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Abstract

Background: Transposable elements (TEs) play a major role in genome evolution. Their capacity to move and/or
multiply in the genome of their host may have profound impacts on phenotypes and dramatic consequences on
genome structure. The population dynamics and distribution of TEs are influenced by their mode of transposition,
the availability of niches in host genomes, and host population dynamics. Theories predict an increase in the
number of TE insertions following hybridization or polyploidization. Evolution of TEs in hybrids and polyploids has
mostly been studied in plants; few studies have examined the impacts of hybridization and/or polyploidization on
TEs in animals. Hybrids and polyploids have arisen multiple times in the Daphnia pulex complex and are thought to
reproduce by obligate parthenogenesis. Our study examines the effects of ploidy level on polymorphism and
number of Pokey element insertions in diploid and polyploid hybrid isolates from the Daphnia pulex complex.

Results: The polymorphism of Pokey insertion sites did not depend solely on either the ploidy level or the genetic
background of their host; therefore, it may be the result of interactions between these parameters and other
parameters such as Pokey activity, selection and/or drift. No significant effect of ploidy level was found on the
number of Pokey insertions using TE display and gPCR. However, the load of Pokey insertion sites and the number
of unique insertion sites were slightly (but not significantly) higher in polyploids than in diploids.

Conclusions: These results suggest a lack of increase in the number of Pokey insertions following polyploidization
but higher availability of Pokey insertion sites in polyploids than in diploids. Compared to previous TE display and
gPCR results, the load of Pokey insertions in hybrid diploids was higher than in non-hybrid sexual and asexual
diploids, which suggests an increase in the density of Pokey insertions following hybridization.
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Background

Transposable elements (TEs) are genetic components
that are able to move and multiply within and between
genomes. They are found in the genomes of almost all
living organisms [1], although there are exceptions in
endosymbiont organisms [2]. There is large variation in
the proportion of TEs across genomes [3]. TE populations
are impacted by host population dynamics, such as effect-
ive population size, mode of reproduction, hybridization,
and polyploidization [4-6]. A decrease in effective popula-
tion size of the host [7] or an increase in its level of selfing
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[8] are expected to lead to an increase in the density of TE
insertions. The mode of reproduction of the host also has a
substantial impact on the dynamics and density of TE in-
sertions in the genome [9-12]. For example, TEs may
spread via recombination and out-crossing in sexual popu-
lations [11], whereas the spread of TEs among lineages is
prevented in asexual populations except by horizontal
transmission [13,14]. Empirical studies have tested and
are generally in accordance with the theoretical predic-
tion that the genomes of sexual organisms will contain a
higher number of TE insertions compared to asexual ones
[10,12-15]. Hybridization and polyploidization, which play
a significant role in the diversification of plants and ani-
mals [16-18], might also have an impact on the load and
insertion site polymorphism of TEs. Activation of TEs has
been observed in hybrid genomes [19-22] (however, there
are contradictory results in hybrid sunflowers [23]), and
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polyploidization may lead to an increase in the density of
TE insertions [24,25], although there are contradictory re-
sults in allopolyploid plants [26]. Bursts of TE activity are
thought to have a substantial impact on genome rearrange-
ment [27] and may lead to phenotypic diversification in hy-
brids and polyploids [24,28]. Many studies have explored
the effects of hybridization and polyploidization on TE dy-
namics in plants [22,23,26,28-34], but few studies have
focused on these effects in animals, with the exception of
studies in carp [35], Drosophila [36] and wallaby [20], all of
which have been reviewed [37]. Studying the dynamics of
TEs in hybrids and polyploids may provide insight on the
evolution of their genomes and their propensity to adapt
to various environments.

The Daphnia pulex (D. pulex) species complex has
been intensively studied due to its dominance in fresh-
water habitats in North America and its variation in
reproductive mode and ploidy level. Daphnia usually
reproduce by cyclic parthenogenesis, which is clonal
reproduction interrupted by bouts of sexual reproduction.
However, some lineages reproduce by obligate partheno-
genesis (ie., without any sexual reproduction) [38-42].
The D. pulex complex includes numerous lineages that
have been distinguished on the basis of morphological,
ecological, and genetic data [43-47]. Analyses of mito-
chondrial DNA variation have revealed the presence of
three major groups in this complex. The pulicaria group
consists of five different lineages; North American D. puli-
caria (with three sublineages, Eastern D. pulicaria,
Western D. pulicaria and Polar D. pulicaria), D. pulex,
D. melanica, D. middendorffiana sensu stricto, and D. are-
nata, an endemic species inhabiting Oregon ponds [43,48].
The tenebrosa group includes two lineages, European
D. pulicaria and D. tenebrosa [43)]. The third group
includes European D. pulex. Mitochondrial lineages in the
pulicaria group may have diverged during the Pleistocene
(between 1.2 and 2.2 million years ago) [43,49,50] while
the pulicaria and tenebrosa groups seem to have diverged
during the Pliocene (around 3 million years ago) [43].
Relationships between lineages based on nuclear genes
are less clear and may be confounded by incomplete
lineage sorting and a highly reticulate history [45,51,52].
In North America, two lineages, D. pulex and D. puli-
caria (considered to be ecological species), are dominant
in freshwater habitats. They are morphologically similar
but ecologically distinct [44], although they hybridize in
nature [42,53-55]. D. pulex and F1 hybrids are usually
found in fishless shallow ponds whereas D. pulicaria in-
habits lakes. Variation in the Lactate dehydrogenase gene
(Ldh) is diagnostic [54,55]; D. pulex is fixed for the S allele
whereas the F allele is fixed in D. pulicaria [55]. Diploid
hybrids of these two lineages possess an SF genotype
at the Ldh locus, always have D. pulex mitochondrial
genomes, and have been found to reproduce by obligate
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parthenogenesis in nature [42,56], although laboratory-
produced hybrids may be able to reproduce by cyclical
parthenogenesis [56,57]. It has been suggested that
hybridization may play a role in the spread of meiosis sup-
pressing genetic elements in the obligate parthenogenetic
populations of D. pulex with SS Ldh genotypes via intro-
gression [58,59].

Polyploidy has evolved repeatedly in the D. pulex
complex [49,60-62] and shows a geographical pattern
[49,62-66]. Polyploid populations are obligate parthe-
nogens and are found at high latitudes and altitudes,
and diploid populations (hybrid or not) are prevalent in
temperate regions [47,60,62]. A polyphyletic assemblage of
polyploids collectively known as D. middendorffiana (and
which we term D. middendorffiana sensu lato in this
study) is thought to have arisen from hybridization be-
tween D. pulex males and D. pulicaria females, or females
of another species which no longer exists as a cyclic
parthenogen [49,60,61]. Other polyploids are thought to
have arisen from crosses between D. pulex females and
D. pulicaria males and are encountered in the Northeast
of Quebec and in Ontario (Canada) [45,67]. Moreover,
D. tenebrosa, a circumarctic species [62], includes both
diploids and polyploids [67], but the hybrid nature of
the polyploids in this species is still unclear [45]. A
study using microsatellite data, flow cytometry, and
mitochondrial sequences has shown that most polyploids
of the D. pulex complex are triploids, although some tetra-
ploids have also been observed [67].

The D. pulex genome of one cyclically parthenogenetic
isolate from Oregon has been sequenced [68], and nu-
merous class II TEs have been identified in it [9]. Previ-
ous studies have reported that the class II TE load is
lower in the genomes of obligate compared to cyclical
parthenogenetic D. pulex lineages [10,15], as theoretic-
ally predicted if sexual reproduction helps TEs to spread
[11]. Pokey, a class II TE from the piggyBac superfamily,
has been extensively studied in diploid populations of
Daphnia. It inserts in the tandemly repeated rRNA
genes [69] and in other parts of the genome [15,70].
Based on patterns of polymorphism in Pokey insertion sites
observed among natural populations, previous studies have
suggested that Pokey may be active in cyclically partheno-
genetic populations of D. pulex but not in obligate parthe-
nogens [15,70]. The diversity, and potentially the activity,
of Pokey in rRNA genes is greatly influenced by recombin-
ation events, especially in hybrids [71]. The D. pulex com-
plex and Pokey represent an interesting model to study the
effect of hybridization and polyploidization on the evolu-
tion and dynamics of a class II TEs in natura.

The aim of this study is to compare the polymorphism
of Pokey insertion sites between diploid and polyploid
hybrid genomes in obligately parthenogenetic isolates of
the D. pulex complex. If Pokey was not active during
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and following hybridization events, the similarity be-
tween Pokey insertion profiles should be congruent with
host evolutionary relationships. To test this prediction,
the polymorphism of Pokey insertion site profiles was
compared with the ploidy level and the genetic similarity
of the hosts determined using microsatellite multilocus
genotypes. Moreover, we test the prediction that the
number of Pokey per haploid genome (hereafter called
density) is similar in polyploid and diploid hybrids using
two complementary techniques, TE display and quanti-
tative PCR (qPCR). TE display allows us to compare the
diversity of Pokey insertion sites in polyploid and diploid
isolates. This technique also provides an estimate of the
number of Pokey insertion sites (Pokey load) but it can-
not distinguish between homozygosity and heterozygos-
ity at a particular site. Conversely, qPCR allows us to
estimate the total number of Pokey insertions per hap-
loid genome (Pokey density) regardless of location, in-
cluding those that occur in rDNA, which appear as a
single peak in a TE display analysis. A higher density of
Pokey insertions per haploid genome in polyploids than
in diploids may be evidence of an increase in Pokey ac-
tivity after polyploidization.

Methods

Daphnia samples

In the laboratory, we established parthenogenetic lines
of Daphnia (hereafter called isolates) from 27 individual
obligately parthenogenetic females (14 diploid hybrids
and 13 polyploid hybrids) sampled from ponds in North
America between 2004 and 2008 (Additional file 1).
Daphnia were sampled from ponds accessed via public
roadsides or on private land with the permission of
the land owner. No specific permissions are required to
sample Daphnia as they are not endangered or pro-
tected species. The lines were cultured using standard
techniques [72]. The isolates represent six mitochondrial
lineages (D. pulex, Polar D. pulicaria, Western D. puli-
caria, Eastern D. pulicaria, D. middendorffiana sensu
stricto, and D. tenebrosa). Due to the geographical poly-
ploidy pattern, all the polyploids come from two subarc-
tic regions (Churchill, MB, Canada and Kuujjuarapik,
QC, Canada), although the diploids come from both
temperate and subarctic regions (Additional file 1).
For each isolate, genomic DNA from 10 to 30 individuals,
weighing approximately 100 mg (wet weight), was ex-
tracted using the DNeasy Tissue kit (QIAGEN Inc,
Mississauga, ON, Canada) according to the supplier’s
protocol. Origin of the putative parental species of each
isolate (Additional file 1) was determined by combining
information on morphology, haplotype of the mitochon-
drial ND5 gene, and genotype at the nuclear Ldh gene
[45]. Ploidy levels were previously assessed using nine
microsatellite loci and flow cytometry [45].
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TE display

We used a PCR-based approach called TE display [73],
which generates dominant AFLP-like markers, to test
the effect of ploidy level on insertion site polymorphism,
and on the load of Pokey insertions in the genomes of 14
diploid and 13 polyploid isolates. We followed a modi-
fied version of the TE display protocol of Valizadeh and
Crease [15] that involves digestion of genomic DNA
using the restriction enzyme Bfal followed by ligation of
Bfal linkers and two rounds of PCR amplification using
a Pokey-specific forward primer (Additional file 2). The
ligated DNA was used as a template for a primary (pre-
selective) PCR with the primer Pok6456F, located near
the 3" end of Pokey, and the primer Bfal-R that anneals
to the Bfal linker sequence followed by a secondary
(selective) PCR using fluorescent labeled primer Pok6464F
and the primer Bfal-R (Table 1). Our TE display protocol,
unlike that of Valizadeh and Crease [15], used an anneal-
ing temperature of 50°C instead of 55°C for both the pri-
mary and secondary PCR. This allows amplification of
Pokey insertions in Daphnia species with genomes that
are divergent from D. pulex. Only fragments >160 bp were
included in our analyses and primary PCR were repeated
three times in each individual followed by a secondary
PCR on the product of each primary reaction to ensure
that Pokey profiles were reproducible and to remove pos-
sible artefacts from our analysis (Additional file 2).

Comparison of genetic distance based on Pokey profiles,
microsatellites and the ND5 gene

We used the results of TE display to generate a binary
matrix of presence (1) or absence (0) of peaks, which
represents the Pokey insertion profile (Additional file 3).
We then generated a matrix of Jaccard distance esti-
mates from the Pokey profiles. The Jaccard distance was
chosen because it does not use shared absence of an al-
lele as a shared characteristic [74]. A distance matrix
was also calculated for each locus of the microsatellite
dataset previously obtained for our isolates [45] using a
modified version of the Bruvo distance [75], imple-
mented in the PolySat package [76] using the R software
[77]. The Bruvo distance allowed us to estimate relation-
ships of mixed-ploidy level genotypes using co-dominant
markers. The Bruvo distance takes into account stepwise
mutation models between alleles. In the non-modified
version (equation 2 in [75]), the algorithm adds “virtual
allele” with an “infinite” value to lowest ploidy-level ge-
notypes to compare them to the highest ploidy-level ge-
notypes. This may lead to group artificially genotypes
with the same ploidy level [78]. Thus, we used a modified
version of the Bruvo distance (Bruvo2.distance imple-
mented in PolySat set with the parameters add = TRUE
and loss = TRUE) that allows genome “addition” and
“loss”, simulating gene addition by polyploidization but
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Table 1 TE display and qPCR primers and linkers used in this study

Purpose Annealing Primer name  Sequence (Dye) Percent amplification ~ Amplicon size
temperature efficiency
Linkers for TED / Bfal Linker F 5-TACTCAGGACTCAT / /
Bfal Linker R 5"-GACGATGAGTCCTGAG
Primary PCR for TED 50°C/55°C Pok6456F 5"-GACAACGGTGGCCGAAACGCGG / /
BfalR 5"-GACGATGAGTCCTGAGTAG
Secondary PCR for TED 50°C/55°C Pok6464F 5"-TGGCCAAAACACGGTTTGGCCG (HEX) / /
BfalR 5"-GACGATGAGTCCTGAGTAG
18S genes for gPCR 60°C 1851864F 5"-CCGCGTGACAGTGAGCAATA 0.9556 50
1851913R 5"-CCCAGGACATCTAAGGGCATC
28S genes for gPCR 60°C 2853054F 5"-GGTAGCCAAATGCCTCGTCA 0.9246 150
2853204R 5"-GAGTCAAGCTCAACAGGGTCTTCTTTCCC
Total Pokey for gPCR 60°C Pok6456F 5"-GACAACGGTGGCCGAAACGCGG 09136 122
Pok6578R 5"-GATGGTCGGATTCGATTGAATGCTCG
Pokey in rDNA for gPCR 60°C Pok6456F 5-GACAACGGTGGCCGAAACGCGG 0.8957 192
2853104R 5"-GTTAATCCATTCGTGCGCG
Tif for qPCR 60°C TIF392F 5"-GACATCATCCTGGTTGGCCT 0.9493 50
TIF442R 5-AACGTCAGCCTTGGCATCTT
Gtp for gPCR 60°C GTP385R 5"-TATTCAGCATGGAGAGACGGC 0.9369 50
GTP435R 5"-GATGTCGACTGACGCTGGAA

also possible gene loss via diploidization. This modified
version of the Bruvo distance does not lead to artificially
grouping genotypes with the same ploidy level altogether.
In addition, we generated a matrix of sequence diver-
gence between NDS5 sequences from previous studies by
Vergilino et al. [45,67] (Table 1 for Genbank accession
number) from our isolates using the maximum compos-
ite likelihood model implemented in MEGAS5.1 [79].

To determine if the Pokey insertion sites profiles differed
depending on the genetic background and ploidy level be-
tween isolates, a principal coordinate analysis (PCoA) [80]
and a K-means cluster analysis were conducted to repre-
sent affinities between the different Pokey insertion profiles
or multilocus microsatellite genotypes using R software
version 2.15.2 [77,81]. Each PCoA was constructed using
the pco module of the labdsv library in the R software on
the Jaccard distance matrix for the Pokey profiles and the
modified Bruvo distance matrix for the microsatellites after
transforming these distance matrices in Euclidean dis-
tances [82]. The K-means analyses were conducted on
binary matrices representing either the Pokey profiles
or microsatellite genotypes (transformed into a binary
matrix), and the number of clusters for each analysis was
set using an iterative method, CascadeKM with the calinski
criterion [83], implemented in the vegan package available
with R software. We also performed a Mantel test accord-
ing to Legendre and Legendre (section 10.5 in [74]) using
the Pearson method with 10,000 replicates (package vegan

in R software) to compare the Jaccard distance matrix
based on Pokey insertion profiles with both the Bruvo dis-
tance matrix based on microsatellite data and the distance
matrix based on NDS5 mitochondrial haplotypes.

To test the hypothesis that the load of Pokey insertions
increases with ploidy level, we compared the number of
Pokey insertion sites estimated by TE display to the ploidy
level after taking into account the heterozygosity of the
isolates. Heterozygosity was weighted by ploidy level and
was calculated from the variability of nine microsatellite
loci [45]. Theoretically, polyploids may arise from inde-
pendent hybridization events and those with different
parental genomes may possess a higher diversity of TE in-
sertion sites than polyploids with similar parental genomes
due to increased probability of homozygosity of some TE
insertions in the latter case. If we do not account for the
different genomes that form polyploids, then we may over-
estimate the effect of ploidy level since the number of TE
insertions could be more strongly correlated with hetero-
zygosity level than ploidy level. Thus, we introduce a
ploidy-weighted heterozygosity index (H,;) for a compari-
son between diploids and triploids, which takes into ac-
count the ploidy level of each genotype such that:

0.5 %
Hy =05 m
ny,

where #; is the total number of microsatellite loci ana-
lyzed (9), n3 is the number of loci with 3 different alleles,
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and 7, is the number of loci with only 2 different alleles.
Genotypes that are homozygous for all microsatellite loci
have an H,, of 0, diploid isolates that are heterozygous
for every locus and triploid isolates with two different
alleles at every locus have an H,,; of 0.5, and triploid iso-
lates that have three different alleles at every locus have
an H, of 1. Therefore, triploids with low H,; values
(under 0.5) can be compared to diploid hybrids. To dis-
entangle the effect of adding different genomes from
the effect of increased ploidy level, we performed an
ANCOVA (Analysis of Covariance) using R software
[77] with the number of Pokey insertions as the dependent
variable and the ploidy level and H,; as the independent
variables. The number of singletons (i.e., Pokey insertion
sites encountered in only one isolate) between diploid and
polyploid isolates was compared using a Fisher exact test
performed on a 2x2 contingency table similar to the
approach of Wright et al. [73].

Direct comparison of our results to those obtained on
cyclic and obligate non-hybrid diploid populations previ-
ously studied by Valizadeh and Crease [15] was not pos-
sible as these authors used a higher annealing temperature
(55°C instead of 50°C). Therefore, we performed additional
TE display assays on six diploid hybrid and six polyploid
hybrid isolates using the 55°C annealing temperature of
Valizadeh and Crease [15].

gPCR assays

Because TE display generates dominant markers, it pro-
vides more information about the polymorphism of
Pokey insertion sites than their density within the gen-
ome. This difference may be significant especially if a
significant proportion of Pokey insertions are homozy-
gous, which may be possible in polyploids [24,25].
Therefore, to help resolve this problem, the number of
Pokey insertions per haploid genome was estimated
using qPCR. We performed qPCR assays on Pokey
inserted in 28S rRNA genes (rPokey) and in the entire
genome (tPokey) of 9 diploid and 10 polyploid isolates as
described by Eagle and Crease [84]. We also estimated
the number of 18S and 28S rRNA genes as the number
of rPokey may be correlated to the number of rRNA
genes [84,85]. Briefly, we used the ACt qPCR method as
described in Eagle and Crease [84] (Additional file 2)
to estimate the density of multicopy genes (18S, 28S,
tPokey, rPokey) relative to two single-copy genes (Table 1);
Tif, a transcription initiation factor and Gtp, a member of
the RAB subfamily of small GTPases. Assuming that dip-
loids have two copies and triploids have three copies of
these two genes, these estimates correspond to the haploid
number of multicopy genes in each genome. Reaction
conditions were run in triplicate as described in Eagle and
Crease [84] (Additional file 2). The mean haploid copy
number, rounded to the nearest 0.5 for diploids and 0.34
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for triploids, and standard deviations were calculated for
each multicopy gene in each isolate. The number of Pokey
insertions outside 285 rRNA genes per haploid genome
(gPokey) was calculated as [tPokey number — rPokey
number].

We used modules available in the R software package
to perform correlation and regression analyses between
the haploid number of 18S rRNA genes, 285 rRNA
genes, rPokey, and gPokey in diploids and polyploids.
Levene’s tests (equality of variances) and Student’s ¢-tests
(equality of means) were used to test for possible signifi-
cant differences in 18S, 28S, rPokey, and gPokey haploid
numbers between diploids and polyploids. The sequen-
tial Bonferroni technique proposed by Rice [86] was
used to adjust the significance level (0.05) for the mul-
tiple Student’s t-tests comparing 18S and 28S number
within isolates.

Under the assumption that the same gPokey elements
are amplified using qPCR and TE display techniques, we
can estimate the average heterozygosity for these ele-
ments in diploids by using:

2(nTED-1~MgPokey)
H Pokey — NTED

where nrep_; represents the number of different Pokey
insertion sites estimated by TE display minus the peak
representing rPokey, and #gpoiey is the haploid number of
gPokey estimated by qPCR. However, due to partial het-
erozygosity in triploids, we were not able to calculate
their exact heterozygosity level. The ratio (kK*Mgpokey)/
nrep.;, where k is the ploidy level of the isolate, allows
us to evaluate if TE display and/or qPCR techniques
underestimate or overestimate Pokey insertions. If every
gPokey insertion is in a heterozygous state, this ratio will
be 1. If the ratio is below 1, qPCR underestimates or TE
display overestimates the number of Pokey insertions. If
all insertions are in a homozygous state, the ratio equals
2 for diploids and 3 for triploids. If the ratio is greater
than 2 or 3 in diploids or triploids, respectively, qPCR
overestimates or TE display underestimates the number
of Pokey insertions.

Results

Polymorphism of Pokey insertion site profiles

Using the TE display technique, the average number of
Pokey insertion sites in 14 diploid isolates was 16.64
(+4.94), with values from 6 to 26, whereas the average
number of Pokey insertion sites in 13 polyploid iso-
lates was 19.00 (+4.36), with values from 12 to 27. The
two means are not significantly different (Student t-test,
t=-1.3105, df =25, P=0.202; Table 2; Additional file 1).
Overall, 88 different Pokey insertion sites were detected
(Additional file 3). Such polymorphism allowed us to



Table 2 Summary of TE display and qPCR analyses of Pokey number in diploid and polyploid isolates in the Daphnia pulex complex

Isolates TE display qPCR
Anneal at 50°C Anneal at 55°C 18S genes 28S genes Total Pokey rDNA Pokey Genome Pokey Tif:Gtp
(Total-rDNA)

Diploids with known 19.09 +£3.99 [11] 13.83 £4.22 [6] 29325+ 111.19 [8] 486.25 £ 201.36 [8] 17.81+£4.35 [8] 519+503 [8] 1263 +5.04 [8] 0.91+0.06 [8]
hybrid status

Polyploids with known 21.50 +3.54 [10] 1633+ 1.75 [6] 21457 £62.34 [7] 346,67 +113.86 [7] 1557 +343 [7] 310+£1.07 [7] 1248 £3.20 [7] 0.92+0.07 [7]
hybrid status

Total diploids 16.64 £4.94 [14] 12.71+4.86 [7] 292.78 +104.02 [9] 488.28 + 18845 [9] 1667 £532 [9] 505+4.72 9] 11.61+£561 [9] 0.90 +0.06 [9]

Total polyploids 19.00 +£4.36 [13] 1444 £3.17 [9] 24803 £75.21 [10] 398.10+ 12742 [10] 1433+ 345 [10] 377+140[10] 10.57 £4.03 [10] 0.92 +0.08 [10]

Results from qPCR are average + standard deviation of Pokey inserts per haploid genome whereas results from TE display are for whole genomes. Numbers in brackets are the number of isolates tested. Tif:Gtp ratio is

the number of Tif relative to the number of Gtp single copy reference genes.
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analyze the similarity between isolates based on these
Pokey profiles and on microsatellite genotypes using
PCoA. In addition, the Pokey profiles and the genetic
similarity of the hosts based on microsatellite loci and mito-
chondrial haplotypes were compared using Mantel tests.
The first two axes of the PCoA accounted for 23.3%,
with 12.4% for axis 1 and 10.9% for axis 2, of the total
variability in Pokey profiles (Figure 1A; Additional file
4A). For the host genetic backgrounds, the first two axes
of the PCoA accounted for 24.0%, with 16.0% for axis 1
and 8.0% for axis 2, of the total microsatellite variability
(Figure 1B and Additional file 4B). Pokey profiles and
their host microsatellite genotypes ordinate differently in
each PCoA according to the two first axes (Figure 1). Al-
though according to the PCoA on the host genetic back-
ground, axis 2 differentiates the hybrids with D. pulex
mitochondria from the D. middendorffiana sensu lato
(Figure 1B); it is axis 1 that differentiates these isolates
according the PCoA from Pokey profiles. The second
PCoA axis of the Pokey profiles does not show clear dif-
ferentiation pattern according to the mitochondrial
haplotype or the ploidy level (Figure 1A). The K-
means analyses of both Pokey profiles and microsatellite
genotypes separate the isolates into two clusters (K=2,
Calinski criterion), but each cluster represents a differ-
ent set of isolates in the two datasets (Figure 1). One
cluster based on Pokey profiles contains only polyploid
isolates from Kuujjuarappik (Quebec) and Churchill
(Manitoba) possessing D. pulex (PX3-QC-1 and PX3-
QC-2), Eastern D. pulicaria (PC3-QC-1, PC3-QC-2
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and PC3-QC-3) or Western D. pulicaria (PC3-MB-6)
mitochondrial haplotypes. The second cluster based
on Pokey profiles contains diploid hybrids with D. pulex
mitochondrial haplotypes, D. tenebrosa isolates, and
polyploids with Polar D. pulicaria (PC3-MB-4 and PC3-
MB-5) or D. middendorffiana sensu stricto (MI3-MB-2)
mitochondrial haplotypes. In contrast, one cluster based
on microsatellites contains all the D. tenebrosa isolates
(both diploids and polyploids) while the other cluster
contains all the other isolates. Despite these differ-
ences, the distance matrices of Pokey insertion site
profiles and both microsatellite genotype and mito-
chondrial haplotype datasets are partially correlated ac-
cording to Mantel tests (Mantel test; » = 0.3957, P = 0.0001
and r=0.3047, P=0.003, respectively). The third axis
of the PCoA constructed from Pokey profiles (9.3%,
Additional file 4) may explain why this distance matrix is
partially correlated with the distance matrix based on
microsatellite genotypes. Pokey profiles from D. tenebrosa
isolates ordinate together according to axis 3 in the
PCoA of Pokey (Additional file 4A) as they ordinate
altogether according to axis 1 in the PCoA of microsatel-
lites (Additional file 4B).

As the purpose of our study was to test the effect of
ploidy level and not the effect of hybridization, six iso-
lates with D. tenebrosa mitochondrial haplotypes and
unknown hybrid origin (TE2-MB-1, TE2-MB-2, TE2-
MB-3, TE3-MB-1, TE3-MB-2 and TE3-MB-3; Additional
file 1) were excluded from the ANCOVA analysis. Ex-
cluding these isolates, 88 different Pokey insertion sites
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Figure 1 Principal Coordinate Analyses of Jaccard distance matrix of Pokey profiles and Bruvo distance matrix of microsatellite
diversity in diploid and polyploid isolates of the Daphnia pulex complex. (A) Pokey profiles generated using TE display; (B) Microsatellite
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were detected using TE display (Additional file 3). The
mode of reproduction is not a confounding effect in this
analysis as both diploid and polyploid hybrids are obli-
gate parthenogens. The mean number of Pokey insertion
sites in diploid hybrid isolates is 18.09 (+3.99), with values
from 13 to 26, whereas the mean number of Pokey inser-
tion sites in polyploid isolates is 20.60 (+3.47), with values
from 16 to 27. These means are not significantly different
(Student t-test, t=-1.531, df=19, P=0.1423; Table 2;
Additional file 1). Correlations between average number
of Pokey insertion sites and the average heterozygosity
weighted by host ploidy level (H,;) were positive but not
significant (Table 3). H,;, ploidy level and H,:ploidy inter-
action had no significant effect on the number of Pokey
insertion sites (ANCOVA, F=2.132, df=1, P=0.162;
F=1.162, df=1, P=0.296 and F=0.205, df=1, P=0.657,
respectively; Figure 2; Additional file 5). The 11 diploid hy-
brid isolates displayed 65 of the 88 Pokey insertion sites, of
which 8 (12.3%) are singletons. The 10 polyploid hybrid
isolates displayed 68 of the 88 Pokey insertion sites, of
which 14 (20.6%) are singletons. Twenty-one Pokey inser-
tions sites were only sampled in polyploid hybrids while
18 were only sampled in diploid hybrids, and this differ-
ence is not statistically significant (Fisher exact test,
P =0.8559). The difference in the number of singletons
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between diploid and polyploid hybrids is not statistically
significant (Fisher exact test, P = 0.3579). The number of
Pokey insertion sites observed with TE display using an
annealing temperature of 55°C, as in Valizadeh and
Crease [15], was lower than that observed using an an-
nealing temperature of 50°C (12.71 +4.86 vs. 16.75 +6.07,
paired Student’s t-test, £ = 3.9506, df =6, P =0.008 for dip-
loids and 14.44 +3.17 vs. 18.78 +4.86; paired Student’s
t-test, t=5.3072, df=8, P=0.0007 for polyploids;
Additional file 1). The number of Pokey insertion sites was
about two times lower with an annealing temperature of
55°C in some isolates. For example, 13 sites were detected
using an annealing temperature of 50°C but only 6 were
detected using 55°C in the diploid hybrid PX2-MB-1
(Additional file 1). Although we are aware that artefacts
can be produced during the TE display process, these dif-
ferences do not seem to be due to a higher frequency of
artefacts at 50°C than in 55°C as most artifacts were
encountered using both annealing temperatures and were
excluded from analysis as indicated in the Methods
section.

gPCR analysis of rRNA gene and Pokey copy number
Using the qPCR technique, we estimated the haploid
number of 18S genes, 28S genes (Additional file 6), and

Table 3 Correlations between Pokey and rRNA gene number in diploid and polyploid Daphnia from North America

Cytotypes X-axis Y-axis Slope y-intercept R? P-value Figure
All diploids 185 285 1.8038 -39.8411 0.9901 1.76 e-08* AF6®
All triploids 185 285 1.6627 —14.3154 0.9586 5.07 e-07* AF6
Diploid hybrids Hpl' Pokey (TED)? 16.500 11674 0.0634 04549 2
185 rPokey’ -0.0146 9.4540 0.1035 04371 AF7
gPokey4 rPokey —06251 13.0792 0.3927 0.0964 AF8
Pokey-1 (TED)® Total gPokey® 15329 —1.7681 04950 0.0515 3
Diploid hybrids - PX2-MB-1 185 rPokey 00147 -1.07571 0.3979 0.1287 AF7
gPokey rPokey —0.3350 80216 0.5605 0.0528 AF8
Diploid hybrids — (PX2-QC-9, PX2-MI-7) Pokey-1 (TED) Total gPokey 15741 —2.7883 0.7383 0.0283* -
Pokey-1 (TED) Heokey -0.0088 0.7623 0.0376 0.7130 AF9
Hpl Hpokey —3.2220 1.8820 0.6592 0.0497* AF10
Triploid hybrids Hpl Pokey (TED) 6.6490 17534 0.0756 04418 2
185 rPokey 0.0085 12673 0.2492 0.2541 AF7
gPokey rPokey 0.0201 2.8478 0.0036 0.8978 AF8
Pokey-1 (TED) Total gPokey -1.6300 1.0290 03342 0.1740 3
Triploid tenebrosa Pokey-1 (TED) Total gPokey -0.1923 20.7692 0.4808 05122 3

. Denotes Pokey insertion site number estimated using TE display.
. Denotes haploid Pokey number in 28S genes amplified using qPCR.
. Denotes haploid Pokey number outside 28S genes amplified using qPCR.

. Denotes total Pokey number outside 28S genes amplified using qPCR.

ONOULDAWN=

. AF refers to Additional Files.
P values are significant results.

*

. Denotes average heterozygosity estimated using nine microsatellite loci weighted by the ploidy level.

. Denotes Pokey insertion site number estimated using TE display minus the peak from elements in 28S genes.

. Denotes average heterozygosity of Pokey insertions outside 28S genes amplified using qPCR.
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Pokey inserted in 28S genes (rPokey) and in the whole
genome (tPokey) in 19 isolates including 9 diploids and
10 polyploids (Table 2, Additional file 1). Using these es-
timates, we calculated the number of Pokey insertions
outside 28S genes (gPokey = tPokey - rPokey). Under the
assumption that 7if or Gtp reference genes were neither
duplicated or lost in any of the isolates, we expect the
Tif:Gtp ratio to be close to 1, and this was the case with
ratios ranging from 0.79 to 1.03 and a mean of 0.90 for
diploids and 0.92 for polyploids (Table 2). It is unlikely
that correlated losses or duplications of both genes
would occur in multiple isolates and so we have as-
sumed that diploids have two copies and triploids have
three copies of each reference gene.

Both 18S and 28S genes showed a tendency towards a
higher copy number per haploid genome in diploids
than in polyploids (292.78 +111.19 vs. 248.04 +62.34 for
18S genes and 488.28 +201.36 vs. 398.10 +113.86 for 28S
genes; Table 2), but differences between diploids and poly-
ploids were not significant (Student’s ¢-test; ¢ =1.0828,
df=17, P=0.2940 for 18S and Student’s t-test; ¢ =1.2337,
df=17, P=0.2341 for 28S). The estimates of 18S and 28S
number within each isolate were significantly correlated
(Additional file 6) but the slopes of the lines generated by
plotting them relative to one another were above the

expected value of 1.0 with values of 1.80 for diploid hy-
brids and 1.66 for polyploids (Table 3). It is possible that
we overestimated the number of 28S genes (Additional file
6) and so the number of 18S genes was used as a proxy of
rDNA copy number in all subsequent analyses.

Excluding isolates with unknown hybrid nature, the aver-
age haploid number of tPokey insertions was 17.81 +4.35
for diploid hybrids and 15.58 +3.43 for polyploid hybrids
(Table 2) and the difference was not statistically significant
(Student’s t-test; £ = 1.1092, df = 13, P = 0.2947).

The number of rPokey was higher in diploids than in
polyploids (mean 5.19 vs. 3.10, respectively), but this dif-
ference was not significant (Student’s ¢-test; t=1.0735,
df=13, P=0.3026). Variation in the number of rPokey
insertions was higher in diploid than in polyploid hybrids
(SD 5.03 vs. 1.07) but the difference was not statistically
significant (Levene’s test, W=2.0149, P=0.1793). No
correlation was found between the number of rPokey
and the number of 18S genes for either ploidy level
(Table 3; Additional file 7) even if the outlier PX2-MB-1,
which possesses a high number of rPokey (16.5) and a low
number of 18S genes compared to other diploids (Table 3),
was omitted from the analysis.

The mean number of gPokey was 12.63 in diploid
hybrids and 12.48 in polyploid hybrids (Table 2) and the
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difference was not significant (Student’s z-test; ¢ =0.0653,
df=13, P=0.9489). Variation in the number of gPo-
key insertions was higher in diploid than in poly-
ploid hybrids (SD 5.04 vs. 3.20) but the difference was
not statistically significant (Levene’s test, W =0.8830,
P =0.3645).

No significant correlation was found between the
number of gPokey and the number of rPokey in hybrids
of either ploidy level (Table 3; Additional file 8). The
negative (but not significant) relationship between rPo-
key and gPokey in diploids was partly due to the high
number of rPokey in the isolate PX2-MB-1. However,
the relationship was still negative and was nearly signifi-
cant when this isolate was discarded from the analysis
(Table 3; Additional file 8).

Comparison of TE Display and qPCR

The assumption that the gPokey elements amplified
using qPCR and TE display are identical seems to be
reasonable (Figure 3). Of all 19 isolates, only one (PX2-
MI-7) had a ratio (k*#gpokey)/NrED-1 below 1 which may
indicate an overestimation of gPokey number using TE
display compared to qPCR. One diploid isolate (PX2-
QC-2) had a ratio above 2 and a triploid isolate (MI3-
MB-2) had a ratio above 3 (Figure 3). This suggests that
either the number of gPokey was overestimated by
qPCR, underestimated by TE display, or both. The rela-
tionship between gPokey number based on qPCR and
TE display is positive and significant in diploid hybrids
(Table 3; Figure 3). This relationship was negative but
not significant in triploid D. tenebrosa and in triploid
hybrids (Table 3; Figure 3).

After excluding isolates outside the lower and upper
limits of possible values of total gPokey insertions es-
timated with qPCR and TE display (values of the ra-
tio (K*Mgpokey)/nrep-; between 1 and 2 for diploids
and between 1 and 3 for triploids), the average het-
erozygosity across Pokey insertions loci among dip-
loid hybrids is 59.85%. The relationship between the
heterozygosity of Pokey-inserted loci and the number
of gPokey estimated using TE display is slightly nega-
tive but not significant (Table 3; Additional file 9). The
slope of the relationship between the ploidy-
weighted heterozygosity using nine microsatellite loci
and the average heterozygosity of Pokey-inserted loci is
negative and is significant for diploid hybrids (Table 3,
Additional file 10).

Discussion

The polymorphism of Pokey insertion sites in Daphnia
isolates

The polymorphism of TE insertion sites may depend on
multiple factors such as selective pressure, drift, recom-
bination rate, ploidy level, genomic background (i.e., the
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parental origins of the hosts), geographic location, and
the characteristics of the element(s) hosted in the gen-
ome [8,25,31,73,87-94]. If the diversity of Pokey insertion
sites is due to the admixture of haploid genomes from
different species with different architecture (that is nu-
cleotide variation, number of repetitive genetic struc-
tures, etc.), the similarity of Pokey profiles is expected to
mirror the genetic relationship of their hosts. According
to the PCoA (Figure 1), the pairwise distance between
Pokey profiles of the Daphnia isolates is not congruent
with their pairwise genetic distance based on nine
microsatellite loci if only the two first axes are taken into
account. Similarities between the patterns produced by
TE display and microsatellite analyses can only be re-
vealed if the third axis of the PCoA is taken into account
(Additional file 4). According to the K-means analysis,
clusters based on similarity of Pokey profiles are not
congruent with clusters based on microsatellite geno-
types. Conversely, Mantel tests indicated that similarity
between Pokey profiles is partially correlated with dis-
tance matrices constructed from microsatellite diversity
and with mitochondrial haplotype diversity (r=0.3957
and r = 0.3047, respectively).

The polymorphism of Pokey insertion sites in the iso-
lates studied here imperfectly follows their evolutionary
relationship with one another. This is concordant with
previous results in which sequences from rPokey ele-
ments amplified from some of the isolates included in
this study show a different reticulation history than the
one described by microsatellite data [71]. For example,
rPokey sequences from triploids PC3-QC-1 and PX3-
QC-1, whose Pokey profiles cluster together using the
K-mean analysis (Figure 1A), have Pokey sequences that
are similar (Figure two in [71]). Similarly, rPokey sequences
from triploid isolates from Churchill (MI3-MB-2 and PC3-
MB-5), whose Pokey profiles cluster with D. tenebrosa and
diploid hybrid isolates in the K-means analysis (Figure 1A),
are recombinant and show signatures of hybridization be-
tween D. tenebrosa and D. pulex or D. pulicaria. However,
there was no indication of hybridization based on the ana-
lysis of microsatellite data, which clustered all D. tenebrosa
isolates with one another (Figure 1B). Weider et al. [66]
hypothesized introgression between D. temebrosa and
D. pulex or D. pulicaria based on mitochondrial DNA and
allozyme analyses. The polymorphism of Pokey profiles
may then mirror hybridization or introgression events be-
tween these species that microsatellites do not display due
to homoplasy or null alleles in the microsatellite dataset.
In our study, all D. tenebrosa isolates may be of hybrid ori-
gins but can still ordinate separately in the PCoA and clus-
ter together in a separate group using the K-means
analysis due to the sharing of a specific allele belonging to
the D. temebrosa species. Alternatively, Pokey insertion
profiles may not correspond to the genetic relationships of
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their host due to genomic rearrangements and random
loss of copies in the course of evolution.

Patterns of Pokey insertion site polymorphism cannot
be explained solely by ploidy level as K-means analyses
show that individuals with different ploidy levels group
in the same cluster whereas triploid individuals may
belong to different clusters (Figure 1A). Valizadeh and
Crease [15] did not find a relationship between the simi-
larity of Pokey profiles and the mode of reproduction
using a Neighbor-Joining tree of Pokey profiles from cyc-
lic and obligate isolates of D. pulex. They concluded that
the absence of a relationship was due to the multiple or-
igins of obligate parthenogenetic lineages from multiple
cyclical parthenogenetic populations. Similarly, the ab-
sence of a relationship between similarity of Pokey pro-
files and ploidy level is likely due to the multiple and
independent origins of polyploid isolates.

Is Pokey load higher in Daphnia polyploids than diploids?
Our study examined the load of Pokey insertions in rela-
tion to ploidy level in natural populations of Daphnia.
Both our diploid and polyploid isolates are hybrids (with
the exception of some D. tenebrosa isolates that were

excluded from the analyses of load) and are obligate
parthenogens. These characteristics allow us to test the ef-
fect of ploidy level on the load of a class II transposable
element without the confounding effects of hybridization
per se and of different modes of reproduction. No signifi-
cant differences in the density of Pokey insertions using ei-
ther qPCR (per haploid genome) or TE display were found
between diploid and polyploid hybrids, suggesting that an
increase in ploidy level does not lead to an increase of
Pokey insertions in the long term. The isolates studied
were sampled from natural populations and the age of
these clones is unknown. Previous studies have suggested
that obligately parthenogenetic populations of D. pulex
originated some 150,000 years ago [93] and that some
polyploids from the D. pulex complex were produced
during the Pleistocene [49]. It is possible that an increase
in Pokey insertions occurs shortly after polyploidization
as predicted by several hypotheses [25,28,94], but that
genomic reorganization results in the loss of Pokey inser-
tions with time. Loss of TE insertions following polyploi-
dization (in both the short and long term) seems to be
the rule rather the exception in most allopolyploid plants
[26], regardless of whether the TEs are active. Loss of TE
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insertions is thought to be due to genome rearrange-
ments via unequal and ectopic recombination events
between TEs at non-homologous loci. Therefore, the
non-significant difference between diploid and polyploid
hybrids may be due to loss of Pokey following polyploidi-
zation. Conversely, the absence of statistical significance
may be due to the substantial variability in the number of
Pokey in both groups, which may be due to high variabil-
ity of Pokey load in the parents. For example, Eagle and
Crease [84] surveyed 69 non-hybrid isolates of D. pulex
and D. pulicaria from 22 sampling sites and found that
gPokey number can vary from 4 to 24. Thus, gPokey
number in hybrids between these species will also vary
according to the gPokey load in their ascendants. Alter-
natively, the presence or absence of active Pokey elements
in parental species may influence the subsequent prolifer-
ation of Pokey in the hybrid offspring and increase the
variability of Pokey insertion sites in hybrids. However, if
Pokey is not active during apomixis, it cannot proliferate
in obligately parthenogenetic hybrid lineages — except
perhaps through ameiotic recombination events.

It has been suggested that Pokey is not active in non-
hybrid obligately parthenogenetic isolates but may be active
in cyclically parthenogenetic isolates of D. pulex [15,70] and
D. pulicaria [84]. Even so, it is possible that Pokey may be
active in hybrids at least in the first generations after their
formation due to the presence of active Pokey in their as-
cendants. Therefore, increases in the density of Pokey inser-
tions may depend on the activity of Pokey and the
effectiveness of regulation of Pokey in hybrid genomes
[21,95-97]. Testing the activity of Pokey in diploid hybrids
and performing additional studies on a larger number of
hybrid and non-hybrid isolates will enhance our under-
standing of the dynamics and increase, if any, of Pokey
elements in D. pulex x D. pulicaria hybrids.

There is no difference between the load of Pokey inser-
tion sites based on TE display in the genomes of poly-
ploid hybrids (20.60 +3.47 at 50°C and 16.33 +1.75 at
55°C) compared to diploid hybrids (18.09 +3.99 at 50°C
and 13.83 +4.22 at 55°C). Similarly, there is no difference
in the density of gPokey per haploid genome between
polyploid (12.48 +3.20) and diploid (12.63 +5.04) hybrids
based on qPCR (Table 2). Conversely, the number of
singletons (TE display at 50°C) is slightly higher in poly-
ploids (20.6%) than in diploids (12.3%). The relationship
between Pokey number and heterozygosity also differs
between the two groups. gPokey number (qPCR) in-
creases with an increase in Pokey insertion sites (TE
display) in diploids (Figure 3) but decreases in triploids
(although not significantly). Moreover, in diploids, Pokey
heterozygosity tends to decrease, though not signifi-
cantly, as the number of different Pokey insertion sites in-
creases (Table 3, Additional file 9). In contrast, polyploid
heterozygosity increases (Table 3) and the number of
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total gPokey insertions (QPCR) decreases when Pokey in-
sertion sites (TE display) increases (Table 3, Figure 3).
Taken together, these results may reflect relaxed selection
on insertions at some sites in polyploid compared to dip-
loid hybrids, as suggested by the genomic niche redun-
dancy hypothesis [24,25]. For example, if two functioning
copies of a gene are necessary and sufficient for survival
of the host, a third copy could become a potential gen-
omic niche for TEs in triploid individuals. If so, then no
TEs should be inserted in this gene in diploids but one
gene copy could carry an insert in triploids without caus-
ing a decrease in host fitness. Alternatively, the difference
in the number of singleton sites between the two ploidy
levels may simply be a consequence of insertion site poly-
morphism contributed by the additional chromosome
sets carried by polyploids.

Pokey in rDNA

The mean haploid number of 18S is higher (although not
significant) in diploid hybrid isolates than in polyploid hy-
brids, but when the haploid rDNA copy number is multi-
plied by the ploidy level, the average is equal between
diploid (586.5) and polyploid (586.5) hybrids with D. pulex,
D. pulicaria or D. middendorffiana mtDNA haplotypes.
Previous studies have shown that polyploid plant species,
such as natural and artificial allotetraploid populations of
Tragopogon [98] and allotetraploid and allohexaploid grass
species [99], may experience rDNA rearrangement, includ-
ing loss of rRNA gene copies. As most organisms have
many more rRNA genes than they require for survival
[100], it is possible that a loss of copies in polyploids is not
harmful. Indeed, it is possible that selection could actually
favor the loss of copies if polyploidization initially results in
high rDNA copy numbers that are somewhat deleterious. It
is noteworthy that the average haploid 18S number (293.3
with values from 131.5 to 451) in the diploid hybrid isolates
is more than 30% higher than the average haploid 18S
number in the non-hybrid diploid isolates of D. pulex
(221.0 with values from 94 to 489.5) and D. pulicaria
(217.3 with values from 97 to 444) studied by Eagle and
Crease [84] using the same qPCR protocol. This differ-
ence is not statistically significant (one-way ANOVA;
F=2418, df=2, P=0.0961). However, the number of
Daphnia diploid hybrids tested here is low (n = 8) com-
paring to D. pulicaria (n=37) and D. pulex (n=43)
isolates tested in the study by Eagle and Crease [84].
There is a high level of variation within each group and
it will be interesting to confirm this pattern after analysis
in a larger sample of diploid hybrids and laboratory-
produced hybrids.

The number of 28S genes with rPokey insertions ac-
counts for an average of 1.93% of rDNA (with only one
isolate, PX2-MB-1, above 5%; Table 2; Additional file 1),
which is consistent with the results of Eagle and Crease
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[84] who found rPokey insertions in approximately 1% of
rDNA units in non-hybrid D. pulex and D. pulicaria iso-
lates. Moreover, and still in accordance with Eagle and
Crease [84], we did not find a correlation between the
number of rPokey and rDNA in Daphnia hybrid isolates,
including the polyploids in which rDNA copy number
per haploid genome is lower. This is consistent with the
hypothesis that Pokey is not highly active in the rDNA
of these species, and its number does not increase with
the number of rDNA units. Even so, selection is not so
efficient that it eliminates deleterious elements present at
low copy number in a highly repetitive gene family
[84,101,102].

The effect of hybridization on Pokey load

Valizadeh and Crease [15] found a significantly lower
(one-way ANOVA; F =67.65, df =3, P <0.001) average
number of Pokey insertion sites in obligately and in cyc-
lically parthenogenetic diploid isolates of D. pulex (3.27
+2.07, n=22 and 5.18 +2.24, n =22 respectively) com-
pared to our survey of 12 obligately parthenogenetic hy-
brid isolates using the same annealing temperature (55°
C) in TE display (13.83 +4.22 for six diploid hybrid iso-
lates and 16.33 +1.75 for six polyploid hybrid isolates;
Table 2). In addition, the qPCR estimate of gPokey dens-
ity is higher (although not statistically significant; one-
way ANOVA; F = 2.549, df=2, P=0.085) in our reduced
data set of diploid hybrid isolates (12.63 +5.04 for eight
diploid hybrids) than in the diploid non-hybrid isolates
analyzed by Eagle and Crease (9.6 for D. pulex, n =43,
and 9.5 for D. pulicaria, n=37) [84]. Therefore, there
seems to be an increase in the density of Pokey in-
sertions in the genomes of hybrid Daphnia. This in-
crease could occur either during the early generations
after hybridization by bursts of Pokey activity or, if
Pokey elements are still active in hybrids, over a long
period through the slow accumulation of Pokey inser-
tions within the genome. Bursts of TE activity in hy-
brids have been highlighted in numerous homoploid
hybrid plants [22,29], fruit flies [19,21,36] and wallabies
[20]. In Drosophila melanogaster and D. virilis, hybrid
dysgenic crosses may lead to bursts in activity of various
TEs [21,97] due to release from cytoplasmic repression
[37,95,96,103]. Interestingly, there is a slight trend of de-
creasing Pokey site heterozygosity (Table 3; Additional
file 10) and a trend of increasing Pokey insertions sites
(Figure 2) as host average heterozygosity increases. These
trends suggest there may be increased activity of Pokey in
hybrids that have the most evolutionarily divergent
parents. Alternatively, increased genome and cell size
favored by natural selection in new and/or stressful habi-
tats may lead to a slow increase in the number of TEs in
the genome [104]. Genetic drift may also lead to a slow
increase in the number of TEs as suspected in sunflowers
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[104]. Three hybrid species of sunflower inhabiting harsh
environments show genome size expansion due to pro-
liferation of numerous class I TEs (retrotransposons)
[34]. However, the proliferation of TEs is rare in con-
temporary natural sunflower hybrid populations and in
artificial hybrid crosses [23,33], which suggest an in-
crease of TEs after hybrid establishment via population
processes such as genetic drift or natural selection. Selec-
tion in marginal habitats or drift following hybridization
could also lead to an increase of TE density in hybrid
Daphnia genomes.

Conclusions

Using TE display and qPCR, we were able to describe inser-
tion site polymorphism and the load of Pokey elements in
diploid and polyploid hybrid isolates of the D. pulex species
complex. The polymorphism of Pokey insertion sites was
not congruent with the evolutionary history and genetic re-
lationships of their hosts. Diploid and polyploid hybrids did
not differ significantly in the number of Pokey insertions,
using either qPCR or TE display, as has been shown in
studies comparing diploid and polyploid plants. The num-
ber of singletons estimated with TE display is slightly higher
in polyploid than in diploid hybrids. Together, these results
may reflect a higher number of sites available for Pokey in-
sertions in polyploid than in diploid hybrids, or an increase
in polymorphism due to the combination of genomes with
Pokey at different insertion sites. Compared to previous
studies on Pokey in the D. pulex complex, we found the
density of Pokey insertions per haploid genome to be higher
in obligately parthenogenetic hybrids (both diploids and
polyploids) than in non-hybrid diploids (either cyclical or
obligate parthenogens) leading to the conclusion that
hybridization may lead to an overall increase in Pokey in-
sertions. The estimation of polymorphism and TE load
in laboratory-produced hybrids and the analysis of add-
itional samples of hybrids will provide more insight into
the population dynamics of TEs in diploid and polyploid
hybrids of Daphnia.

Additional files

<
Additional file 1: Characteristics of the Daphnia isolates used in this
study. Labels of the isolates are composites of their characteristics. The
first two letters represent the mitochondrial haplotype followed by the
ploidy level (2x or 3x), a 2-letter country or state/province code
and the isolate number. Mitochondrial haplotypes are as follows:
EPC = Eastern D. pulicaria, WPC = Western D. pulicaria, PPC = Polar D. pulicaria,
PanPX = Panarctic D. pulex, MIDD = D. middendorffiana sensu stricto,
TENE = D. tenebrosa). Ldh is the Lactate dehydrogenase genotype and
indicates the hybrid nature of each isolate. Hy, is the ploidy-weighted
heterozygosity. rRNA gene and Pokey number were determined
using TE display and gPCR; 50°C and 55°C are the annealing
temperatures used to generate the PCR amplicons in TE display.
Total Pokey = all Pokey elements in the genome. rDNA Pokey = Pokey
elements in 285 rRNA genes. Genomic Pokey = total -rDNA elements.
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gPCR: Quantitative PCR; rPokey: Pokey elements inserted in rDNA; rDNA: ribosomal

TG ratio is the number of Tif relative to the number of Gtp single copy _
DNA; TE: Transposable element; TED: Transposable element display.

reference genes.

Additional file 2: Supplementary material and methods describing

TE display and qPCR protocols. Competing interests

The authors declare that they have no competing interests.
Additional file 3: TE display profiles of diploid and polyploid

isolates in the D. pulex species complex. Sum of the amplification

signals (peaks) are presented for each isolate. Authors’ contributions

RV designed the project and wrote the manuscript. RV and SHCE planned
the analyses. RV and SHCE conducted the analyses. All authors analyzed the
data and contributed to the writing and editing of the manuscript. All
authors approved the final manuscript.

Additional file 4: Three-dimensional representation of Principal
Coordinate Analyses of Jaccard distance matrix of Pokey profiles
and Bruvo distance matrix of microsatellite diversity in diploid and
polyploid isolates of the Daphnia pulex complex. (A) Pokey profiles
generated using TE display; (B) Microsatellite genotypes determined by
Vergilino et al. [45]. The three first axes are represented. Empty symbols
are diploids and solid symbols are polyploids. Empty orange circles:
diploid hybrids with pulex mitochondrial haplotype, solid orange circles:
triploid hybrids with D. pulex mitochondrial haplotype, solid square:

D. middendorffiana sensu stricto, empty black triangles: diploid D. tenebrosa,
solid black triangles: triploid D. tenebrosa, solid red triangle: introgressed

D. tenebrosa with D. pulex nuclear genome, solid green diamond filled with
orange: triploid hybrids with D. pulicaria mitochondrial haplotype; (C) and
(D) are screeplots and represent the eigenvalues of the axes of Principal
Coordinate Analysis (A) and (B), respectively.

Additional file 5: Results of the covariance analysis (ANCOVA) of TE
display results from diploid and polyploid isolates in the Daphnia
pulex complex. Ploidy level and ploidy-weighted heterozygosity (H,)
were used as the independent variables.
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