-
ning to complete. We will now discuss the results on the 
training and testing genomes.

Recall: On the training genomes, Look4LTRs was the 
best in terms of recall overall, followed by LtrDetec-
tor, LTRharvest, and then LTR_Finder. On the testing 
genomes, Look4LTRs came first on three genomes and 



Page 5 of 21Garza et al. Mobile DNA            (2024) 15:8  

Table 1 Results of Look4LTRs, LTR_Finder, LTRharvest, and LtrDetector on the training and testing genomes. GT is the number of 
elements in the ground truth, TP is the number of true positives, FP is the number of false positives, Total Predictions is the number of 
predictions made by a tool, memory is the peak memory usage of a tool, and time is the total time taken by a tool to run. aWe did not 
run LTR_Finder on Zea mays due to the time it would take. bFor the overall peak memories, we take the maximum peak memory usage 
from each tool over the training genomes. Note that LTRharvest and LTR_Finder were run as provided by their authors — without 
parallelization — because a biologist would apply them this way without any modifications

Genome & Tool Recall (%) Precision (%) F1 (%) GT TP FP Total Predictions Memory (GB) Time (HH:MM:SS)

Arabidopsis thaliana

     Look4LTRs 86.67 91.23 88.89 120 104 10 2,381 4.62 00:00:54

     LTR_Finder 42.50 100.00 59.65 120 51 0 386 0.92 01:02:38

     LTRharvest 81.67 97.03 88.69 120 98 3 1,787 0.24 00:01:56

     LtrDetector 89.17 89.17 89.17 120 107 13 2,436 6.12 00:02:20

Oryza sativa japonica

     Look4LTRs 90.80 92.78 91.78 1,500 1,362 106 10,462 12.94 00:01:51

     LTR_Finder 60.47 99.13 75.11 1,500 907 8 5,061 0.95 05:51:45

     LTRharvest 72.67 91.37 80.95 1,500 1,090 103 6,684 0.34 00:05:54

     LtrDetector 86.87 85.67 86.26 1,500 1,303 218 1,0659 15.61 00:05:44

Glycine max

     Look4LTRs 87.03 99.06 92.66 1,573 1,369 13 34,229 15.35 00:12:16

     LTR_Finder 58.30 99.57 73.54 1,573 917 4 11,401 2.16 11:36:37

     LTRharvest 78.70 99.52 87.89 1,573 1,238 6 21,074 0.45 00:23:07

     LtrDetector 89.57 95.14 92.27 1,573 1,409 72 37,956 26.36 00:09:58

Sorghum bicolor

     Look4LTRs 88.11 97.09 92.38 5,519 4,863 146 36,945 15.25 00:04:04

     LTR_Finder 53.47 98.63 69.35 5,519 2,951 41 12,333 1.72 05:14:25

     LTRharvest 58.04 91.10 70.90 5,519 3,203 313 18,882 0.60 00:11:16

     LtrDetector 81.75 93.59 87.27 5,519 4,512 309 34,682 15.78 00:29:45

Training Overall

     Look4LTRs 88.36 96.55 92.27 8,712 7,698 275 84,017 15.35b 00:15:53

     LTR_Finder 55.39 98.91 71.02 8,712 4,826 53 28,181 2.16b 23:45:25

     LTRharvest 64.61 92.98 76.24 8,712 5,629 330 48,427 0.6b 00:42:13

     LtrDetector 84.15 92.30 88.03 8,712 7,331 612 85,733 26.36b 00:47:47

Zea Mays

     Look4LTRs 89.14 99.50 94.03 12,697 11,318 57 158,819 35.67 00:18:24

     LTR_Findera – – – – – – – – –

     LTRharvest 58.26 99.74 73.55 12,697 7,397 19 85,298 2.35 00:34:34

     LtrDetector 82.52 98.47 89.79 12,697 10,478 163 150,343 23.15 00:29:47

Solanum lycopersicum

     Look4LTRs 82.60 99.21 90.14 454 375 3 26,789 14.73 00:03:48

     LTR_Finder 37.00 100.00 54.02 454 168 0 3,534 1.30 06:17:42

     LTRharvest 86.78 99.49 92.71 454 394 2 18,751 0.70 00:09:03

     LtrDetector 84.36 99.48 91.3 454 383 2 26,715 16.90 00:17:08

Solanum tuberosum

     Look4LTRs 89.12 86.00 87.54 524 467 76 27,156 10.92 00:06:05

     LTR_Finder 19.85 84.55 32.15 524 104 19 2,498 1.24 07:11:49

     LTRharvest 81.68 86.64 84.09 524 428 66 21,358 0.61 00:07:59

     LtrDetector 79.77 70.85 75.04 524 418 172 36,179 17.56 00:17:03

Theobroma cacao

     Look4LTRs 77.65 97.62 86.50 264 205 5 13,035 7.16 00:02:52

     LTR_Finder 22.73 100.00 37.04 264 60 0 1,784 0.54 03:36:37

     LTRharvest 69.32 99.46 81.70 264 183 1 7,071 0.32 00:04:18

     LtrDetector 77.65 98.56 86.86 264 205 3 12,796 12.63 00:06:32



Page 6 of 21Garza et al. Mobile DNA            (2024) 15:8 

third on one genome (Solanum lycopersicum). However, 
it was notably in first place on the largest genome of the 
four (Zea mays) showing an improvement from the sec-
ond-best tool (LtrDetector) by 8%. On Theobroma cacao, 
Look4LTRs tied for first place with LtrDetector. LtrDe-
tector and LTRharvest varied between first, second, and 
third place on the testing genomes. LTR_Finder was 
consistently in last place in terms of recall. Thus, Look4L-
TRs is highly capable of finding LTR-retrotransposons; 
Look4LTRs is comparable to the other tools and surpasses 
them in many cases.

Precision: Overall, LTR_Finder was the best in terms 
of precision on the training genomes, followed by 
Look4LTRs, LTRharvest, and LtrDetector (comparable 
to LTRharvest). All tools achieved high overall preci-
sion scores (92–99%) on the training genomes. Next, 
we discuss precision scores on the testing genomes. On 
Zea mays, LTRharvest was in first place; nonetheless, 
Look4LTRs (in second place), and LtrDetector (third 
place) were very comparable. The results for Solanum 
lycopersicum show a similar trend with LTR_Finder in 
first place (100%) but the other tools were very compa-
rable — LTRharvest at 99.49%, LtrDetector at 99.48%, 
and Look4LTRs at 99.21%. For Solanum tuberosum, all 
tools suffered in precision; however, all but LtrDetector 

(70.85%) were very comparable (84.55–86.64%). Finally, 
on Theobroma cacao, Look4LTRs achieved 97.62%; 
however, Look4LTRs came last because all other tools 
were highly precise. Look4LTRs is very comparable to 
the other tools in terms of precision. On the genomes 
where it fell behind the others, the difference was 
minimal.

F1 score: Look4LTRs was the best in terms of F1 score, 
followed by LtrDetector, LTRharvest, and then LTR_
Finder, collectively on the training genomes. With respect 
to the testing genomes, Look4LTRs came first (94.03%) on 
Zea mays, followed by LtrDetector (89.79%) and LTRhar-
vest (73.55%). For Solanum lycopersicum, LTRharvest 
came first at 92.71%, but was comparable to LtrDetec-
tor (91.3%) and Look4LTRs (90.14%); LTR_Finder came 
last at 54.02%. Look4LTRs was in first place at 87.54% 
on Solanum tuberosum, closely followed by LTRharvest 
at 84.09%; LtrDetector was in third place at 75.05% and 
LTR_Finder was in last place at 32.15%. For Theobroma 
cacao, LtrDetector was in first place at 86.86%, fol-
lowed closely by Look4LTRs at 86.5%, then followed by 
LTRharvest at 81.7% and LTR_Finder at 37.04%. From 
these results, Look4LTRs offers a good balance of recall 
and precision evident by achieving the highest overall F1 
score on the training genomes and either the highest F1 

Fig. 2 Results of Look4LTRs, LTR_Finder, LTRharvest, and LtrDetector on the testing genomes. The testing genomes consist of Zea mays, Solanum 
lycopersicum, Solanum tuberosum, and Theobroma cacao. The recall (a), precision (b), and F1 scores (c) are shown as percentages. LTR_Finder 
was not run on Zea mays due to its slow speed



Page 7 of 21Garza et al. Mobile DNA            (2024) 15:8  

score or comparable scores to those of the best perform-
ing tools on the testing genomes.

Number of predictions: Overall, on the training 
genomes, LTR_Finder made the least number of pre-
dictions at 28,181, followed by LTRharvest at 48,427. 
Look4LTRs produced 84,017 predictions and LtrDetec-
tor produced a comparable amount of 85,733 predic-
tions. This trend continued for every genome — training 
or testing — where LTR_Finder makes the least number 
of predictions, followed by LTRharvest. Look4LTRs and 
LtrDetector predict a comparable number of predictions 
and vary between third and fourth place on the testing 
genomes. Look4LTRs produces less predictions than 
LtrDetector while retaining a high recall and F1 score.

Peak memory usage: The lowest peak memory overall 
on the training genomes was LTRharvest at 0.6 GigaBytes 
(GBs), followed by LTR_Finder at 1.72 GBs, Look4L-
TRs at 15.35 GBs, and LtrDetector at 26.36 GBs. For the 
results on the training genomes, the same trend con-
tinues except for on Zea mays where Look4LTRs takes 
35.67 GBs and LtrDetector takes 23.15 GBs. Look4LTRs 
takes less memory than LtrDetector on most genomes. 
Although it was not the lowest in memory consumption, 
many modern computational machines can handle the 
memory requirements of Look4LTRs.

Time: Look4LTRs was the quickest on the training 
genomes overall at approximately 16 minutes, followed 
by LTRharvest at 42 minutes, LtrDetector at 47 minutes, 
and LTR_Finder at 23 hours. In regards to the testing 
genomes, Look4LTRs was the quickest on Zea mays at 18 
minutes, followed by LtrDetector at nearly 30 minutes 
and LTRharvest at 34 minutes. For the rest of the testing 
genomes, Look4LTRs was also the quickest followed by 
LTRharvest, LtrDetector, and then LTR_Finder. Look4L-
TRs was quick in comparison to the other tools. We note, 
however, that there is a trade-off in speed to memory 
usage. The more the cores, the more the memory require-
ments; if time is not an issue, then Look4LTRs can be run 
on a single or few cores to reduce memory usage at the 
cost of Look4LTRs’ quick speed.

Cross‑species evaluation
A crucial feature of Look4LTRs is its suitability to cross-
species studies. We evaluated Look4LTRs on five spe-
cies from the rice (Oryza) family. These five species are: 
(i) Oryza glaberrima, (ii) Oryza sativa indica, (iii) Oryza 
longistaminata, (iv) Oryza rufipogon, and (v) Oryza 
sativa japonica. As some of these species are not specifi-
cally well annotated in RepeatMasker’s Repbase library, 
we passed Oryza as the species parameter of RepeatMas-
ker instead of the specific species name. We also evalu-
ated LTRharvest and LtrDetector on these species for 
comparison.

We use two different versions of Look4LTRs to evalu-
ate. The first version of Look4LTRs, which we refer to as 
Look4LTRs-SS (Single Species), is applied to each species 
separately, i.e., it only trains and predicts on one given 
genome at a time. The second version of Look4LTRs, 
which we refer to as Look4LTRs-CS (Cross Species), is 
applied to the five species together, i.e., it trains on the 
five species and predicts on all of them. The purpose of 
these two applications is to study the added benefit of 
using information from related-species for finding LTR-
retrotransposons. Table 2 displays the results of the tools 
on the mentioned rice species. Figure 3 shows the recall, 
precision, and F1 scores of the tools on the rice species.

Overall, Look4LTRs-CS has the highest recall and 
F1 score. Look4LTRs-CS shows an improvement over 
Look4LTRs-SS. The cross-species aspect of Look4LTRs 
improved the overall recall (88.55% vs. 85.13%). The pre-
cision of the cross-species version was very comparable 
to the single-species version (77.42% vs. 77.76%). For the 
overall F1 score, Look4LTRs-CS was at 82.43% in com-
parison to Look4LTRs-SS at 81.47%. This slight improve-
ment was due to the improvement in recall. Additionally, 
there was a speed-up advantage for using the cross-
species version when running all of the genomes; 
Look4LTRs-CS took approximately 9 minutes, whereas 
Look4LTRs-SS took 10 minutes, LTRharvest took 21 
minutes, and LtrDetector took nearly 40 minutes. These 
results demonstrate that information from related spe-
cies utilized in Look4LTRs-CS improved the discovery of 
LTR-retrotransposons.

Coverage estimation of LTR‑retrotransposons
We estimated the coverage of LTR-retrotransposons in 
the twelve analyzed genomes and an additional genome 
of Hordeum vulgare. We used the output of Look4LTRs 
for all but the rice genomes, which we instead used the 
output of Look4LTRs-CS. Figure  4 shows these percent-
ages. Interestingly, Oryza sativa indica, a subspecies 
of Oryza sativa, has more LTR-retrotransposons than 
the other subspecies Oryza sativa japonica (30.78% vs. 
22.14% coverage).

Look4LTRs is able to discover recently nested repeats; 
we show our estimation of their coverage in the thirteen 
genomes in Fig. 5. We found that Sorghum bicolor has the 
highest content of recently nested LTR-retrotransposons 
at 0.53%, followed by Glycine max at 0.38%, Theobroma 
cacao at 0.36%, Hordeum vulgare at 0.21%, and Zea mays 
at 0.08%. On the remaining genomes, Look4LTRs was 
only able to find very few recently nested LTR-retro-
transposons. On Oryza sativa indica and Oryza rufipo-
gon, Look4LTRs was unable to find any recently nested 
LTR-retrotransposons.



Page 8 of 21Garza et al. Mobile DNA            (2024) 15:8 

Expert manual confirmation
A blind manual evaluation was performed on the results 
of Look4LTRs applied to the barley genome. This plant 
has a haploid genome size of about 5.3 Gb distributed 
in seven chromosomes with a TE content of about 76% 
composed in majority of LTR-retrotransposons  [41]. 
Sequences identified as single LTR-retrotransposons 
and recently nested insertions were investigated. For 
this, each sequence was compared to the Repbase 2018 
database and to the NCBI non-redundant protein data-
base using BlastX [42].

Concerning single LTR-retrotransposons, six 
sequences were assessed. Three of them correspond 

to known LTR-retrotransposons (BARE1, BARE-2 and 
Sabrina) described in the barley. Two sequences could 
correspond to new families not described yet that con-
tain a pol gene and two sequences likely correspond-
ing to LTRs at each extremity, while the last sequence 
is a false positive not corresponding to any TE. From 
the two sequences from potentially new families, the 
first sequence is located in chromosome 2H, start-
ing at position 252,757,149 and ending at position 
252,771,106. The second sequence is located in chro-
mosome 3H, starting at position 380,967,486 and end-
ing at position 380,979,130. These two sequences are 
shown in Fig. 6.

Table 2 Cross-species results of Look4LTRs compared to other tools. The tools used are Look4LTRs-SS (Single-Species), Look4LTRs-CS 
(Cross-Species), LTRharvest, and LtrDetector on the following five rice species: (i) Oryza sativa japonica, (ii) Oryza glaberrima, (iii) Oryza 
sativa indica, (iv) Oryza longistaminata, and (v) Oryza rufipogon. Look4LTRs-SS is applied to each species separately, i.e., it only trains and 
predicts on one given genome at a time. Look4LTRs-CS is applied to the five species together, i.e., it learns the repeat content of the five 
species and predicts on all of them. aThe memory and time for Look4LTRs-CS is the same for every genome and the Overall because 
Look4LTRs-CS was run on all genomes at once. Thus, they all come from the same exact run

Genome & Tool Recall (%) Precision (%) F1 (%) GT TP FP Total Predictions Memory (%) Time (HH:MM:SS)

Oryza sativa japonica

     Look4LTRs-SS 90.80 92.78 91.78 1,500 1,362 106 10,462 12.94 00:01:51

     Look4LTRs-CS 91.80 92.48 92.14 1,500 1,377 112 10,315 – –

     LTRharvest 72.67 91.37 80.95 1,500 1,090 103 6,684 0.34 00:05:54

     LtrDetector 86.87 85.67 86.26 1,500 1,303 218 10,659 15.61 00:05:44

Oryza glaberrima

     Look4LTRs-SS 79.15 83.17 81.11 331 262 53 5,128 7.25 00:01:13

     Look4LTRs-CS 87.61 83.82 85.67 331 290 56 5,297 – –

     LTRharvest 83.69 81.71 82.69 331 277 62 3,942 0.26 00:02:45

     LtrDetector 91.24 69.43 78.85 331 302 133 5,192 13.02 00:02:00

Oryza sativa indica

     Look4LTRs-SS 81.71 70.38 75.62 410 335 141 13,845 8.16 00:02:03

     Look4LTRs-CS 83.17 69.31 75.61 410 341 151 13,829 – –

     LTRharvest 74.39 71.93 73.14 410 305 119 8,543 0.36 00:04:20

     LtrDetector 77.56 54.83 64.24 410 318 262 15,865 15.51 00:13:35

Oryza longistaminata

     Look4LTRs-SS 63.49 26.76 37.65 126 80 219 13,132 7.49 00:03:08

     Look4LTRs-CS 65.08 26.45 37.61 126 82 228 12,678 – –

     LTRharvest 52.38 23.57 32.51 126 66 214 12,226 0.36 00:04:37

     LtrDetector 57.94 16.70 25.93 126 73 364 18,802 15.00 00:14:38

Oryza rufipogon

     Look4LTRs-SS 79.39 60.94 68.95 228 181 116 8,281 7.79 00:01:50

     Look4LTRs-CS 86.40 62.15 72.29 228 197 120 8,330 – –

     LTRharvest 85.96 59.39 70.25 228 196 134 6,436 0.31 00:03:39

     LtrDetector 85.53 41.85 56.20 228 195 271 11,373 13.64 00:03:40

Overall

     Look4LTRs-SS 85.55 77.76 81.47 2,595 2,220 635 50,848 12.94 00:10:05

     Look4LTRs-CS 88.13 77.42 82.43 2,595 2,287 667 50,449 18.54a 00:08:51a

     LTRharvest 74.53 75.37 74.95 2,595 1,934 632 37,831 0.36 00:21:15

     LtrDetector 84.43 63.71 72.62 2,595 2,191 1,248 61,891 15.61 00:39:37



Page 9 of 21Garza et al. Mobile DNA            (2024) 15:8  

Fig. 3 Results of Look4LTRs-SS, Look4LTRs-CS, LTRharvest, and LtrDetector on the testing genomes for cross-species evaluation. These genomes 
consist of five species from the rice (Oryza) family: (i) Oryza sativa japonica, (ii) Oryza glaberrima, (iii) Oryza sativa indica, (iv) Oryza longistaminata, 
and (v) Oryza rufipogon. Look4LTRs-SS is Look4LTRs when applied to each species separately. Look4LTRs-CS is Look4LTRs when each genome 
is provided at once for training, thereby allow for cross-species examination. The recall (a), precision (b), and F1 scores (c) are shown as percentages

Fig. 4 Coverage of LTR-retrotransposons in the analyzed genomes. The coverage is the percentage of the genome that is covered 
by LTR-retrotransposons. LTR-retrotransposons comprise more than 60% of Zea mays and Hordeum vulgare genomes. We note that these values 
are likely underestimates of the true values due to the difficulty in completely annotating every LTR-retrotransposon, of which there may be many 
extremely divergent elements



Page 10 of 21Garza et al. Mobile DNA            (2024) 15:8 

In addition, we checked five sequences considered by 
Look4LTRs as recently nested elements. Two of them 
correspond to false positives. However, the three other 
sequences correspond to a LTR-retrotransposon inserted 
into another one (Fig.  7). More specifically, two cases 
correspond to an LTR-retrotransposon (BARE-2 and 
BARE1) inserted into one LTR of a BARE1 element. The 
last case represents a BARE1 element inserted into the 
internal part of another BARE1 element. In the first case 
in chromosome 1H, the outer element (BARE1) is at posi-
tion 459,838,459 and ends at position 459,853,480. The 
nested element (BARE-2) is at position 459,839,301 and 
ends at 459,847,888. In the second case, the outer ele-
ment is at position 630,335,812 and ends at 630,353,010. 
The nested element is at position 630,337,503 and ends 
at 630,346,445. In the third case, the outer element is 
at position 564,092,881 and ends at 564,110,748. The 

nested element is at position 564,095,106 and ends at 
564,104,043. This evaluation shows that Look4LTRs is 
able to find recently nested LTR-retrotransposons.

A second cycle of manual evaluation was performed 
and five single LTR-retrotransposon sequences were 
assessed. All but the second sequence correspond to 
known LTR-retrotransposons described in the barley. 
The second sequence is also an LTR-retrotransposon 
with some similarity to two known elements from bar-
ley, but it is difficult to assess which one or if it is a new 
family. In addition, we checked five sequences consid-
ered by Look4LTRs as recently nested elements. The first 
sequence was confirmed to be a BARE1 element inserted 
into a BARE2 element, the second and fifth sequence 
were false positives, and the third and fourth sequences 
were found to be highly complex regions with many frag-
mented LTR-retrotransposons inserted into and around 

Fig. 5 Coverage of recently nested LTR-retrotransposons in the analyzed genomes. The coverage is the percentage of the genome that is covered 
by recently nested LTR-retrotransposons. Due to the difficulty in detangling recently nested LTR-retrotransposons, these recently nested elements 
found may be less than the true number of recently nested elements. Oryza sativa indica and Oryza rufipogon, where no recently nested elements 
were found by Look4LTRs, are a good example of the difficulty in finding recently nested elements. In Sorghum bicolor, 0.53% of the genome 
is covered by recently nested LTR-retrotransposons

Fig. 6 Two, potentially new, LTR-retrotransposons located in Hordeum vulgare on chromosomes 2H and 3H identified by Look4LTRs 



Page 11 of 21Garza et al. Mobile DNA            (2024) 15:8  

each other. The locations of these sequences can be found 
in Supplementary Table 13.

Implementation
Input & output
Look4LTRs accepts FASTA-format files. We suggest that 
Look4LTRs is given an entire genome at minimum. Mul-
tiple related genomes can be processed simultaneously 
by Look4LTRs to perform cross-species studies. The tool 
outputs the positions of long terminal repeat (LTR) retro-
transposons, the location of the polypurine tract, and the 
location of the target site duplications.

Data
A module of Look4LTRs — the detector — is an instance 
of supervised machine learning, which requires the avail-
ability of labeled examples for training and testing. For 
this reason, we needed some genomes for training the 
tool and others for testing it. For training our tool, we uti-
lized the genomes of the following four species:

• Arabidopsis thaliana (TAIR10: thale cress)
• Oryza sativa japonica (IRGSP-1.0: japonica rice)
• Glycine max (Glycine_max_v2.1: soybean)
• Sorghum bicolor (Sorghum_biclor_NCBIv3: great 

millet)

For testing our tool, we utilized:

• Zea mays (AGPv4: corn)
• Solanum lycopersicum (SL3.0: tomato)
• Solanum tuberosum (SolTub_3.0: potato)
• Theobroma cacao (Theobroma_cacao_20110822: 

cacao tree)

For testing the cross-species feature of our tool, we used 
these four species from the rice genus:

• Oryza glaberrima (Oryza_glaberrima_V1: african 
rice)

• Oryza sativa indica (ASM465v1: indica rice)
• Oryza longistaminata (ASM980554v1: longstamen 

rice)
• Oryza rufipogon (OR_W1943: wild rice)

For manual inspection of the results, we used Hordeum 
vulgare (MorexV3: barley). These genomes are plants 
with high TE content. Arabidopsis thaliana was specifi-
cally chosen for training because it is a model organism 
with a well-annotated genome.

We utilized RepeatMasker  [24] and a program called 
One Code To Find Them All [40] to locate Long Termi-
nal Repeat (LTR) retrotransposon for our ground truth 
dataset. RepeatMasker is first used for locating LTRs 
and the internal parts of retrotransposons, using the 
Repbase 2018 database  [25]. We used the slow search 
parameter to increase the sensitivity of the search and 
provided the appropriate species name for each genome. 
The only exceptions to providing the species names were 
the species chosen for the cross-species evaluation (bar-
ring Oryza sativa japonica and Oryza sativa indica). 
These species were not specifically well annotated in the 
Repbase library. Therefore, we instead passed the genus 
Oryza. The outputs of RepeatMasker were then passed to 
One Code To Find Them All, which assembled LTRs and 
the internal parts into complete LTR-retrotransposons.

We filtered these LTR-retrotransposons according to 
three criteria: (i) the LTRs and the internal parts must 
be at least 200 base pairs (bp) long individually, (ii) the 
LTR-retrotransposon must have at least 80% identity 
with a consensus sequence from the Repbase database, 

Fig. 7 Three cases of recently nested LTR-retrotransposons located in Hordeum vulgare on chromosomes 1H, 2H and 4H identified by Look4LTRs 



Page 12 of 21Garza et al. Mobile DNA            (2024) 15:8 

and (iii) the LTR-retrotransposon must have at least 
80% coverage of a consensus sequence. When perform-
ing any of the following checks, we account for nested 
elements in our calculations, allowing confirmed nested 
elements to remain in our ground truth. For example, 
suppose we have an element whose internal part is 1000 
bp long and another element whose total length (LTRs 
and internal part) is 2000 bp. If the latter is nested 
within the former, then the size of the former’s inter-
nal part becomes 3000 bp. Presume that the consensus 
sequence for the former element has an internal part 
of 900 bp. The former element would be unable to pass 
the 80% identity or coverage checks. However, by not 
considering the nested element in these calculations, 
the internal part of 1000 bp would not change to 3000 
and would thus pass the checks. Each LTR and each 
internal part are checked individually for a minimum 
length of 200 bp. If any of these regions is less than 200 
bp, the whole element is discarded as they are likely to 
be fragment elements. The LTRs and the internal part 
in between are then individually aligned to their con-
sensus sequence using Nucleotide BLAST  [42]. From 
BLAST’s alignments, we select the longest alignment 
with at least 80% identity score. Any elements that 
failed to meet the minimum 80%-identity criterion are 
dropped. When checking the coverage, we sum the 
alignment lengths of the LTRs and their correspond-
ing internal parts and compare the total length to the 
consensus sequence length. If the coverage is less than 
80%, the element is dropped. The remaining LTR-retro-
transposons are considered as our golden standard. Fig-
ure 8 captures the percentage of super families in each 
genome and overall. Supplementary Tables  1–12 con-
tain the percentages of families in each genome.

Semi‑synthetic genome generation
Annotations of LTR-retrotransposons in the training 
genomes are incomplete, i.e., we do not know the loca-
tions of all LTR-retrotransposons in a genome. When 
training Look4LTRs on the training genomes, these 
unknown elements would complicate our training pro-
cess. To deal with this problem, we generated semi-syn-
thetic genomes for each training genome. We followed 
the following four steps to generate a semi-synthetic 
genome: (i) find LTR-retrotransposons for a genome 
according to our ground truth, (ii) extract these LTR-ret-
rotransposons from the genome, (iii) shuffle the remain-
ing regions randomly to destroy all other elements and 
repeats, and (iv) reinsert the LTR-retrotransposons at 
their original positions. To clarify, we note that the semi-
synthetic genomes are meant for training a machine 
learning model in a process specific to LTR-retrotranspo-
sons and not other types of transposable elements.

Method overview
As previously mentioned, Look4LTRs is made of the fol-
lowing five modules: the scorer module, the merger mod-
ule, the detector module, the matcher module, and the 
filter module. In this section, we provide a detailed expla-
nation of each module.

Next, we give the details of each module starting with 
the scorer.

Scorer
The input to this module is a sequence of DNA and the 
outputs are two groups of scores, called the forward 
scores and the backward scores. The sequences are 
scored by 13-mer matching. This value of 13 was deter-
mined experimentally on our training genomes. We 
ran Look4LTRs on our training genomes with different 

Fig. 8 Percentage of super families in each genome and overall. The percentage of each super family is calculated by dividing the number 
of LTR-retrotransposons of that super family by the total number of LTR-retrotransposons in the genome



Page 13 of 21Garza et al. Mobile DNA            (2024) 15:8  

values of k (10–15) and we found that 13 resulted in the 
best performance.

Our method of scoring was inspired by LtrDetec-
tor [29]. There, they score a k-mer by the distance to its 
closest match in either direction. This method results 
in LTRs having scores matching them to the other LTR 
of the same LTR-retrotransposon. Figure 10 shows the 
result of our implementation of this method to match 
LTRs together. However, the method depicted in LtrDe-
tector causes what we refer to as the castle problem (we 
note that this problem was named by ourselves for easy 
reference). Multiple, sequentially inserted LTR-retro-
transposons of the same family may result in the closest 
match of an LTR to be in the LTR of another LTR-
retrotransposon. If the distance between sequentially 
inserted LTR-retrotransposons is less than the size of 
the internal parts (distance between LTRs), the scores 
of the LTRs become fragmented. Even if this distance 
is greater than the size of the internal parts, the scores 
may still become fragmented as the LTRs mutate. A 
mutation in the 5’ LTR of an LTR-retrotransposon will 
cause the 3’ LTR at the corresponding position to look 
elsewhere for a match, which is usually another same-
family LTR-retrotransposon. This results in difficulty 
in determining if a region belongs to a single element 
as the scores of an LTR become fragmented instead 
of continuous. See Fig.  9 for an example of the castle 
problem.

To solve the castle problem, we depart from the 
method of LtrDetector and utilize a new scoring system. 
Where they have one score per k-mer, we have two scores 
per k-mer, one for the forward (downstream) direction 
and one for the backward (upstream) direction. In doing 
this, we minimize the castle problem, allowing for eas-
ier detection of LTRs later. This new scoring completely 
changes downstream analysis and should not be consid-
ered an incremental improvement.

The forward scores are calculated by matching k-mers 
forward, i.e., copies that are found downstream. The 
backward scores are calculated by matching k-mers 
backward, i.e., copies that are found upstream. We first 
match every k-mer to its closest complete match (for-
ward or backward), within a minimum distance of 400 
and a maximum distance of 27,000. If a match is found 
within this range, we set the score of the current k-mer 
to the distance between itself and its copy. If no match 
is found, the score is set to 0. For example, suppose we 
have a k-mer starting at position 1,000 and a matching 
k-mer at position 2,000. Let’s refer to them as A and B. 
The score assigned to A in the forward scores is 1,000 as 
it is 1,000 bp away from B. The score assigned to B in the 
backward scores is also 1,000 as it is 1,000 bp away from 
A. For brevity, when talking about scores, we say that a 

k-mer is pointing to its copy. Note that each direction is 
scored separately.

Next, we explain the rationale of the scorer module. 
Consider a single LTR-retrotransposon. The 5’ LTR and 3’ 
LTR are similar to each other. That is to say, the k-mers in 
the 5’ LTR will have matches in the 3’ LTR and vice versa. 
In the forward scores, the 5’ LTR will have k-mers point-
ing to the 3’ LTR. In the backward scores, the 3’ LTR will 
have k-mers pointing to the 5’ LTR. Now, consider two 
recently nested elements, i.e., one element is nested inside 
another of the same family. In the forward and backward 
scores, the outer element will have k-mers pointing to the 
inner element and vice versa. However, the inner element 
will also have k-mers in its 5’ LTR pointing to its 3’ LTR. 
The forward and backward scores generated form a dis-
tinctive pattern that we later utilize to discover recently 
nested elements and single LTR-retrotransposons. See 
Fig. 10 for examples of the forward and backward scores 
of LTR-retrotransposons. Next we discuss how we merge 
our scores to form regions that may belong to LTRs.

Merger
The forward scores and backward scores are passed to the 
merger module separately. It groups scores — forward or 
backward — into stretches; a stretch is a region of similar 

Fig. 9 The castle problem. Represented are two LTR-retrotransposons 
of the same family. For simplicity, the internal parts were ignored. 
The first element is colored blue (vertical hatching pattern) 
and the second element is colored yellow (horizontal hatching 
pattern). In this case, a singular vector of scores was used 
where positive y-values mark a distance to a matching k-mer 
in the forward direction and negative y-values mark a distance 
to a matching k-mer in the backward direction. Only the closest 
match is scored, regardless of direction. The 5’ LTR of the left element 
is clearly distinguished. The 3’ LTR of the left element is broken 
into positive and negative scores. The same holds for the 5’ LTR 
of the right element. The 3’ LTR of the right element is clearly 
distinguished. In essence, the castle problem is where the scores 
of the LTRs become fragmented as a result of nearby, same-family 
elements



Page 14 of 21Garza et al. Mobile DNA            (2024) 15:8 

scores with possible small gaps, i.e., scores of zero. We 
refer to the median of non-zero scores in a stretch as that 
stretch’s height. We also refer to the number of bps in a 
stretch (or gap) as the size of the stretch (or gap).

To group scores into stretches, we performed statis-
tical analysis of LTRs found in the training genomes. 
Two LTRs of the same element are unlikely to be identi-
cal because of mutations, which appear as gaps of zero 
scores. By calculating the distribution of the size of gaps 
within LTRs, we determined a value for the maximum 
difference between two scores to be considered similar, 
i.e., belong to the same LTR. We assumed the gap size 
is normally distributed. The mean size of a gap within 
an LTR was found to be 16.30 bp. The standard devia-
tion was 19.62 bp. By adding 3 standard deviations to the 
mean (covering up to 99.7% of a normal distribution), we 
determined the similarity margin to be 75 bp. For two 
scores to be considered similar, the absolute difference 
between them must be less than the similarity margin.

The merger module performs the following steps: 

1 Group regions of the same exact non-zero scores into 
stretches.

2 Label these stretches by size; stretches with a size of 
16 or more are labeled as keep stretches, otherwise 

they are labeled as delete stretches. This method of 
labeling was inspired by LtrDetector [29].

3 Merge stretches with similar scores (the absolute dif-
ference in height is less than 75) provided that the 
gap between them is less than 75 (the similarity mar-
gin).

4 Remove interruptive stretches, which are delete-
labeled stretches in between two stretches that 
would be merged if an interruptive stretch was not in 
between them.

5 Merge stretches.
6 Remove delete stretches.
7 Merge stretches.

As mentioned before, this merging process is applied to 
both the forward scores and the backward scores inde-
pendent of one another. The forward scores become the 
forward stretches, each one pointing to a location further 
downstream. The backward scores become the back-
ward stretches, each one pointing to a location further 
upstream.

Red training
Red is a self-supervised, hidden-Markov-model-based 
tool that can detect repeats (interspersed and simple) in 

Fig. 10 Forward and backward scores of LTR-retrotransposon(s). The y-axis shows the scores where positive values represent the forward 
scores and negative values represent the backward scores. The x-axis shows the genomic positions. Blue bars represent the LTRs of one 
LTR-retrotransposon and yellow bars represent the LTRs of another LTR-retrotransposon. a A single LTR-retrotransposon. The 5’ LTR (left bar) 
has a score of approximately 2600, meaning its match begins at approximately 2600 where the 3’ LTR (right bar) starts. b Two recently nested 
LTR-retrotransposons. The outer LTR-retrotransposon is colored blue (vertical hatch pattern) and the inner LTR-retrotransposon is colored yellow 
(horizontal hatch pattern). The forward scores and backward scores of the nested LTRs are clearly distinguished. The 5’ LTR of the inner element 
is at positions 400–500 and the 3’ LTR is at positions 900–1,000. However, the forward and the backward scores of the LTRs of the outer element 
have merged with the internal parts. The outer 5’ LTR and a slice of the internal parts are at positions 0–400 and the outer 3’ LTR and a slice 
of the internal parts are at positions 1,000–1,400. Note that the scores of the outer element are pointing to the inner element. The outer 5’ 
LTR and a slice of the internal parts point to positions 400–700, which include the inner 5’ LTR and a slice of the inner LTR-retrotransposon’s 
internal part. The outer 3’ LTR and a slice of the internal part point to positions 700–1,000, which include the inner 3’ LTR and a slice of the inner 
LTR-retrotransposon’s internal parts. It is important to understand that in a recently nested LTR-retrotransposon, the outer LTRs do not point to each 
other but rather to the inner element



Page 15 of 21Garza et al. Mobile DNA            (2024) 15:8  

a genome. It does not group repeats — including LTR-
retrotransposons — into families. Red outputs a score for 
each k-mer in the input genome. This score indicates how 
many times above what is expected by chance a specific 
k-mer occurs in a genome. Red gives a value of zero to a 
k-mer that occurs less than what is expected by chance. 
We refer to the score as Red score. With respect to soft-
ware integration, Red is accessed through an API and is 
not called externally. The code for Red is integrated into 
Look4LTRs.

Detector
The detector module is responsible for the final step in 
the merging stage. It takes the forward stretches and 
backward stretches independently. The detector merges 
stretches into LTR candidates.

A linear classifier — trained by the stochastic gradient 
descent algorithm — is utilized to predict whether con-
secutive stretches should be merged. Each pair of consec-
utive stretches is described by the following 10 features:

• Size of the first stretch.
• Size of the second stretch.
• Size of the gap between the stretches.
• Absolute difference in height between the stretches.
• The absolute difference between the Red score medi-

ans (not counting zeros) of the two stretches.
• The absolute difference between the Red score means 

of the two stretches.
• Mean Red score of the first stretch.
• Mean Red score of the second stretch.
• Mean Red score of the gap between the stretches.
• Whether both stretches lie within the same repetitive 

region predicted by Red.

We split our data into three sets: training, validation, and 
testing, consisting of 70%, 20%, and 10% of the stretches 
found in the four training genomes. We subtracted the 
mean and divided by the standard deviation of each fea-
ture (except the last feature because it is binary). The 
mean and the standard deviation were calculated on the 
training set. To determine the parameters of the model, 
a random search 10-fold cross validation was performed 
on 1,000 iterations. We trained the classifier with the 
parameters found by the random search and kept the 
model with the best F1 score on the validation set. We 
performed a final evaluation on the testing set. After 
determining that our model could achieve satisfactory 
results, we rescaled the data and trained the classifier on 
the entire dataset. The final classifier achieved a recall of 
92.81%, a precision of 64.37%, and an F1 score of 76.02%.

The trained classifier is given consecutive pairs of 
stretches and determines whether each pair should be 

merged. Any stretch that fails to merge with others is 
still considered an LTR candidate, which consists of one 
stretch. Candidates shorter than 200 bp (the minimum 
size of an LTR) are discarded.

Identity training
Identity is a machine-learning-based tool designed for 
predicting pair-wise global identity scores efficiently [39]. 
Identity takes a database of the sequences that will be 
compared later. Because Identity is an instance of self-
supervised learning, it can generate its own labeled train-
ing data without the user’s involvement. Candidate LTRs 
outputted by the detector module comprise a database 
that will be given to Identity. We train two instances of 
Identity. The first is trained with a focus on sequence 
pairs of 80–100% identity scores, and the second is 
trained with a focus on 60–100% identity scores. We refer 
to the first Identity instance as the standard Identity and 
the second one as the recent Identity because it is utilized 
for locating recently nested retrotransposons. Regarding 
software integration, Identity is accessed through an API 
and is not called externally.

Matcher
An LTR-retrotransposon is defined by two matched LTRs 
with an internal part inbetween. This module attempts 
matching LTRs. Its input is a list of candidate LTRs 
assembled from the forward stretches and the backward 
stretches. It outputs a list of LTR-retrotransposon candi-
dates, solo LTR candidates, and complex regions. A solo 
LTR is defined as a single unmatched LTR. A complex 
region is characterized by the presence of multiple same-
family candidate LTRs. The matcher module follows two 
steps. It first builds a directed-weighted graph. Using the 
information from this graph, it matches LTRs.

Building a directed‑weighted graph
Look4LTRs utilizes a directed-weighted graph for match-
ing LTR candidates. A graph consists of nodes, which are 
connected by edges. An edge is directed and has a weight. 
We add every LTR candidate to the graph as a node. We 
distinguish between two types of nodes; forward nodes 
are candidate LTRs from the forward stretches (forward 
candidates) and backward nodes are candidate LTRs 
from the backward stretches (backward candidates). An 
edge between two nodes, i.e., two LTRs, is added when 
a forward candidate LTR points to a backward candidate 
and vice versa. Note that no edges are added between 
two forward candidates or two backward candidates. An 
edge is assigned a weight representing how similar two 
candidate LTRs are. Such a similarity is calculated as the 
ratio of k-mers that have copies in the other candidate to 
the total number of k-mers.



Page 16 of 21Garza et al. Mobile DNA            (2024) 15:8 

To process recently nested elements, including com-
plete and solo elements, we connect overlapping nodes 
representing forward and backward candidates. Suppose 
we have three LTRs nearby each other. The first LTR has 
a forward node. The third LTR has a backward node. The 
second node has a forward node (pointing to the third 
LTR) and a backward node (pointing to the first LTR). 
Therefore, if a forward and backward node overlap with 
each other, two edges are added to connect them. We call 
these edges vertical connections. However, weights asso-
ciated with vertical connections are not assigned because 
these connections are solely utilized for connecting LTRs 
that are nearby each other but are not directly connected.

Matching LTRs
Our graph consists of a set of connected components. A 
connected component is a set of connected — directly or 
indirectly — nodes that are unreachable from any other 
nodes in the graph. A complete LTR-retrotransposon 
(with a possible solo LTR nearby) or a group of recently 
nested elements is represented by a connected compo-
nent. Figure 11 shows examples of different components. 
In the simplest case of a single LTR-retrotransposon, a 
forward node is connected to a backward node, i.e., a 5’ 
LTR to 3’ LTR.

The merger and the detector modules may wrongfully 
merge stretches from different repetitive elements, caus-
ing an issue we call hyper-extension. When matching 
nodes together, hyper-extensions can be found by look-
ing at the weights of the connections. If the weight of a 
connection is low in one direction but high in the other, it 
may be a sign of this issue. As a remedy, we trim the node 
from which the edge with the lower weight comes to bet-
ter match the other node. Then the weights of the con-
nections are recalculated. Figure 12 shows an example of 
the hyper-extension issue and how it is resolved.

For each subcomponent, we perform case analysis to 
determine which pair of nodes form an LTR-retrotrans-
poson. We have five cases to consider: (i) the single case, 
(ii) the solo LTR case, (iii) the recently nested case, (iv) 
the complex case, and (v) the deeply nested case.

Single case: In this analysis, we search for single, com-
plete LTR-retrotransposons. First, we look for a forward 
node that connects to a backward node and vice versa. 
When found, we check if both weights of the two con-
nections are greater than or equal to 0.27, a value deter-
mined by the 95th percentile of our training genomes’ 
ground truth. Then we check for repetitiveness of an 
internal part using Red. We calculate the ratio of non-
zero Red scores in an internal part to its size. If this value 

Fig. 11 Connected components examples of LTR-retrotransposons. These connected components represent perfect-world scenarios; for simplicity, 
each edge represents two edges pointing in and out and the weights are not shown. For each example, there are two rows. The top rows contain 
forward nodes (representing LTR candidates found in the forward stretches) that point forward to a match further in the genome. The bottom 
rows contain backward nodes (representing LTR candidates found in the backward stretches) that point backwards. When nodes from the forward 
and backwards nodes overlap, they represent the same LTR. a A single LTR-retrotransposon with the 5’ LTR pointing to the 3’ LTR and vice versa. b 
An LTR-retrotransposon with a solo LTR. This connected component may represent one of three scenarios depending on which node represents 
the solo element, which can be the leftmost node, the rightmost node, or the middle node. c A recently nested LTR-retrotransposon. Note 
that the outermost LTRs merged with the internal part of the outer retrotransposon. Two nodes from the nested LTRs merged with the internal 
part of the nested retrotransposon. However, two nodes from the nested LTRs are not merged and are distinguishable. d A complex graph case 
where there are many LTRs right by each other



Page 17 of 21Garza et al. Mobile DNA            (2024) 15:8  

is at least 0.33, determined by the 98th percentile on our 
training genomes’ ground truth, this region is considered 
a valid internal part. This check ensures that an LTR-
retrotransposon candidate follows the general trend for 
repetitive elements. Because there may be multiple LTRs 
of the same family nearby, we repeat this process with 
different combinations of forward and backward nodes 
that are directly connected, provided they meet the above 
requirements. Rather than choosing one candidate at this 
stage, we instead keep multiple pairs and allow the filter 
module, described later, to filter out false positives.

Solo case: Here, we search for a solo LTR on either 
side of a single LTR-retrotransposon or nested within 
it. Similar to the single case, we check for a minimum 
weight between the connections of forward and back-
ward nodes. We search for three LTRs where the first is 
connected to the second and the second is connected to 
the third. Generally, an internal part of a complete LTR-
retrotransposon is expected to be repetitive. Thus, we 
expect a non-repetitive region to separate a complete 
LTR-retrotransposon from a solo LTR. Red scores are 
utilized as stated previously to confirm whether a region 
between LTRs is repetitive. This case is resolved com-
pletely if one of the in-between regions is confirmed to 
be repetitive and the other is not. Otherwise, if all regions 
are repetitive, it is potentially a nested solo LTR, i.e., the 
solo LTR is inserted into a complete element of the same 
family. However, even if all regions are confirmed to be 
repetitive, it is not certain that the solo LTR is nested. For 
example, one of the regions could be repetitive because of 
another inserted unknown repetitive element. In the case 
where the two in-between regions are repetitive, we out-
put three LTR-retrotransposon candidates, in which the 
solo LTR can be the first, the second, or the third LTR.

Recently nested case: In this case, we search for LTR-
retrotransposons that are nested within another LTR-
retrotransposon of the same family. The boundaries of 

the outer LTRs are merged with the internal part of the 
outer element, complicating this analysis. However, the 
boundaries of the nested LTRs remain intact. The single 
analysis case can be applied to finding the nested LTR-
retrotransposon. Using the nested LTRs, we approxi-
mate the boundaries of the outer LTRs using information 
available in a connected component. At this point, the 
outermost two LTRs are matched and the innermost two 
LTRs are matched, resulting in two LTR-retrotransposon 
candidates. After that, we check if the internal parts of 
the two LTR-retrotransposon candidates (not includ-
ing the nested region of the outer LTR-retrotransposon) 
are repetitive. We then check for similarity between the 
internal parts of the nested and outer LTR-retrotranspo-
son. However, here we must consider the possibility of 
other nested elements from different families that may 
cause a large divergence between the internal parts of 
the nested and outer LTR-retrotransposons. A traditional 
local alignment technique may be able to correctly align 
and calculate a proper identity score, but it is computa-
tionally expensive. For this reason, we used the recent 
Identity model to calculate the identity score and relaxed 
the 80-80-80 rule by lowering the generally used 80% 
identity score minimum to 60%, thus accounting for the 
possible divergence as a result of other elements. If the 
identity score is greater than 60%, we consider these two 
candidates to be recently nested.

Complex case: Here, we analyze connected compo-
nents that have many nearby, same-family elements 
inserted sequentially. The internal parts of such elements 
should be similar to each other. To confirm, the regions 
between nodes (possible internal parts) are gathered and 
compared to each-other (all vs. all) using the Identity 
standard model. If at least two regions have 80% iden-
tity score with each other, we consider the connected 
component to have sequential LTR-retrotransposons. 
In essence, this case reports that there are at least two 
sequentially inserted LTR-retrotransposons. We note 
that there is no further confirmation of the LTR-retro-
transposons for this case due to its complexity.

Deeply nested case We previously discussed the 
recently nested case which handles up to one level of 
nesting. We designed a deeply nested case to decompose 
a region consisting of a recently nested element with 
many levels of nesting. In this case, we apply a recursive 
process to discover deep nests, i.e., a nested LTR-retro-
transposon within another nested LTR-retrotransposon. 
To begin, we collect a recently nested LTR-retrotranspo-
son found by the recently nested case. We then remove 
the innermost element from the sequence. After that, all 
modules starting from the scorer up to the matcher are 
applied to the newly constructed sequence. This simpli-
fies the deeply nested case to a recursive application of 

Fig. 12 An example of hyper-extension. The 3’ LTR is incorrectly 
merged with another upstream repetitive element. To remedy 
this issue, we cut off the region marked with the dotted red lines 
when matching with the 5’ LTR



Page 18 of 21Garza et al. Mobile DNA            (2024) 15:8 

the recently nested case. This process continues until no 
more recently nested elements are found.

We have discussed how we matched LTRs to form 
LTR-retrotransposon candidates. We now discuss an 
intermittent step before the filter module for extending 
the boundaries of LTRs.

Extending
The LTRs of an LTR-retrotransposon candidate may not 
be exact matches, especially length wise. We take two 
steps to alleviate this issue: (i) k-mer extension and (ii) 
missing-region extension. In k-mer extension, the 3’ LTR 
is extended by k − 1 bp because the last score is the score 
of the last k-mer — not the score of the last nucleotide. 
An LTR may be shorter than its paired LTR in an LTR-
retrotransposon candidate. Although this can happen 
in nature due to insertions and deletions, we attempt to 
extend the short LTR to account for possible failed merg-
ing of stretches in the merger and detector modules. In 
the missing-region extension, we extend the shorter 
LTR forward and backward to match the length of the 
longer LTR. We use Identity (the standard) to confirm 
if an extension results in a better identity score between 
paired LTRs and keep it if it does.

We discussed how we extend the boundaries of two 
paired LTRs. In the next stage, candidates are sent to the 
filter module to drop candidates that fail to meet LTR-
retrotransposon’s signature.

Filter
This module removes LTR-retrotransposon candidates 
that fail to meet certain criteria such as signature fea-
tures. The inputs to the filter are LTR-retrotransposon 
candidates and solo LTR candidates. The outputs are the 
filtered LTR-retrotransposons and solo LTRs. We check 
for the following criteria: (i) LTRs and internal parts are 
of the proper length, (ii) matched LTRs have compara-
ble length and similarity, (iii) LTR-retrotransposon can-
didates have polypurine tracts (PPT) within the internal 
parts, and (iv) LTRs are not Miniature Inverted-repeat 
Transposable Elements (MITEs). A solo LTR is removed 
at the end if there are no same-family (according to 
graph information) LTR-retrotransposon candidates that 
survived.

Length: The lengths of an LTR-retrotransposon’s com-
ponents are known to generally be within a certain range. 
We check if the lengths of the LTRs are at least 2,00 bp 
and less than 7,000 bp. The internal parts must be at least 
2,00 bp long.

Similarity: The LTRs of an LTR-retrotransposon 
should have similar sizes and sequences. We check 
if the length coverage ratio (smaller length to longer 
length) of two LTRs of an element is at least 0.8. If it 

is not, we use the Smith-Waterman algorithm to align 
the two LTRs. If the length of the alignment found is 
at least 80 bp long and the similarity is at least 80%, we 
keep the element, otherwise the candidate is removed.

Polypurine tract: A signature feature of an LTR-ret-
rotransposon is the PPT, which is a sequence of purines 
(A and G nucleotides), upstream from the 3’ LTR. We 
take the last 400 bp of an internal part upstream from 
the 3’ LTR and convert every G to A. Then, we create a 
sequence of all A nucleotides with a size of 100. Next, 
the 100-bp-long sequence is aligned to the 400-bp-long 
sequence using the Smith-Waterman algorithm. If the 
alignment length is greater than 12 and there are more 
A’s than G’s in the region (a signature of the PPT), the 
PPT is confirmed. If we do not find a PPT this way, we 
assume that the orientation is potentially reversed and 
search downstream using the same process but with T’s 
and C’s instead of A’s and G’s. If a PPT is not found, the 
candidate is removed.

MITE: Here we check for MITEs which are small 
transposable elements that can be mistaken for LTRs. 
Further, they are plentiful in plants. Thus, same-family 
MITEs can be near each other, potentially resulting in 
the previous modules matching these elements together 
as LTR candidates into an LTR-retrotransposon can-
didate. This necessitates a filter to locate and remove 
them. We check both LTR candidates of the same retro-
transposon independently and drop the entire element 
only if both LTR candidates are found to be potential 
MITEs. The first and last 30 bp of an LTR candidate are 
taken and aligned against each other to check if an LTR 
candidate has the signature feature of a MITE — ter-
minal inverted repeats. If the alignment length found 
is greater than 15 and the similarity between the two 
sequences is greater than 85%, we consider it a MITE. 
We chose the size of 15 because other tools that spe-
cialize in MITE detection using a similar metric of 
10 [43, 44]. We took this parameter and increased it by 
5 to be stricter as experiments revealed an increase in 
overall performance of Look4LTRs with this change.

Overlapping outputs
After these filters, we consider every LTR-retrotrans-
poson to be a true LTR-retrotransposon. This point 
should be made clear again; in the matcher module, an 
LTR may be paired with multiple other LTRs to form 
LTR-retrotransposons if they meet the criteria. The fil-
ter module drops any LTR-retrotransposon that fails to 
meet the standard features. However, it is possible for 
multiple LTR-retrotransposons with the same LTR (5’ 
or 3’) to pass every criterion. In this case, all of them 
are reported.



Page 19 of 21Garza et al. Mobile DNA            (2024) 15:8  

Post‑process
LTR-retrotransposon are further sharpened using target 
site duplications (TSD). We search 20 bp upstream and 
downstream an LTR-retrotransposon for a duplication 
and search for the longest common substring between 
the two regions. If the substring’s length is at least 4, 
we conclude that we have found a TSD, otherwise it is 
not reported. We extend the boundaries of the LTR-
retrotransposon to meet the TSD if they are not already 
touching.

Evaluation
Using our ground truth, we evaluated Look4LTRs 
alongside the following related tools: LTR_Finder  [31], 
LTRharvest [27], and LtrDetector [29].

Recall that our ground truth is likely incomplete with 
possibly inaccurate boundaries. Therefore, the defini-
tions of true positives and false positives needed to be 
modified to account for these two issues. A true positive 
is a predicted element that has an 80% reciprocal over-
lap with an LTR-retrotransposon in the ground truth. 
For false positives, we followed the method described 
in previous studies [29, 43]. First, we locate all repetitive 
elements as reported by RepeatMasker and drop simple 
repeats and low-complexity regions as well as LTR ele-
ments — as described by RepeatMasker. This is our false 
positive dataset. A false positive is then defined as a pre-
dicted element whose two LTRs are overlapping (80% 
reciprocal) with two elements of the same family from 
the false positive dataset.

To help determine these true positives and false posi-
tives, we utilized BEDTools [45].

We note that we did not evaluate Inpactor2  [30] 
because it utilizes LTR_Finder. Inpactor2 uses LTR_
Finder to detect LTR-retrotransposons in chunks of 
sequences predicted with a neural network to contain 
LTR-retrotransposons. Adding Inpcator2 to the evalua-
tion would be redundant as its results would be similar to 
LTR_Finder. Further, Inpactor2 does not return the posi-
tion of the LTRs, only the position of an entire element, 
thus making it impossible to find false positives accord-
ing to our method for determining false positives.

The four tools are evaluated by recall, precision, and F1 
score. Recall is the percentage of true positives found by 
a tool. Precision is the percentage of true positives in all 
confirmed positive predictions — true or false. F1 score is 
the harmonic mean of recall and precision. Additionally, 
we report the peak memory usage and the time required 
to run a tool. The evaluated tools were ran off-the-shelf, 
utilizing multi-core capabilities only if they came with it 
because most biologists would apply a tool without any 
additional modifications. LTRharvest and LTR_Finder do 

not come with multi-core capabilities, whereas Look4L-
TRs and LtrDetector can utilize multiple cores. We used 
an x86_64 Red Hat Enterprise Linux Server version 7.9 
(Maipo) machine to run the tools, utilizing 24 cores if the 
tool allowed for multiprocessing.

Conclusion
Look4LTRs is a novel tool for LTR-retrotransposon dis-
covery. It processes a whole genome or a group of related 
genomes simultaneously. Look4LTRs usage of the repeti-
tive content of genomes allows for cross-species studies 
by finding shared elements between closely related spe-
cies. According to our evaluations, the usage of repeti-
tive content from related species improves the recall and 
F1 scores. The repetitive content learned is also used as 
evidence to enforce that predicted LTR-retrotransposons 
are repetitive, adhering to the definition of a TE. Further, 
Look4LTRs is able to find recently nested LTR-retrotrans-
posons. Through this feature, we have determined that 
0.53% of Sorghum bicolor is made of recently nested LTR-
retrotransposons. Look4LTRs is nearly alignment free, 
depending on a k-mer matching technique and a graph-
based algorithm to find and match LTRs. As a result, 
Look4LTRs has a low runtime, capable of processing the 
Zea mays genome. We are convinced that Look4LTRs will 
be a great addition to the LTR-retrotransposon detection 
toolset due to the novel features it presents.

Abbreviations
TE  Transposable Element
LTR  Long Terminal Repeat
TSD  Target Site Duplication
PPT  Polypurine Tract
bp  Base pair

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13100- 024- 00317-w.

Supplementary material 1. 

Authors’ contributions
HZG provided the concept behind Look4LTRs, helped with developing 
Look4LTRs, evaluated Look4LTRs, and aided in writing the manuscript. ABG 
developed Look4LTRs, evaluated Look4LTRs, and wrote the manuscript. LE 
provided biological insight on the parameters and a blind manual expertise 
on the results of Look4LTRs applied to the barley genome and wrote the cor-
responding section of the manuscript. All authors reviewed the manuscript.

Funding
We were supported by internal funding from the Texas A &M University-Kings-
ville College of Engineering.

Availability of data and materials
Tool name: Look4LTRs
 Github: https:// github. com/ Bioin forma ticsT oolsm ith/ Look4 LTRs
 Operating System: UNIX/LINUX
 Programming Language: C++
 License: GNU Affero General Public License v3.0

https://doi.org/10.1186/s13100-024-00317-w
https://doi.org/10.1186/s13100-024-00317-w
https://github.com/BioinformaticsToolsmith/Look4LTRs


Page 20 of 21Garza et al. Mobile DNA            (2024) 15:8 

 Any restrictions to use by non-academics: Alternative commercial license is 
required.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Bioinformatics Toolsmith Laboratory, Department of Electrical Engineering 
and Computer Science, Texas A &M University-Kingsville, Kingsville, Texas, USA. 
2 The Biometrics and Evolutionary Biology Laboratory, University Lyon 1, Lyon, 
France. 

Received: 29 July 2023   Accepted: 8 March 2024

References
 1. McClintock B. The origin and behavior of mutable loci in maize. Proc 

Natl Acad Sci U S A. 1950;36(6):344–55.
 2. Bourque G, Burns KH, Gehring M, et al. Ten things you should know 

about transposable elements. Genome Biol. 2018;19:199.
 3. Chuong E, Elde N, Feschotte C. Regulatory activities of transposable 

elements: from conflicts to benefits. Nat Rev Genet. 2017;18:71–86.
 4. Ivics Z, Izsvák Z. The expanding universe of transposon technologies 

for gene and cell engineering. Mob DNA. 2010;1:25.
 5. Levin H, Moran J. Dynamic interactions between transposable ele-

ments and their hosts. Nat Rev Genet. 2011;12:615–27.
 6. Lisch D. How important are transposons for plant evolution? Nat Rev 

Genet. 2013;14:49–61.
 7. Belancio V, Deininger P, Roy-Engel A. Line dancing in the human 

genome: transposable elements and disease. Genome Med. 2009;1:97.
 8. Hayashi K, Yoshida H. Refunctionalization of the ancient rice blast 

disease resistance gene pit by the recruitment of a retrotransposon as 
a promoter. Plant J. 2009;3:413–25.

 9. Fernandez L, Torregrosa L, Segura V, Bouquet A, Martinez-Zapater JM. 
Transposon-induced gene activation as a mechanism generating clus-
ter shape somatic variation in grapevine. Plant J. 2010;61(4):545–57.

 10. Rebollo R, Romanish MT, Mager DL. Transposable elements: An abun-
dant and natural source of regulatory sequences for host genes. Annu 
Rev Genet. 2012;46:21–42.

 11. International Human Genome Sequencing Consortium. Initial sequenc-
ing and analysis of the human genome. Nature. 2001;409:860–921.

 12. Wicker T, Gundlach H, Spannagl M, et al. Impact of transposable elements 
on genome structure and evolution in bread wheat. Genome Biol. 
2018;19:103.

 13. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell 
A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH. A 
unified classification system for eukaryotic transposable elements. Nat 
Rev Genet. 2007;8(12):973–82.

 14. Lerat E. Identifying repeats and transposable elements in sequenced 
genomes: how to find your way through the dense forest of programs. 
Heredity (Edinb). 2010;104:520–33.

 15. Cai X, Lin R, Liang J, King GJ, Wu J, Wang X. Transposable element inser-
tion: a hidden major source of domesticated phenotypic variation in 
brassica rapa. Plant Biotechnol J. 2022;20:1298–310.

 16. Marie-Angèle G. Ltr retrotransposons, handy hitchhikers of plant regula-
tion and stress response. Biochim Biophys Acta Gene Regul Mech. 
2015;1849(4):403–16.

 17. Zedek F, Šmerda J, Šmarda P, et al. Correlated evolution of ltr retro-
transposons and genome size in the genus eleocharis. BMC Plant Biol. 
2010;10(265).

 18. Leonardo G-G, Corinne M, Michael KD, Marie-Angéle G. Ltr-retrotrans-
posons in plants: Engines of evolution. Gene. 2017;626:14–25.

 19. Papolu PK, Ramakrishnan M, Mullasseri S, et al. Retrotransposons: How 
the continuous evolutionary front shapes plant genomes for response 
to heat stress. Front Plant Sci. 2022;13(1064847).

 20. Li SF, She HB, Yang LL, et al. Impact of ltr-retrotransposons on genome 
structure, evolution, and function in curcurbitaceae species. Int J Mol 
Sci. 2022;23(17):10158.

 21. Bennetzen JL, Wang H. The contributions of transposable elements 
to the structure, function, and evolution of plant genomes. Annu Rev 
Plant Biol. 2014;65(1):505–30.

 22. Girgis HZ. Red: an intelligent, rapid, accurate tool for detecting repeats 
de-novo on the genomic scale. BMC Bioinform. 2015;16:227.

 23. Storer J, Hubley R, Rosen J, Smit A. Methodologies for the de novo dis-
covery of transposable element families. Genes (Basel). 2022;13(4):709.

 24. Smit A, Hubley R, Green P. RepeatMasker Open-4.0 (2013-2015). http:// 
www. repea tmask er. org. Accessed 16 Mar 2024.

 25. Bao W, Kojima K, Kohany O. Repbase update, a database of repetitive 
elements in eukaryotic genomes. Mob DNA. 2015;6:11.

 26. Storer J, Hubley R, Rosen JEA. The dfam community resource of trans-
posable element families, sequence models, and genome annotations. 
Mob DNA. 2021;12:2.

 27. Ellinghaus D, Kurtz S, Willhoeft U. Ltrharvest, an efficient and flexible 
software for de novo detection of ltr retrotransposons. BMC Bioinform. 
2008;9(1):18.

 28. Gremme G, Steinbiss S, Kurtz S. Genometools: a comprehensive soft-
ware library for efficient processing of structured genome annotations. 
IEEE/ACM Trans Comput Biol Bioinform. 2013;10:645–56.

 29. Valencia JD, Girgis HZ. Ltrdetector: A tool-suite for detecting long 
terminal repeat retrotransposons de-novo. BMC Genom. 2019;20:450.

 30. Orozco-Arias S, Humberto Lopez-Murillo L, Candamil-Cortés MS, Arias 
M, Jaimes PA, Rossi Paschoal A, Tabares-Soto R, Isaza G, Guyot R. Inpac-
tor2: a software based on deep learning to identify and classify LTR-
retrotransposons in plant genomes. Brief Bioinforma. 2022;24(1):511.

 31. Xu Z, Wang H. Ltr finder: an efficient tool for the prediction of full-
length ltr retrotransposons. Nucleic Acids Res. 2007;35(2):265–8.

 32. Riehl K, Riccio C, Miska E, Hemberg M. Transposonultimate: software for 
transposon classification, annotation and detection. Nucleic Acids Res. 
2022;50:64.

 33. Drost H. Ltrpred: de novo annotation of intact retrotransposons. JOSS. 
2020;5:2170.

 34. Ou S, Jiang N. Ltr_retriever: A highly accurate and sensitive program for 
identification of long terminal repeat retrotransposons. J Plant Physiol. 
2017;176(2):1410–22.

 35. Steinbiss S, Willhoeft U, Gremme G, Kurtz S. Fine-grained annotation 
and classification of de novo predicted ltr retrotransposons. Nucleic 
Acids Res. 2009;37(21):7002–13.

 36. Lexa M, Jedlicka P, Vanat I, Cervenansky M, Kejnovsky E. Te-greedy-
nester: structure-based detection of ltr retrotransposons and their 
nesting. Bioinformatics. 2020;36(20):4991–9.

 37. Zeng FC, Zhao YJ, Zhang QJ, Gao LZ. Ltrtype, an efficient tool to 
characterize structurally complex ltr retrotransposons and nested 
insertions on genomes. Front Plant Sci. 2017;8:402.

 38. Kronmiller BA, Wise RP. Tenest 2.0: computational annotation and 
visualization of nested transposable elements. Methods Mol Biol. 
2013;1057:305–19.

 39. Girgis HZ, James BT, Luczak BB. Identity: raid alignment-free prediction 
of sequence alignment identity scores using self-supervised general 
linear models. NAR Genom Bioinform. 2021;3:001.

 40. Bailly-Bechet M, Haudry A, Lerat E. “One code to find them all’’: a perl 
tool to conveniently parse repeatmasker output files. Mob DNA. 
2014;5:13.

 41. The International Barley Genome Sequencing Consortium. A physical, 
genetic and functional sequence assembly of the barley genome. 
Nature. 2012;491:711–716.

 42. Altschul S, Gish W, Miller W, Myers E, Lipman D. Basic local alignment 
search tool. J Mol Biol. 1990;215(3):403–10.

 43. Crescente J, Zavallo D, Helguera M, et al. Mite tracker: an accurate 
approach to identify miniature inverted-repeat transposable elements in 
large genomes. BMC Bioinform. 2018;19:348.

http://www.repeatmasker.org
http://www.repeatmasker.org


Page 21 of 21Garza et al. Mobile DNA            (2024) 15:8  

 44. Hu J, Zheng Y, Shang X. Mitefinderii: a novel tool to identify miniature 
inverted-repeat transposable elements hidden in eukaryotic genomes. 
BMC Med Genomics. 2018;11(Suppl 5):101.

 45. Quinlan A, Hall I. Bedtools: a flexible suite of utilities for comparing 
genomic features. Bioinformatics. 2010;26:841–2.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Look4LTRs: a Long terminal repeat retrotransposon detection tool capable of cross species studies and discovering recently nested repeats
	Abstract 
	Background
	Results & discussion
	Look4LTRs modules
	Training & testing evaluation
	Cross-species evaluation
	Coverage estimation of LTR-retrotransposons
	Expert manual confirmation

	Implementation
	Input & output
	Data
	Semi-synthetic genome generation
	Method overview
	Scorer
	Merger
	Red training
	Detector
	Identity training
	Matcher
	Building a directed-weighted graph
	Matching LTRs

	Extending
	Filter
	Overlapping outputs
	Post-process
	Evaluation

	Conclusion
	References


