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Abstract 

Small-cell lung cancer (SCLC) is an aggressive cancer characterized by immunosuppressive features leading to poor 
responses to current immunotherapies. Activation of transposable elements (TE) can trigger an innate immune 
response, which can synergize with immunotherapeutic protocols in patients. However, TE activity in relation to 
immune gene response is not fully known in human SCLC. Here, we compared TE expression in 104 human SCLC 
and 24 normal tissues and established their involvement in innate immune responses. We observed that different 
intergenic TEs, mainly endogenous retroviral (ERV) families, are deregulated in SCLC. Similarly to other cancers, we 
detected a subset of LTRs that correlate with innate immune gene signatures and cytosolic RNA sensors, such as RIG-I. 
These LTRs are downregulated in SCLC tumors vs. normal tissues, and are mainly located at transcriptional repressed 
regions, marked with H3K4me2 in different cell lines. Analyses of different genomic datasets show that chromatin 
repression is likely due to de-methylase LSD1 activity. Moreover, high expression levels of ERV LTRs predict a better 
survival upon chemotherapy of SCLC patients. The findings reveal a specific pattern of TE-mediated activation of 
innate immune genes in SCLC, which can be exploited to establish more effective immunotherapeutic combinations.

Keywords Small-cell lung cancer, Transposable elements, Innate immune response, Cytoplasmic RNA sensors, 
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Introduction
Small-cell lung cancer (SCLC) is an aggressive tumour 
that accounts for almost 15% of all lung tumours with 
a 5-7% of survival rate after 5-years from the diagnosis. 
Chemotherapy treatments are firstly effective, but then 
tumour recurrences are drug-resistant commonly lead-
ing to death within few months [1–3]. SCLC patients 
also show mostly discouraging responses to current 

immunotherapeutic treatments due to a high level of 
immunosuppression and low T-cell infiltration, even 
though the disease is characterized by a high mutational 
burden [4]. Recently, the association of immune check-
point blockade (ICB) treatment with inhibitors target-
ing the DNA damage response (DDR) pathway has been 
shown to be effective in multiple murine SCLC mod-
els [5]. DDR inhibitors or DNA-interacting agents can 
increase the surface expression of PD-L1 and/or acti-
vate the cGAS-STING pathway, mediated by cytosolic 
DNA sensors, leading to Type I interferon stimulated 
gene (ISG) expression [6, 7] and tumour-infiltrating 
cytotoxic T-lymphocytes [5, 8]. Therefore, triggering the 
cellular innate immune response can act synergistically 
with immunotherapeutic approaches to achieve longer 
survival of SCLC patients. However, cGAS and STING 
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expression is significantly reduced in human SCLC as 
compared to normal lung and other lung cancers leading 
to a marked impairment of the cGAS/STING pathway 
[9]. These results highlight the need to develop new strat-
egies to stimulate innate immune genes in unresponsive 
SCLC.

Pharmacological approaches aimed at activating an 
anti-viral response in tumours, based on the upregula-
tion of transposable elements (TE) as “viral mimicry”, 
has recently become an active research topic with prom-
ising results [10–12]. TEs are ubiquitous, long-stand-
ing genetic elements of eukaryotic genomes, capable 
of mobilization throughout the entire cell genome by 
an autonomous replication mode. They are commonly 
divided into two main classes: Class I is comprehensive 
of endogenous retroelements, namely long terminal 
repeats (LTRs), long interspersed elements (LINEs) and 
short interspersed elements (SINEs), which replicate 
through an RNA intermediate and a “copy and paste” 
mechanism. Class II includes DNA transposons, which 
replicate through a DNA intermediate and a “cut and 
paste” mechanism [13]. In several cases, TEs overlap with 
expressed genes in the human genome, therefore causing 
difficulties in distinguishing true TE-derived reads from 
expressed gene-derived reads in transcriptome sequenc-
ing approaches [14].

Over evolutionary time, due to their intrinsic genetic 
properties and activities, certain TEs went through exap-
tation in cis-regulatory elements and co-opted for the 
tuning of essential gene functions [13]. Interestingly, a 
mammalian lineage-specific subset of endogenous ret-
rovirus (ERVs) turned out to act as interferon-induci-
ble enhancers essential for the activation of the AIM2 
inflammasome [15]. However, the majority of TEs have 
undergone silencing by the host genomes in order to 
restrict their pervasive and potentially deleterious de 
novo insertions as well as transcriptional and post-tran-
scriptional effects. RNA-Seq data analyses of genome-
wide quantification of TE expression using The Cancer 
Genome Atlas (TCGA) database showed overexpression 
of specific TE subfamilies in tumour vs matched normal 
samples and an association with antiviral and DNA dam-
age responses [14]. Moreover, treatment of glioblastoma 
cells with demethylating agents resulted in increased TE 
expression and antigenicity through the presentation of 
novel TE-derived peptides on class I MHC [14]. Analo-
gously, endogenous retroelement overexpression in ovar-
ian cancer cell lines treated with DNA methyltransferase 
inhibitors (DNMTis) could trigger an antiviral response 
mediated by cytosolic dsRNA sensing [10]. Chemother-
apy-induced TE expression has been demonstrated to 
activate the MDA5 pathway leading to an inflammatory 
response required for hematopoietic regeneration [16]. 

These findings altogether are consistent with a mecha-
nism of induction of an innate immune response medi-
ated by the sensing of TE-derived nuclei acids in the 
cytosol of cancer cells due to epigenetic dysregulation 
of genomic TE copies [17, 18]. However, little is known 
of TE expression changes and induction of immune 
response in human SCLCs.

Thus, we here analysed TE families in 104 human SCLC 
samples and 24 normal lung tissues, along with patterns 
of immune gene expression levels, restricting the study to 
intergenic TEs to avoid ambiguity in assigning sequence 
reads to overlapping TEs and gene transcripts. We found 
that expression levels of certain intergenic TEs, which are 
downregulated in SCLC tumors with respect to normal 
tissues, correlate with innate immune gene signatures. 
Moreover, high expression levels of these TEs predict a 
better survival upon chemotherapy of SCLC patients. 
The findings reveal a specific scheme of TE-mediated 
activation of innate immune genes in SCLC, which can 
be exploited to establish more effective immunothera-
peutic combinations.

Results
Intergenic TE expression is deregulated in human SCLCs
We characterized the landscape of TE expression in 
SCLCs by using RNA-Seq data from a cohort of tumours 
and matched normal tissues [19], and two cohorts of 
tumour samples [1, 20] for a total of 104 cancer and 24 
normal samples. Quantification of TE transcripts was 
performed using the REdiscoverTE tool [14], which 
aggregates the expression of multiple TE copies under 
the subfamily to which they belong. The tool also gathers 
TE copies into intergenic, exonic or intronic types based 
on the host genomic locus. Thus, since we observed that 
the overall expression of the main TE classes basically 
stems from intergenic regions (Fig. S1A) and to further 
exclude ambiguous annotation of reads originating from 
host gene transcripts or chimeric transcripts, we have 
restricted the analyses to intergenic TEs only (Fig.  1A). 
A Principal Component Analysis (PCA) of intergenic TE 
expression reveals that normal lung and SCLC tissues 
clustered into two well-separated areas based on overall 
TE expression (Fig. 1B), in agreement with the same anal-
ysis of gene expression (Fig. S1B). Therefore, intergenic 
TE transcriptome is overall altered in SCLC with respect 
to normal lung.

Next, we investigated how TEs are differentially 
expressed in tumour samples as compared to matched 
normal tissues. Firstly, raw counts of repeated sequences 
were used to filter out subfamilies with few counts. Then, 
a paired differential expression analysis was performed 
to account for patient-specific differences (Fig. S1C). The 
analysis results in 1040 intergenic TE families belonging 
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to six classes: DNA transposons, long-terminal repeats 
(LTRs), long-interspersed repeats (LINEs), Penelope 
elements, short-interspersed repeats (SINEs) and ret-
roposons (SVAs). Of them, 52 (5%) TE families were 
deregulated in SCLC vs. normal lung (Table S1), equally 
divided into upregulated and downregulated (Fig.  1C). 
In addition, we noticed patient-specific TE expression 
levels, with a subgroup of patients characterized by an 
overall higher expression of many deregulated TEs (Fig. 
S1C). However, TE expression levels differ between 
tumour and normal samples with a high reproducibility 

(Fig. S1D). Notably, deregulated TEs belong to all the 
above-mentioned TE classes, apart from SVA elements 
(retroposons). The majority of either upregulated and 
downregulated intergenic TEs belongs to LTRs (n = 19 
and 15, respectively) or DNA transposons (n = 3 and 
10, respectively) (Fig. 1D). SINE and LINE and Penelope 
elements are less frequent among the deregulated TEs. 
Interestingly, most of deregulated LTRs belong to the 
endogenous retroviral ERV1 family (Fig.  1D). Since TE 
expression is prevalent at intergenic regions (Fig. S1A), 
we observed that performing the differential analysis 

Fig. 1 TEs are deregulated in human SCLCs. A Design of data analyses performed starting from collecting RNA-seq data from three public datasets 
of SCLC samples. Intergenic transposable element expression was quantified with RediscoverTE [14] and differential expression analysis was 
performed. Then we characterized deregulated TEs involvement in innate immune induction, epigenetic changes in SCLC and patient survival. 
Created with BioRe nder. com. B PCA plot of SCLC sample datasets based on transposable element expression. Samples are 104 SCLC from three 
different EGA Datasets (magenta circles, triangles and squares) and 24 normal lung (green circles) samples. C Volcano plot of differentially expressed 
intergenic TEs in 24 SCLC vs matched normal samples. X-axis:  log2 fold change values of differential expression. Y axis: -Log10(q-value). Points 
correspond to intergenic TE copies included in DNA, LTR, LINE, SINE, Penelope and retroposons classes (n = 1040). Labels are assigned only to 
intergenic differentially expressed TEs (n = 52). Red points correspond to differentially expressed TEs with  log2 fold change ≥ + 1 or  log2 fold 
change ≤ − 1 and q-value ≤0.05. Yellow points correspond to differentially expressed TEs with  log2 fold change ≥ + 1 or  log2 fold change ≤ − 1 
and q-value ≥0.05. D Stacked bar plot of the number of upregulated (left) and downregulated (right) transposable element copies summarized for 
each family and grouped for each class in SCLC tumour vs matched normal samples. Gradient colour is shown according to the legend

http://biorender.com
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using global level of TE expression leads to similar results 
in terms of deregulated candidates (Table S2).

Expression of downregulated ERVs correlates with immune 
response gene pathway
We then wondered whether the expression levels of 
deregulated TEs were associated with activation of 
immune genes in SCLC. Firstly, making use of immune 
response-related genes and the MSigDB Hallmark col-
lection, we computed ssGSEA enrichment scores for 
each of the 104 tumour samples. Then, we determined 
a correlation factor between the enrichment score and 
deregulated TE expression. We found that expression 
levels of TE subfamilies upregulated in tumour samples 
compared to matched normal ones were anti-correlated 
with immune response signatures (Fig.  2A, Fig. S2A). 
Conversely, among downregulated intergenic TEs, the 
expression levels of ERV subfamilies LTR30, LTR22C, 
LTR9C, MER61F, the intergenic expression of which is 
prevalent comparing to intragenic one (Fig. S3A), and, 
to a lower extent, HERV1_LTRd, were positively corre-
lated with immune response gene signatures, particularly 
for Type I Interferon pathway (Fig.  2A). LTR30 is posi-
tively correlated with all the immune-related gene sets 
(Fig. 2A). Consistently, MSigDB Cancer Hallmark analy-
ses showed a strong correlation with interferon responses 
and inflammatory signatures for the above TEs only, 
whereas many upregulated TEs showed an anticorrela-
tion with the signatures (Fig. S2A). A few of upregulated 
TEs (such as HERVL18_int) were slightly associated with 
immune features, but not at significant levels (Fig.  2A 
and S2A). Then, we asked whether the observed down-
regulation of ERVs involves all the elements of the same 
subfamily or only some of them. Therefore, we firstly 
determined TE expression levels for each genomic copy 
using TElocal tool [21]. Then, we performed a differential 
expression analysis for each copy of TE subfamily. The 
results showed that LTR30, LTR22C and LTR9C subfami-
lies are characterized by many significantly downregu-
lated copies and only a few upregulated, while MER61F 
and HERV1_LTRd showed only downregulated copies 
(Fig. S4A-E). An upregulated ERV, MER74C, is instead 
characterized by mostly upregulated loci (Fig. S4F). Alto-
gether, results from the differential expression analysis at 
locus level identified specific copies potentially account-
ing for the overall deregulation observed at subfamily 
level (Table S3). Correlation of the expression at these 
copies of downregulated ERV subfamilies and ssGSEA 
enrichment score of immune-related signatures resulted 
in a positive association for a few downregulated cop-
ies (Fig. S5A). Specifically, LTR30 (dup101) is the locus 
with the highest correlation scores, but also two cop-
ies of LTR9C (dup9 and dup137), MER61F (dup28 and 

dup93) and HERV1_LTRd (dup4 and dup5) and one copy 
of LTR22C (dup1) showed significant positive correlation 
scores.

Cytosolic RNA sensor expression correlates with innate 
immune response genes
As the production of type I Interferon induced by TE 
expression can depend on cytosolic nucleic acid sensors 
[10, 16], we evaluated the association of 8 sensors with 
immune-related gene sets in SCLCs. We focused on well-
recognized sensors of cytosolic dsRNAs such as mela-
noma differentiation-associated protein 5 (MDA5, also 
known as IFIH1) and retinoic acid-inducible gene I pro-
tein (RIG-I, also known as DDX58), which activate the 
mitochondrial antiviral-signaling protein (MAVS) and, 
ultimately, lead to the production of type I interferon 
[22]. In addition to the RIG-I/MDA5-MAVS pathway, 
we considered the endosomal Toll-like receptors spe-
cific for the recognition of ssRNAs and dsRNAs, TLR7/
TLR8 and TLR3, respectively [17], and IFI16, which is 
a sensor of both RNA and DNA in cytosol [23–25]. We 
further considered the DNA sensors AIM2, which, after 
binding cytosolic DNA, mediate the production of IL-1β 
via inflammasome activation and the cGMP–AMP syn-
thase (cGAS) sensor, which recognizes cytosolic DNA 
and activates STING (stimulator of IFN genes) [26] We 
found that expression levels of RNA cytosolic and endo-
somal sensors MDA5, RIG-I, TLR3 and TLR8, but also 
IFI16 are strongly correlated with the “Response to type 
I interferon” gene set, while cytosolic DNA sensors seem 
to be slightly associated with an innate immune response 
activation in SCLC tumours (Fig. S6A-I).

ERV1 LTR30 and RIG‑I are together a better predictor 
of immune response in SCLCs
As certain LTR families and cytosolic RNA sensors are 
strongly associated to immune response genes, we then 
investigated whether the combination of expression of 
intergenic LTR30, LTR9C, LTR22C and MER61F families, 
and cytosolic RNA sensors is a better predictor of type I 
interferon response pathway in SCLCs. PCA analyses of 
cytosolic sensors and TE expression showed that higher 
expression of LTR30 or LTR9C, LTR22C and MER61F, on 
one side, and cytosolic RNA sensors, on the other, pre-
dicted a higher response to type I interferons (Fig.  3A, 
Fig. S7A). We did not detect such a correlation with 
TEs that are upregulated in SCLCs as compared with 
matched normal samples, such as MER74C (Fig. 3B).

The best correlation scores were observed with LTR30 
element and RIG-I sensor (Fig. 3A, Fig. S7A). We clearly 
observed that LTR30 expression levels best fitted with 
RIG-I expression (Spearman’s rho = 0.65) and also that 
higher expression levels of both characterize tumour 
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samples with positive enrichment (NES > 0.2) of Type I 
interferon response gene set. Consistently, tumour sam-
ples characterized by negative enrichment (NES < − 0.2) 

show lower expression of both LTR30 and RIG-I 
(Fig. 3C). The same trend also characterized the correla-
tion with TLR sensors, but also with STING (Spearman’s 

Fig. 2 Downregulated TEs correlates with innate immune activation. A Heatmap of correlation between expression of differentially-expressed TEs 
(rows) and ssGSEA scores of immune response genes (columns). Heatmap annotation: Spearman’s rho correlation coefficient (Cor). Negative to 
positive correlation values correspond from blue to red, respectively. p-values: * 0.001-0.05, ** 0.00001-0.001, *** < 0.00001. None, > 0.001.  Log2FC 
annotation:  log2 fold change values of differentially expressed TEs, ranked from the negative (yellow) to the positive (green) values. Class annotation: 
TE class colour as shown
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rho = 0.48) and IFI16 (Spearman’s rho = 0.56) (Fig. S8A-
D). SCLC samples with positive enrichment of type I 
interferon response also showed a higher expression, but 
to a lower extent, of LTR9C, LTR22C and MER61F sub-
families and cytosolic RNA sensors. On the contrary, the 
expression of TE subfamilies found to be upregulated in 
tumours vs normal tissues, such as MER74C (Fig.  3D), 
show no correlation with response to type I interferon. 
Interestingly, a higher expression of MER74C was associ-
ated to a minimal response to type I interferon. Therefore, 
the expression of either LTR30 and other TE subfamilies, 
and RIG-I and other RNA sensors is associated to an 
innate immune response in human SCLCs.

Demethylation of H3K4me2 likely drives repression 
of intergenic ERVs in human SCLCs
As intergenic LTR30, LTR9C, LTR22C and MER61F are 
downregulated in SCLC tumors with respect to normal 
samples, and their expression correlated with innate 
immune response, we next investigated the mechanism 
of LTR transcriptional repression in SCLCs by further 
bioinformatic analyses of biological datasets. In particu-
lar, we determined prevalent histone modifications and 
Transcription Factor Binding Sites (TFBS) at all deregu-
lated intergenic LTRs by performing a locus enrichment 
analysis with the LOLA tool [27] of the epigenome Cis-
trome database [28]. As Cistrome datasets constitute a 
collection of ChIP-seq data from different cancer cells 
(but not SCLC cells), the statistical significance of the 
analyses does not rely only on p-values and percentages 
of support of individual marks (Fig. S9A, as described 
in caption), but it is based on the recurrent frequency of 
enriched marks across several cell lines.

Firstly, we observed that intergenic LTR30 elements 
(and to a lower extent MER61F and LTR22C) co-local-
ize with di-methylation and tri-methylation of histone 
3 at Lysine 4 (H3K4me2 and H3K4me3, respectively) 
(Fig.  4A), which are signals of transcriptionally active 
chromatin. The results suggested that repression of inter-
genic LTR30s in SCLC may be due to alterations of H3K4 
methylation levels. Many analysed LTRs showed no sig-
nificant enrichment, except for LTR10B1 and MER50-
int subfamilies that are associated to the repressive 

tri-methylation of histone 3 at Lysine 9 (H3K9me3) mark 
(Fig. S10A). Conversely, loci associated to upregulated 
LTRs in SCLC are overall enriched in repressive histone 
markers (Fig. S10B), indicating that epigenetic changes 
may involve those histone marks leading to upregulation 
in SCLCs.

As H3K4me2 and H3K4me3-enriched regions more 
often overlap with transcription factor binding regions 
[29], we next performed enrichment analyses with Cis-
trome TFBS database to determine the specific fac-
tors that bind to intergenic LTRs deregulated in SCLCs. 
While many analysed LTRs showed no significant enrich-
ment (Fig. S11A), we observed a significant association 
between downregulated LTR30 and ESR1 (Estrogen 
Receptor 1) binding sites, and, to a lower extent, GATA6 
(GATA binding protein 6) sites (Fig. 4B). In addition, we 
observed significant colocalization for LTR22C (HNF4A, 
Hepatocyte Nuclear Factor 4 Alpha) and MER61F 
(GATA6 and HNF4A). Among the upregulated TEs, 
we observed significant associations for HERVL18-int 
(STAG1, RAD21), LTR2752 (RXR), MER66B (TRIM24) 
(Fig. S11B). Notably, we observed that GATA6 and ESR1 
genes were significantly downregulated in SCLCs as com-
pared with normal samples (Fig.  4C-D), while STAG1, 
TRIM24 and RAD21 showed an upregulation (Fig.  4E-
G) suggesting that expression alterations of these tran-
scription factors may affect the expression of the studied 
intergenic ERV LTRs. We performed a transcription fac-
tor binding motif discovery for intergenic loci of LTR30, 
LTR22C and MER61F to further validate the potential 
association with these transcription factors. Interest-
ingly, we detected a very significant presence of ESR and 
GATA binding motifs (Fig. S12, p-val 10e-197 and 10e-
182 respectively) but the most enriched motifs regarded 
immune-related IRF and STAT transcription factors 
(IRF8, p-val 10e-248, IRF4, p-val 10e-245 and STAT5a 
p-val 10e-243). We obtained less significant but similar 
results for MER61F loci (Fig. S13), while for LTR22C we 
obtained unreliable potential motifs due too low p-values 
(Fig. S14).

As intergenic LTR30 elements and other ERVs are 
commonly associated with H3K4me2 mark, we won-
dered whether de-regulation of this histone modifica-
tion may contribute to TE repression in SCLCs. Histone 

(See figure on next page.)
Fig. 3 LTR30 expression strongly correlates with innate immune genes and RIG-I sensor expression. PCA plot of SCLC samples dataset based 
on innate sensors gene and A) LTR30 or B) MER74C expression. The PCA loadings describing the contribution to the components of each gene 
and TE are represented as labelled arrows. Points correspond to SCLC tumour samples (n = 104). Colour: Response to type I Interferon ssGSEA 
scores, as in legend. C Main: Scatter plot of correlation between  log2 normalized counts of LTR30 expression (x-axis) and  log2 normalized counts 
of RIG-I expression (y-axis). Points correspond to SCLC tumour samples (n = 104). Colour: Response to type I Interferon ssGSEA scores, as in legend. 
Spearman’s rho (R) and p-values of correlation (p) are reported. Down: Violin plot of LTR30 expression in samples with low levels of Response to type 
I Interferon (blue, NES < − 0.2) or with high levels of Response to type I Interferon (red, NES > 0.2). Left: Violin plot of RIG-I expression in samples with 
low levels of Response to type I Interferon (blue, NES < − 0.2) or high levels of Response to type I Interferon (red, NES > 0.2). Wilcoxon test p-values 
are reported: * 0.01-0.05, ** 0.0001-0.01, *** 0,00001-0.0001, **** < 0,000001. D Same as in C) but for MER74C
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Fig. 3 (See legend on previous page.)
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de-methylase LSD1, responsible for methyl group removal 
from H3K4 [30], was shown to play a role in histone meth-
ylation patterns in SCLC and to be a promising drug target 
[31]. Thus, we investigated its expression levels in SCLC 
and found that LSD1 is overexpressed in tumour samples 
as compared to normal lung (Fig.  5A). In addition, using 
H3K4me2 and LSD1 ChIP-seq data from the SCLC H526 
cell line [31], we observed a significant association of inter-
genic loci of downregulated ERV with H3K4me2 histone 
modification and LSD1, and that treatment with an LSD1 
inhibitor reduced its binding to these loci (Fig. 5B).

We performed the same analysis considering down-
regulated ERV loci that were found expressed and down-
regulated with locus specific TE quantification, and we 
observed that some loci are associated more than others 
to H3K4me2 histone modification and that likely the same 
loci seem to be the most associated to LSD1 histone de-
methylase (Fig. S15A, B). As the results indicate that LSD1 
can play a role in the repression of intergenic ERV LTRs, 
we then wondered whether the expression of LTR-proxi-
mal genes was also downregulated. Then, we collected the 
genes in the upstream regions (within 20 kbp from TSS) of 
which, the repressed LTR elements are located, and per-
formed a Gene Set Enrichment Analysis for each repressed 
LTR subfamily. We found that many downregulated LTRs 
are often located upstream (control) regions of genes that 
are under-expressed in SCLCs as compared with normal 
lung tissues (Fig. 5C). Again, the most enriched intergenic 
TE is ERV1 LTR30 subfamily (Fig. 5D). The results indicate 
that downregulated intergenic ERV LTR elements are likely 
embedded in repressed chromatin including TE elements 
and proximal genes. In addition, since SCLC is character-
ized by hypermethylation at many promoter sites [32], we 
investigated DNA methylation status of intergenic LTRs 
in SCLC and normal lung in order to find any correlation 
between DNA methylation and LTR30 expression. How-
ever, we did not find any evidence of methylation changes 
in LTR30 genomic regions in SCLCs (Fig. S16 A-C) that 
may suggest an epigenetic regulation that is observed for 
protein coding genes (e.g. STING, Fig. S16D).

Altogether, the findings indicate that repression of ERV 
LTR subfamilies in SCLC are likely due to epigenetic 
repression of chromatin in SCLC tumours. Downregulated 
LTR30, LTR22C, LTR9C and MER61F are likely associated 
with reduced H3K4me2 levels due to LSD1 overexpression 
in SCLC vs normal lung.

High ERV1‑LTR30 expression predicts a higher efficacy 
of chemotherapy in SCLC patients
Since innate immune genes activation in SCLC has been 
proposed to act synergistically with immunotherapy 
approaches to promote longer survival in patients [5], we 
wondered if high expression levels of LTR30, LTR22C, 
LTR9C and MER61F, that we observed correlate with 
innate immune response signatures in SCLC, can pre-
dict a favourable prognosis in SCLC patients treated with 
chemotherapy as well. Therefore, we performed a survival 
analysis of the SCLC patients that had not been treated 
with drugs before surgical tumour resections and grouping 
them based on LTR expression levels and on chemotherapy 
after the resection (total n = 30). The results clearly showed 
that patients with high expression levels of ERV1 LTR30 
show a longer survival rate in case they underwent chem-
otherapeutic treatments, but not if they were not treated 
with drugs (Fig. 6). Patients with low ERV1 LTR expression 
show a shorter survival rate regardless of chemotherapeutic 
treatment (Fig. 6). Similar results were obtained for LTR9C, 
whereas LTR22C and MER61F effects were not significant 
(Fig. S17A-C). Therefore, the analyses underline the clini-
cal impact of ERV LTR30 and LTR9C expression levels on 
SCLC response to chemotherapy.

Discussion
Our findings provide unexpected insights into the 
emerging implications of LTR expression on the mod-
ulation of innate immune responses in human SCLC. 
To overcome the challenge of a precise detection and 
measurement of the levels of short-read sequences 
from repetitive regions overlapping transcribed genes, 
we have here used the recently developed method 
REdiscoverTE [14] to quantify the expression of all 
repetitive sequences, including TEs, focusing on inter-
genic loci only. Moreover, we have demonstrated the 
reliability of the technical approach comparing it with 
a robust locus-level quantification method [21, 33]. 
We used RNA-seq data from 104 human SCLC and 24 
normal lung tissues [1, 19, 20]. Differential expression 
analysis highlighted a subset of intergenic deregulated 
TE subfamilies, equally distributed into upregulated 
and downregulated in SCLC vs normal lung, which are 
mainly LTR elements belonging to distinct ERV fami-
lies (Fig. 1). Surprisingly, we found that expression lev-
els of specific downregulated (with respect to normal 
tissues) ERV1s, namely LTR30, LTR9C, LTR22C and 

Fig. 4 Downregulated TEs are associated with specific histone marks and transcriptional-suppressed loci. Bubble plot of top ten ranked A) Cistrome 
Epigenome marks and B) Cistrome TFBSs associated to deregulated LTR elements. Bubble colour: -Log(p-value), as in legend. Bubble size: “support” 
percentage, expressed as the ratio between the number of intergenic differentially-expressed LTRs loci overlapping with Cistrome marker loci and 
the number of all intergenic LTR loci. C‑G) Boxplots of GATA6 (C), ESR1 (D), TRIM24 (E), RAD21 (F) and STAG1(G) gene expression in 24 tumour and 
matched normal samples expressed as  log2(normalized counts expression + 1). Paired t-test p-values are reported

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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MER61F subfamilies, are significantly correlated to 
the activation of innate immune response in SCLCs. 
Moreover, we found that specific cytosolic and endoso-
mal RNA sensors, such as RIG-I (Figs. 2 and 3), are also 
correlated with immune gene response, suggesting a 
potential combined role in inducing an innate immune 
response in SCLCs [34]. On the contrary, expression of 
TE subfamilies upregulated in tumours vs normal lung 
[14] did not correlate with immune responses in SCLC. 
LTR30 and RIG-I expression levels are together a better 
predictor of innate immune responses, and high LTR30 
expression levels positively impact on patient survival 
upon chemotherapy (Fig.  6). Locus-level quantifica-
tion of TE expression confirmed our findings about 
TE deregulation in tumours and some TE correlation 
with innate immune signatures, showing that it is likely 
restricted to specific genomic loci.

Our data can agree with a “viral mimicry” mechanism 
for the induction of an anti-viral immune response to 
endogenous retroelements, which could then increase 
the efficacy of drug treatments in SCLC [11]. IFI16 and 
RIG-I were demonstrated to be upregulated in the lung 
of flu virus-infected mice and IFI16 was shown to posi-
tively regulate the anti-viral RIG-I signaling pathway 
during virus infection [35]. IFI16 can directly bind to 
RIG-I gene promoter and recruit RNA Pol II, result-
ing in the upregulation of RIG-I gene and enhanc-
ing its activity of sensing viral RNAs [35]. Therefore, 
the detected positive correlation of LTR30 with RIG-I 
and IFI16 may be due to a regulatory circuit involv-
ing the cytosolic accumulation of ERV-derived tran-
scripts, transcriptional activation of RIG-I by IFI16 and 
immune gene responses. Notably, recent in  vitro data 
indicate that IFI16, but not cGAS, is able to interact 
strongly with single-stranded oligos bearing HERV-K 
LTR sequences corresponding to the first product of 
reverse transcription in cells and suggesting that the 
sensor has sequence-specific, yet undetermined, bind-
ing patterns [25]. Therefore, IFI16 may also exploit its 
function of DNA sensor binding to reverse transcribed 
products of ERV LTR30 and triggering an innate 
immune response via activation of STING [23]. Thus, 
our data are consistent with the recognition of LTR30 

due to a regulated crosstalk between RNA sensors 
(mainly RIG-I) with DNA sensors (as IFI16) in SCLC.

The findings also provide unexpected insights into 
the mechanism of the role of ERV LTR TE expression in 
the modulation of innate immune responses in human 
SCLC. TEs are known to function as nucleation centres 
for facultative heterochromatin [36], as well as binding 
sites for transcription factors that can affect the expres-
sion of adjacent [17] and distal genes [37]. We observed 
a significant enrichment of H3K4me2 (and other euchro-
matin marks) at intergenic genomic loci of LTR30 in 
cultured cancer cells. Interestingly, intergenic LTR30 
loci are often close to downregulated genes in SCLCs 
and overlap with estrogen receptor 1 (ESR1) transcrip-
tion factor binding sites (Fig. 4). ESR1 is upregulated in 
NSCLCs favouring cancer survival and progression [38], 
whereas it is downregulated in SCLC suggesting that 
ESR1 binding to LTR30 loci is reduced. In addition, the 
de-methylase LSD1, which targets H3K4me2, is upregu-
lated in SCLC. Interestingly, LSD1 localizes at LTR30 
elements, and other downregulated ERV intergenic loci 
(Fig. 5) in a SCLC cell line model, indicating that LSD1 
may be responsible for the loss of a euchromatin marker 
(H3K4me2) in human SCLC. In contrast to other can-
cers [10, 14], our data do not support alterations of DNA 
methylation patterns at intergenic LTR30 loci in SCLC 
vs normal lung tissues (Fig. S8). Thus, downregulation of 
LTR30, LTR9C, LTR22C and MER61F subfamilies can be 
a consequence of tumour specific modifications, such as 
a chromatin repressive mechanism mediated by LSD1, 
in order to prevent the recognition of ERV transcripts 
by cytosolic RNA sensors and the consequent activation 
of innate immune response. Interestingly, in melanoma 
cells, histone demethylase LSD1 inhibition increases 
repetitive element expression and anti-tumour immu-
nity response [39], suggesting that its pharmacological 
targeting may be a promising strategy to enhance innate 
immune response in cancers.

In conclusion, we provide strong evidence of the 
importance of the expression of tumor-repressed ERV 
LTR subfamilies to activate an innate immune gene 
response in SCLC tumours. Higher expression lev-
els of LTR30 can predict favourable prognosis in SCLC 

(See figure on next page.)
Fig. 5 Downregulated TEs are associated with LSD1 occupancy and transcriptional repression in SCLC. A Boxplot of LSD1 gene expression in 
24 tumour and matched normal samples expressed as  log2(normalized counts expression + 1). Paired t-test p-values are reported. B Mean of 
Normalized read levels for H3K4me2 over downregulated ERV genomic loci (purple) in H526 SCLC cell line and mean genomic signal of ChIP/input 
ratio over same loci for LSD1 in H526 SCLC cell line in untreated (blue) and treated with LSD1 inhibitor (green) conditions. C Ridgeline plot showing 
the distribution of relative ranking metric values expressed as Wald test statistic values from GSEA (x-axis) of genes proximal to downregulated TEs 
(y-axis) in SCLCs. Colour: GSEA p-values, as in legend. For each TE, the ratio between the number of loci located upstream control regions of genes 
over the total number of loci is reported. D GSEA plot of genes, in the upstream regulatory regions of which LTR30 elements are localized (n = 4). 
Top: position of genes along the ranked list of genes with relative ranking metric values expressed as Wald test statistic values. Bottom: running 
enrichment score line plot; vertical red line indicates the peak of the plot at which the ES is computed. Normalized enrichment score (NES) and 
adjusted p-values are indicated
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patients, suggesting a potential role of LTR expression in 
activating innate immune response that may serve as a 
promising combined therapeutic approach to be associ-
ated with chemotherapy and immunotherapy. Thus, our 
present findings indicate that the reactivation of patient-
specific LTR subfamilies may be a potential strategy for 
the treatment of immunologically unresponsive SCLC.

Material and methods
Data collection
Human SCLC mRNA sequencing data (fastq format) 
and clinical data from the European Genome-Phenome 
Archive were collected from datasets with the following 
accession numbers: EGAD00001001244 (n = 58, primary 
tumour samples) [1]; EGAD00001001431 (n = 15 primary 
tumour samples) [20]; EGAD00001000223 (n = 31 pri-
mary tumour samples, n = 24 matched normal lung sam-
ples) [19]. Each downloaded library was prepared from 
unstranded, poly(A) selected RNA using Illumina HiSeq 
2000 technology and quality checked with FastQC.

RNA‑Seq analysis
Raw RNA-Seq libraries were processed and analysed as 
described in the mRNA-Seq pipeline (Dr15plus version) 
provided by GDC at https:// docs. gdc. cancer. gov, as pre-
viously reported [9]. Briefly, adapter trimming and filter-
ing on paired-end RNA-Seq reads were performed using 
Trimmomatic [40] (version 0.36, RRID:SCR_011848), 
then reads were aligned to the human reference genome 
(UCSC hg38, assembly ID GRCh38.p13, Dec.2017) using 

STAR (version 2.7.10a, RRID:SCR_004463) [41] and 
SAMtools (version 1.15, RRID:SCR_002105) was used for 
sorting and indexing the aligned BAM file [42]. HT-Seq 
(version 0.13.5. RRID:SCR_011867) [43] was used for the 
quantification of mapped reads to each gene. To annotate 
genes, we used the getBM function from the “bioMart” 
package (version 2.50.3) in R to retrieve the HGNC sym-
bols from the Ensembl database (release 104) associated 
to the gene Ensembl IDs filtered by the gene name IDs 
from GENCODEv22 as input values. Genome index for 
alignment step and gene reference annotation (GEN-
CODE v22) were obtained from GDC reference files por-
tal. Then, aggregation of gene counts and downstream 
analyses were performed using R.

Quantification of TE expression and differential expression 
analysis
Quantification of TE expression in SCLC samples was 
performed using REdiscoverTE, a software that allows a 
whole-transcriptome RNA-Seq quantification simulta-
neously for repetitive sequences and transcriptome [14]. 
Quantification output files of REdiscoverTE are DGE-
List data type in the. RDS R data format, which requires 
“edgeR” library (version 3.14.0, RRID:SCR_012802) 
to be read in R. After quantification, intergenic raw 
counts were used for downstream analyses. A differen-
tial expression analysis was performed using the Bio-
conductor (RRID:SCR_006442) package “DESeq2” 
(version 1.34.0, RRID:SCR_000154) [44]. A DESeqData-
Set from the matrix of intergenic TEs raw counts for 

Fig. 6 LTR30 expression predicts a higher efficacy of chemotherapy in SCLC patients. Kaplan-Meier plot of survival estimates of SCLC patient 
subgroups (total n = 30) depending on expression levels of LTR30 and chemotherapy. Log rank test p-values are reported. Colour codes are

https://docs.gdc.cancer.gov
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SCLC tumour and matched normal samples (n = 48) was 
built considering the type of tissues (tumour or normal) 
and the variability among patients, in the design param-
eter. Pre-filtering for counts ≥5 was performed before 
counts normalization. Results from DESeq2 normaliza-
tion were extracted setting the parameters alpha = 0.05, 
lfcThreshold = 0.58 and altHypothesis = “greaterAbs” 
and shrinkage of log2 fold change was then performed. 
Downstream analyses concerned only TE subfami-
lies belonging to LINE (long interspersed element), 
SINE (short-interspersed element), LTR (long-terminal 
repeat), Retroposon (SVA) and DNA transposon classes. 
TE subfamilies with cut-off of the absolute maximum 
a posteriori fold-change ≥1 and  Padj ≤ 0.05 were con-
sidered as differentially expressed. Volcano plot show-
ing differential expression of TEs was made in R using 
the “EnhancedVolcano” Bioconductor package (version 
1.12.0, RRID:SCR_018931). PCA (Principal Component 
Analysis) plot was made using plotPCA function from 
“DESeq2” R package on variance stabilizing transforma-
tion of counts.

Locus‑level quantification of TE expression
Raw reads for each RNA-seq library were trimmed and 
filtered as in “RNA-Seq analysis” section and aligned 
using the same version of STAR with flags that allow mul-
timapped reads retention. Quantification of locus-level 
TE expression was performed with TElocal (v 1.1.1 ) [21] 
tool (https:// github. com/ mhamm ell- labor atory/ TEloc al) 
using available default index and settings, considering all 
genomic loci.

Gene set variation analysis (GSVA) and Spearman 
correlation
To obtain enrichment scores for the estimation of path-
way activity variation over the tumour sample popula-
tion, a gene set variation analysis was performed in R 
using the gsva function from the “GSVA” Bioconductor 
package (version 1.42.0, RRID:SCR_021058) [45], with 
“gsva” method parameter, and the Molecular Signature 
Database gene sets from the Hallmark collection (version 
7.5.1, RRID:SCR_016863) [46], as well as immune-related 
gene sets from Kong et al., where the “Response to type 
I Interferon” gene set has been implemented with the 
“Response to type I interferon” signature from GO Bio-
logical Processes. Correlation between TEs expression 
and enrichment scores for gene sets was performed with 
cor.test function in stats package (version 4.1.3) to obtain 
Spearman’s rho correlation coefficient and p-values. 
Heatmaps of correlation were made using the R package 
“ComplexHeatmap” (RRID:SCR_017270) [47]. Scatter 
plots and violin plots were made using “ggplot2” (version 

3.3.5, RRID:SCR_014601) and “ggpubr” (version 0.4.0, 
RRID:SCR_021139) R packages.

Genomic locus overlap enrichment analysis
Genomic locus overlap enrichment analysis was per-
formed using LOLA R package (version 1.24.0) [27]. 
Testing for overlaps of TEs genomic regions with pub-
licly available databases of genomic range sets were 
performed using transcription factor binding sites and 
histone marks Epigenome database from Cistrome [28], 
included in LOLA Core database (hg38) at http:// big. 
datab io. org/ regio ndb/. TE genomic coordinates were 
downloaded from UCSC Genome Browser in a BED 
file format. Bubble plot for the genomic locus overlap 
enrichment analysis was made using “ggplot2” R pack-
age. LOLA was run for all deregulated LTRs using all 
intergenic LTRs genomic loci as “universe”. Motif discov-
ery analysis for each TE candidate was performed using 
Homer tool (v4.11) [48] with default settings and using a 
dataset random background sequences matched for GC% 
content of the target sequences.

Gene set enrichment analysis (GSEA) for genes proximal 
to TEs
To evaluate the potential influence of differential 
expressed TEs activity on adjacent genes expression, 
genomic coordinates for genes and TEs were downloaded 
from UCSC Genome Browser in a BED file format, then 
we considered the list of genes with a TSS (Transcrip-
tion Start Site) up to 20 kb downstream from the genomic 
coordinates of each specific TE as input for the gene set 
enrichment analysis [49]. The GSEA was performed using 
the GSEA function from the “clusterProfiler” R package 
(version 4.2.2) [50], with default options. GSEA plot was 
performed using the GSEAplot function and the ridgeline 
plots of the GSEA results were made by ridgeplot func-
tion from “clusterProfiler” package (RRID:SCR_016884).

Methylation data analysis and H3K4me2/LSD1 occupancy
Methylation data were kindly obtained from Poirier et al. 
[32] upon request. For each selected LTR, we selected 
5′-CpG dinucleotides based on their localization in gene 
body or 1000 bp upstream or downstream the element. 
Plots were made using “ggplot” and “ggpubr” R librar-
ies. H3K4me2 and LSD1 ChIP-seq and relative input 
genomic signal data were downloaded as processed big-
Wig from GEO omnibus (GSE66297) [31]. Intergenic 
genomic loci for LTR30, LTR22C, LTR9C and MER61F 
were downloaded from UCSC table browser. Signal plot 
were produced using deeptools2 (RRID:SCR_016366) 
computeMatrix and plotProfile commands [51].

https://github.com/mhammell-laboratory/TElocal
http://big.databio.org/regiondb/
http://big.databio.org/regiondb/
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Survival analysis
Survival analysis was performed using the clinical data 
available for SCLC patients (n = 73), first filtering sam-
ples from patients who did not receive previous treat-
ments for SCLC before surgical resection of the tumour 
and further considering the availability of information 
regarding the overall survival, the status at last time of 
follow-up and chemotherapy treatment. We also con-
sidered the expression levels of ERVs as a variable to 
perform the estimates, grouping samples with “high” 
expression levels (> 75th percentile) and “low” expression 
levels (< 25th percentile). We used “survival” package to 
compute a multi-variate analysis of survival estimates 
and “survminer” package (RRID:SCR_021094) to obtain a 
Kaplan-Meier plot of the results.

Abbreviations
DDR  DNA damage response
DE  Differentially expressed
ERV  Endogenous retrovirus
LINE  Long-interspersed element
LTR  Long-terminal repeat
PCA  Principal component analysis
SCLC  Small-cell lung cance
SINE  Short-interspersed element
TE  Transposable elements
TFBS  Transcription factor binding site
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Additional file 1: Fig. S1. A) Fraction of intergenic (blue), exonic (yellow) 
and intronic (orange) TE subfamilies expression grouped by classes over 
the total expression levels. B) PCA plot of SCLC/normal lung datasets 
based on gene expression. Samples are tumour (magenta triangles) 
and normal lung (green circles) samples. C) Heatmap of deregulated TE 
normalized counts of tumour and matched normal samples expressed as 
row z-score, colour as in legend. Clusters by row are according to patient 
ID, while clusters by column are according to upregulation or downregu-
lation of TE in tumour samples respect with matched normal.  Log2FC 
annotation:  log2 fold change values of differentially expressed TEs, colour 
as in legend.  Log2 Mean Expression annotation: line plot with dots cor-
responding to the  log2 mean expression for each differentially expressed 
TE, colour as in legend. Type annotation: Sample tissue type, colour as 
in legend. D) Heatmap of tumour vs matched normal samples normal-
ized counts ratio (rows) for each differentially expressed TEs (columns), 
colour as in legend. Clusters by column are according to upregulation or 
downregulation of TE in tumour samples respect with matched normal. 
 Log2FC annotation:  log2 fold change values of differentially expressed 
TEs, ranked from the negative (yellow) to the positive (green) values, as 
in legend. Fig. S2. A) Heatmap of correlation between expression levels 
of differentially-expressed TEs (rows) and MsigDB Hallmark collection 
signatures GSEA scores (columns). Heatmap colour: Spearman’s rho 
correlation coefficient (Cor).  Log2FC annotation:  log2 fold change values 
of differentially expressed TEs, ranked from the negative (yellow) to the 
positive (green) values, as in legend. Class annotation: TE Class, colour as in 
legend. Interferon responses and inflammatory signatures are highlighted 
by green box. p-values: * 0.001-0.05, ** 0.00001-0.001, *** < 0.00001. None, 
NS. Fig. S3. A) Fraction of intergenic (blue), exonic (yellow) and intronic 
(orange) LTR22C, LTR30, LTR9C and MER61F expression over the total 
expression levels. Number of loci for each genomic region is reported for 
each subfamily. Fig. S4. Volcano plot of differentially-expressed loci in 

24 SCLC vs matched normal samples for A) LTR30, B) LTR9C, C) LTR22C, 
D) MER61F, E) HERVL1_LTRd and F) MER74C subfamilies. X-axis: log2 fold 
change values of differential expression. Y axis: -Log10(q-value). Points 
correspond to TE loci. Red points correspond to differentially-expressed TE 
loci with log2 fold change ≥ + 1 or log2 fold change ≤ − 1 and q-value 
≤0.05. Yellow points correspond to differentially expressed TE loci with 
log2 fold change ≥ + 1 or log2 fold change ≤ − 1 and q-value ≥0.05. 
Fig. S5. A) Heatmap of correlation between expressed loci of LTR30, 
LTR22C, LTR9C, MER61F and HERV1_LTRd subfamilies expression (rows) 
and ssGSEA scores of immune response genes (columns) in SCLC tumour 
samples. Heatmap colour: Spearman’s rho correlation coefficient (Cor). 
 Log2FC annotation:  log2 fold change values of differentially expressed 
loci in tumour vs normal samples, ranked from the negative (yellow) to 
the positive (green) values, as in legend. Asterisks in  Log2FC annotation 
indicate loci with a significant (p-adjusted ≤0.1) differential expression 
between tumour and normal samples. Mean annotation: mean count 
expression of loci. p-values in heatmap cells: * 0.001-0.05, ** 0.00001-0.001, 
*** < 0.00001. None, NS. Fig. S6. A‑I) Scatter plot of correlation between 
 log2 normalized counts of cytosolic and endosomal nucleic acids sen-
sors expression (x-axis) and Response to type I Interferon ssGSEA scores 
(y-axis). Points correspond to SCLC tumour samples (n = 104). Colour: 
Response to type I Interferon ssGSEA scores, as in legend. Spearman’s rho 
(R) and p-values of correlation are reported. Fig. S7. A) PCA plots of SCLC 
tumour samples based on cytosolic/endosomal nucleic acids sensors and 
LTR9C, LTR22C and MER61F expression, separately. Points correspond to 
SCLC tumour samples (n = 104). PCA loadings describing the contribu-
tion to the components of each gene and TE are represented as labelled 
arrows. Colour: Response to type I Interferon ssGSEA scores, as in legend. 
Fig. S8. A‑D) Main: Scatter plot of correlation between  log2 normal-
ized counts of LTR30 expression (x-axis) and  log2 normalized counts of 
cytosolic and endosomal nucleic acids sensors expression (y-axis). Points 
correspond to SCLC tumour samples (n = 104). Colour: Response to type I 
Interferon ssGSEA scores, as in legend. Spearman’s rho (R) and p-values of 
correlation are reported. Down: Violin plot of LTR30 expression in samples 
which Response to type I Interferon is downregulated (blue, NES < − 0.2) 
or upregulated (red, NES > 0.2). Left: Violin plot of cytosolic and endoso-
mal nucleic acids sensors expression in samples which Response to type 
I Interferon is downregulated (blue, NES < − 0.2) or upregulated (red, 
NES > 0.2). Wilcoxon test p-values are reported: * 0.01-0.05, ** 0.0001-0.01, 
*** 0,00001-0.0001, **** < 0,000001. Fig. S9. A) Scatter plot of correlation 
between -Log(p-value) (y-axis) and “support” percentage, expressed as 
the ratio between the number of intergenic LTR30 loci overlapping with 
Cistrome marks loci and the totality of intergenic LTRs loci (x-axis). Colours 
and labels: Cistrome marks, as in legend. Fig. S10. Bubble plot of top 
ten ranked Cistrome Epigenome marks associated to A) downregulated 
LTR elements in tumour samples respect with matched normal and B) 
upregulated LTR elements in tumour samples respect with matched nor-
mal. Bubble colour: -Log(p-value), as in legend. Bubble size: “support” per-
centage, expressed as the ratio between the number of intergenic DE LTRs 
loci overlapping with Cistrome markers loci and the totality of intergenic 
LTRs loci. Fig. S11. Bubble plot of top ranked Cistrome TFBSs associated to 
A) downregulated LTR elements in tumour samples respect with matched 
normal and B) upregulated LTR elements in tumour samples respect 
with matched normal. Bubble colour: -Log(p-value), as in legend. Bubble 
size: “support” percentage, expressed as the ratio between the number 
of intergenic DE LTRs loci overlapping with Cistrome markers loci and 
the totality of intergenic LTRs loci. Fig. S12 Homer de novo motif results 
for LTR30 (default output). Results are ranked by p-value. Fig. S13 Homer 
de novo motif results for MER61F (default output). Results are ranked by 
p-value. Fig. S14 Homer de novo motif results for LTR22C (default output). 
Results are ranked by p-value. Asterisks in “Rank” field indicate potential 
false positives. Fig. S15. A) Mean normalized read levels for H3K4me2 over 
downregulated expressed ERVs at locus level, in H526 SCLC cell line B) 
Mean genomic signal of ChIP/input ratio over downregulated expressed 
ERVs at locus level for LSD1 in H526 SCLC cell line in untreated (blue) and 
treated with LSD1 inhibitor (green) conditions. Fig. S16. A‑C) Methylation 
level (left panel) in SCLC tumours (blue) compared to matched normal 
samples (red) in cg located in 1000 bp upstream (A), genebody (B) and 
1000 bp downstream (C) of LTR30 loci. For each cg, correlation between 

https://doi.org/10.1186/s13100-023-00290-w
https://doi.org/10.1186/s13100-023-00290-w
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methylation level and LTR30 expression is reported on right panel. D) Cor-
relation between methylation levels (y-axis) and STING expression (x-axis) 
in SCLC tumours for cg located upstream (cg16983159 and cg23255964) 
and in the gene body (cg04232128) of STING gene. Fig. S17 A‑C) Kaplan-
Meier plot of survival estimates of SCLC patients’ subgroups (total n = 30) 
depending on expression levels of LTR22C (A) MER61F (B) LTR9C (C) and 
chemotherapeutic treatments. Log rank test p-values are reported. Curves 
colours are as in legend.

Additional file 2: TableS1. Table of differentially expressed intergenic TE 
subfamilies (REdiscoverTE).

Additional file 3: TableS2. Table of differentially expressed global TE 
subfamilies (REdiscoverTE).

Additional file 4: TableS3. Table of differentially expressed LTR30, LTR22C, 
LTR9C, MER61F and HERV1_LTRd subfamilies at locus level (TElocal).
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