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Mobile DNA and the TE-Thrust hypothesis:
supporting evidence from the primates
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Abstract

Transposable elements (TEs) are increasingly being recognized as powerful facilitators of evolution. We propose the
TE-Thrust hypothesis to encompass TE-facilitated processes by which genomes self-engineer coding, regulatory,
karyotypic or other genetic changes. Although TEs are occasionally harmful to some individuals, genomic
dynamism caused by TEs can be very beneficial to lineages. This can result in differential survival and differential
fecundity of lineages. Lineages with an abundant and suitable repertoire of TEs have enhanced evolutionary
potential and, if all else is equal, tend to be fecund, resulting in species-rich adaptive radiations, and/or they tend
to undergo major evolutionary transitions. Many other mechanisms of genomic change are also important in
evolution, and whether the evolutionary potential of TE-Thrust is realized is heavily dependent on environmental
and ecological factors. The large contribution of TEs to evolutionary innovation is particularly well documented in
the primate lineage. In this paper, we review numerous cases of beneficial TE-caused modifications to the
genomes of higher primates, which strongly support our TE-Thrust hypothesis.

Introduction
Building on the groundbreaking work of McClintock [1]
and numerous others [2-14], we further advanced the
proposition of transposable elements (TEs) as powerful
facilitators of evolution [15] and now formalise this into
‘The TE-Thrust hypothesis’. In this paper, we present
much specific evidence in support of this hypothesis,
which we suggest may have great explanatory power.
We focus mainly on the well-studied higher primate
(monkey, ape and human) lineages. We emphasize the
part played by the retro-TEs, especially the primate-spe-
cific non-autonomous Alu short interspersed element
(SINE), together with its requisite autonomous partner
long interspersed element (LINE)-1 or L1 (Figure 1A).
In addition, both ancient and recent endogenizations of
exogenous retroviruses (endogenous retroviruses
(ERVs)/solo long terminal repeats (sLTRs) have been
very important in primate evolution (Figure 1A). The
Alu element has been particularly instrumental in the
evolution of primates by TE-Thrust. This suggests that,
at least in some mammalian lineages, specific SINE-
LINE pairs have a large influence on the trajectory and

extent of evolution on the different clades within that
lineage.

The TE-Thrust Hypothesis
The ubiquitous, very diverse, and mostly extremely
ancient TEs are powerful facilitators of genome evolu-
tion, and therefore of phenotypic diversity. TE-Thrust
acts to build, sculpt and reformat genomes, either
actively by TE transposition and integration (active TE-
Thrust), or passively, because after integration, TEs
become dispersed homologous sequences that facilitate
ectopic DNA recombination (passive TE-Thrust). TEs
can cause very significant and/or complex coding, spli-
cing, regulatory and karyotypic changes to genomes,
resulting in phenotypes that can adapt well to biotic or
environmental challenges, and can often invade new
ecological niches. TEs are usually strongly controlled in
the soma, where they can be damaging [16,17], but they
are allowed some limited mobility in the germline and
early embryo [18-20], where, although they can occa-
sionally be harmful, they can also cause beneficial
changes that can become fixed in a population, benefit-
ing the existing lineage, and sometimes generating new
lineages.
There is generally no Darwinian selection for indivi-

dual TEs or TE families, although there may be
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exceptions, such as the primate-specific Alu SINEs in
gene-rich areas [21,22]. Instead, according to the TE-
Thrust hypothesis, there is differential survival of those
lineages that contain or can acquire suitable germline
repertoires of TEs, as these lineages can more readily
adapt to environmental or ecological changes, and can
potentially undergo, mostly intermittently, fecund radia-
tions. We hypothesize that lineages lacking a suitable
repertoire of TEs are, if all else is equal, are liable to sta-
sis, possibly becoming ‘living fossils’ or even becoming
extinct.
TE activity is usually intermittent [23-27], with peri-

odic bursts of transposition due to interplay between
various cellular controls, various stresses, de novo synth-
eses, de novo modifications, new infiltrations of DNA-
TEs (by horizontal transfer), or new endogenizations of
retroviruses. However, the vast majority of viable TEs
usually undergo slow mutational decay and become
non-viable (incapable of activity), although some super-
families have remained active for more than 100 Myr.
Episodic TE activity and inactivity, together with differ-
ential survival of lineages, suggests an explanation for
punctuated equilibrium, evolutionary stasis, fecund
lineages and adaptive radiations, all found in the fossil
record, and for extant ‘fossil species’ [15,28].
TE-Thrust is expected to be optimal in lineages in

which TEs are active and/or those that possess a high
content of homogeneous TEs, both of which can pro-
mote genomic dynamism [15]. We hypothesize four
main modes of TE-Thrust (Table 1), but as these are
extremes of continuums, many intermediate modes are
possible.
• Mode 1: periodically active heterogeneous popula-

tions of TEs result in stasis with the potential for inter-
mittent punctuation events.
• Mode 2: periodically active homogenous populations

of TEs result in: 1) gradualism as a result of ectopic

recombination, if the TE population is large, with the
potential for periodic punctuation events, or 2) stasis
with the potential for periodic punctuation events if the
TE population is small.
• Mode 3: non-viable heterogeneous populations of

TEs, in the absence of new infiltrations, result in pro-
longed stasis, which can sometimes result in extinctions
and/or ‘living fossils’.
• Mode 4: non-viable homogenous populations of TEs,

in the absence of new infiltrations, can result in: 1) gra-
dualism as a result of ectopic recombination, if the TE
population is large or 2) stasis if the TE population is
small.
These modes of TE-Thrust are in agreement with the

findings of palaeontologists [29] and some evolutionary
biologists [30] that punctuated equilibrium is the most
common mode of evolution, but that gradualism and
stasis also occur. Many extant ‘living fossils’ are also
known.
We acknowledge that TE-Thrust acts by enhancing

evolutionary potential, and whether that potential is
actually realized is heavily influenced by environmental,
ecological and other factors. Moreover, there are many
other ‘engines’ of evolution besides TE-Thrust, such as
point mutation, simple sequence repeats, endosymbiosis,
epigenetic modification and whole-genome duplication
[31-35], among others. These often complement TE-
Thrust; for example, point mutations can endow dupli-
cated or retrotransposed genes with new functions
[36,37]. There may also be other, as yet unknown, or
hypothesized but unconfirmed, ‘engines’ of evolution.

Higher primate genomes are very suited to TE-
Thrust as they possess large homogeneous
populations of TEs
Human and other extant higher primate genomes are
well endowed with a relatively small repertoire of TEs
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Figure 1 Summary of the effect of TEs on primate evolution. (A) Transposable elements (TEs) implicated in the generation of primate-
specific traits. (B) Types of events mediated by TEs underlying primate-specific traits. Passive events entail TE-mediated duplications, inversions or
deletions. (C) Aspects of primate phenotype affected by TEs. Based on the published data shown in Tables 3 to 6.
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(Table 2). These TEs, which have been extensively
implicated in engineering primate-specific traits (Table
3; Table 4; Table 5; Table 6), are largely relics of an evo-
lutionary history marked by periodic bursts of TE activ-
ity [25,38,39]. TE activity is presently much reduced, but
extant simian lineage genomes remain well suited for
passive TE-Thrust, with just two elements, Alu and L1,
accounting for over 60% of the total TE DNA sequence
[21,40,41]. In humans, there are 10 times as many
mostly homogeneous class I retro-TEs as there are very
heterogeneous class II DNA-TEs [21]. Only L1, Alu,
SVA (SINE-R, variable number of tandem repeats
(VNTR), Alu) and possibly some ERVs, remain active in
humans [42].
L1 and the primate-specific Alu predominate in

simians [21,40,41], and thus strongly contribute to TE-
Thrust in this lineage (Figure 1A). The autonomous L1
is almost universal in mammals, whereas the non-
autonomous Alu, like most SINEs, is conspicuously

lineage-specific, having been synthesized de novo,
extremely unusually, from a 7SL RNA-encoding gene.
The confinement of Alu to a single mammalian order
is typical of younger SINEs, whereas ancient SINEs, or
exapted remnants of them, may be detectable across
multiple vertebrate classes [43]. Alu possesses addi-
tional unusual characteristics: extreme abundance (1.1
million copies, occurring every 3 kb on average in the
human genome), frequent location in gene-rich
regions, and a lack of evolutionary divergence [21,44].
Their relatively high homology is most easily explained
as being the result of functional selection helping to
prevent mutational drift. Thus, Alus have been
hypothesized to serve biological functions in their own
right, leading to their selection and maintenance in the
primate genome [22]. For example, A-to-I RNA edit-
ing, which has a very high prevalence in the human
genome, mainly occurs within Alu elements [45],
which would seem to provide primates with a genetic

Table 1 Hypothesized major modes of transposable element (TE)-thrust

Mode TE activity TE homogeneity TE population size Evolutionary outcome Type of TE thrust

1 Viable and intermittently active Heterogeneous Large Stasis with punctuation events Active

Small Stasis with punctuation events Active

2 Viable and intermittently active Homogeneous Large Gradualism with punctuation events Active and passive

Small Stasis with punctuation events Active

3 Non-viable/Inactive Heterogeneous Large Stasisa,b Minimalc

Small Stasisa,b Minimalc

4 Non-viable/Inactive Homogeneous Large Gradualisma Passivec

Small Stasisa,b Minimalc

aUnless new infiltrations or reactivation of TEs occur.
bFossil taxa are a possible outcome of prolonged stasis.
cInactive/non-viable TEs can be exapted in a delayed fashion, which could cause some resumption of active TE-Thrust.

Table 2 Summary of the major transposable elements (TEs) found in humans

Family Percentage of
genome

Number in
genome

Average
length, bp

Maximum
length, kb

Viable Potentially
autonomous

Type I: retro-
TEs

LTRa/ERVb 8.3 443,000 510 10 No Yes (via reverse
transcriptase)

LINE1c 16.9 516,000 900 6 Some Yes (via reverse
transcriptase)

LINE2 3.2 315,000 280 5 No Yes (via reverse
transcriptase)

Alu SINEd 10.6 1,090,000 270 0.3 Yes No

MIRe SINE 2.2 393,000 150 0.26 No No

SVAf SINE-like
composite

0.2 3,000 1,400 3 Yes No

Type II: DNA-
TEs

Many 2.8 294,000 260 3 No Some (via transposase)

aLTR = long terminal repeat
bERV = endogenous retrovirus
cLINE = long interspersed nuclear element
dSINE = short interspersed nuclear element
eMIR = mammalian-wide interspersed repeat
fSVA = SINE-VNTR-Alu
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sophistication beyond that of other mammals. Alus
may therefore not represent a peculiar, evolutionary
neutral invasion, but rather positively selected func-
tional elements that are resistant to mutational degra-
dation [46]. This has significance for TE-Thrust, as it
would greatly prolong the usefulness of Alus as facili-
tators of evolution within primate lineages.

Other human retro-TEs include the fossil tRNA mam-
malian-wide intespersed repeat (MIR) SINE, which
amplified approximately 130 Mya [21,47] and the much
younger SVA, a non-autonomous composite element
partly derived from ERV and Alu sequences, which is
specific to the great apes and humans [48]. Like Alus,
SVAs are mobilised by L1-encoded enzymes and, similar

Table 3 Specific examples of transposable elements (TEs) implicated in primate-specific traits: brain and sensory

TE
generated
trait

Gene
affected

Gene function TE
responsible

Distributiona Type of event Effect Tissue
expression

Type
of TE-
Thrust

Reference

snaRs Cell growth and
translational
regulation

Alu Afr. great
ape/ human

Domestication Novel
genes

Brain, testis Active Parrott and
Mathews,
2009 [105]

BCYRN1 Translational
regulation of
dendritic proteins

Alu Simian Domestication Novel
gene

Brain Active Watson and
Sutcliffe,
1987 [106]

FLJ33706 Unknown Alu Human Domestication Novel
gene

Brain Active Li et al.,
2010 [107]

Neuronal
stability?

SETMAR DNA repair and
replication

Hsmar1 Simian Exonization Novel
fusion
gene

Brain, various Active Cordaux et
al., 2006
[108]

Survivin Anti-apoptotic/brain
development

Alu Ape Exonization Novel
isoform

Brain, spleen Active Mola et al.,
2007 [109]

ADARB1 RNA editing/
neurotransmitter
receptor diversity

Alu >Human Exonization Novel
isoform

Brain, various Active Lai et al.,
1997 [110]

CHRNA1 Synaptic
transmission

MIRb Great ape Exonization Novel
isoform

Neuromuscular Active Krull et al.,
2007 [47]

ASMT Melatonin synthesis LINE-1c >Human Exonization Novel
isoform

Pineal gland Active Rodriguez
et al., 1994
[111]

CHRNA3 Synaptic
transmission

Alu Great ape Regulatory Major
promoter

Nervous
system

Active Fornasari et
al., 1997
[112]

CHRNA6 Synaptic
transmission

Alu >Human Regulatory Negative
regulation

Brain Active Ebihara et
al., 2002
[113]

NAIP Anti-apoptosis
(motor neuron)

Alu >Human Regulatory Alternative
promoters

CNS, various Active Romanish et
al., 2009
[114]

CNTNAP4 Cell recognition/
adhesion

ERVd >Human Regulatory Alternative
promoter

Brain, testis Active van de
Lagemaat et
al., 2003
[73]

CCRK Cell cycle-related
kinase

Alu Simian Regulatory CpG island Brain Active Farcas et al.,
2009 [86]

Enhanced
cognitive
capacity/
memory?

GLUD2 Neurotransmitter
recycling

Unknown Ape Retrotransposition Novel
gene

Brain Active Burki and
Kaessmann,
2004 [37]

Altered
auditory
perception?

CHRNA9 Cochlea hair
development/
modulation of
auditory stimuli

Alu Human Deletion Exon loss Cochlea,
sensory
ganglia

Passive Sen et al.,
2006 [62]

Trichromatic
colour vision

OPN1LW Cone photoreceptor Alu Old World
primate

Duplication Novel
gene

Retina Passive Dulai et al.,
1999 [36]

a > = Maximum known distribution.
bMIR = mammalian-wide interspersed repeat
cLINE = long interspersed nuclear element
dERV = endogenous retrovirus

Oliver and Greene Mobile DNA 2011, 2:8
http://www.mobilednajournal.com/content/2/1/8

Page 4 of 17



Table 4 Specific examples of transposable elements (TEs) implicated in primate-specific traits: reproduction and
development

TE generated
trait

Gene
affected

Gene function TE
responsible

Distributiona Type of event Effect Tissue
expression

Type
of TE-
Thrust

Reference

Placental
morphogenesis

Syncytin-
1

Trophoblast cell
fusion

ERVb Ape Domestication Novel
gene

Placenta Active Mi et al.,
2000 [92]

Placental
morphogenesis

Syncytin-
2

Trophoblast cell
fusion

ERV Simian Domestication Novel
gene

Placenta Active Blaise et al.,
2003 [93]

HERVV1 Unknown ERV Simian Domestication Novel
gene

Placenta Active Kjeldbjerg et
al., 2008
[115]

HERVV2 Unknown ERV Simian Domestication Novel
gene

Placenta Active Kjeldbjerg et
al., 2008
[115]

ERV3 Development and
differentiation?

ERV Old World
primate

Domestication Novel
gene

Placenta,
various

Active Larsson et al.,
1994 [116]

DNMT1 DNA methylation Alu >Afr. great
ape

Exonization Novel
isoform

Fetal,
various

Active Hsu et al.,
1999 [117]

LEPR Leptin receptor SVA Human Exonization Novel
isoform

Fetal liver Active Damert et al.,
2004 [118]

IL22RA2 Regulation of
inflammatory
responses/
interleukin-22 decoy
receptor

LTRc Great ape Exonization Novel
isoform

Placenta Active Piriyapongsa
et al., 2007
[119]

PPHLN1 Epithelial
differentiation/
nervous-system
development

ERV/Alu/
LINE-1d

Ape Exonization Novel
isoforms

Fetal,
various

Active Huh et al.,
2006 [120]

CGB1/2 Chorionic
gonadotropin

Alu (snaR-
G1/2)

Afr. great ape Regulatory Major
promoter

Testis Active Parrott and
Mathews,
2009 [105]

GSDMB Epithelial
development

Alu Ape Regulatory Major
promoter

Stomach Active Komiyama et
al., 2010
[121]

HYAL4 Hyaluronidase LINE-1/Alu >Human Regulatory Major
promoter

Placenta Active van de
Lagemaat et
al., 2003 [73]

Placental
oestrogen
synthesis

HSD17B1 Oestrogen synthesis ERV >Human Regulatory Major
promoter

Ovary,
placenta

Active Cohen et al.,
2009 [122]

Placental
development

INSL4 Regulation of cell
growth and
metabolism

ERV Old World
primate

Regulatory Major
promoter

Placenta Active Bieche et al.,
2003 [123]

DSCR4 Unknown
reproductive
function

ERV Ape Regulatory Major
promoter

Placenta,
testis

Active Dunn et al.,
2006 [124]

DSCR8 Unknown
reproductive
function

ERV >Ape Regulatory Major
promoter

Placenta,
testis

Active Dunn et al.,
2006 [124]

CGA Common subunit of
chorionic
gonadotropin,
luteinizing, follicle-
stimulating and
thyroid-stimulating
hormones

Alu >Simian Regulatory Negative
regulation

Placenta,
pituitary
gland

Active Scofield et
al., 2000
[125]

Globin
switching

HBE1 Embryonic oxygen
transport

Alu >Human Regulatory Negative
regulation

Fetal Active Wu et al.,
1990 [126]

GH Growth hormone Alu >Human Regulatory Negative
regulation

Pituitary
gland

Active Trujillo et al.,
2006 [127]

WT1 Urogenital
development

Alu >Human Regulatory Negative
regulation

Urogenital Active Hewitt et al.,
1995 [128]
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Table 4 Specific examples of transposable elements (TEs) implicated in primate-specific traits: reproduction and devel-
opment (Continued)

Efficient
placental gas
exchange

HBG1 Fetal oxygen
transport

LINE-1 Old World
primate

Regulatory Tissue-
specific
enhancer

Fetal Active Johnson et
al., 2006 [91]

Placental leptin
secretion

LEP Metabolic regulatory
hormone

LTR >Human Regulatory Tissue-
specific
enhancer

Placenta Active Bi et al., 1997
[129]

MET Hepatocyte growth-
factor receptor

LINE-1 > Afr. great
ape

Regulatory Alternative
promoter

Liver,
Pancreas,
Lung

Active Nigumann et
al., 2002 [71]

BCAS3 Embryogenesis/
erythropoiesis

LINE-1 > Afr. great
ape

Regulatory Alternative
promoter

Fetal,
various

Active Wheelan et
al., 2005
[130]

CHRM3 Synaptic
transmission

LINE-1 Human Regulatory Alternative
promoter

Placenta Active Huh et al.,
2009 [131]

CLCN5 Chloride transporter LINE-1 >Human Regulatory Alternative
promoter

Placenta Active Matlik et al.,
2006 [132]

SLCO1A2 Organic anion
transporter

LINE-1 >Human Regulatory Alternative
promoter

Placenta Active Matlik et al.,
2006 [132]

CHRM3 Synaptic
transmission

LTR Human Regulatory Alternative
promoter

Testis Active Huh et al.,
2009 [131]

IL2RB Growth-factor
receptor

LTR >Human Regulatory Alternative
promoter

Placenta Active Cohen et al.,
2009 [122]

Placental
development

ENTPD1 Thromboregulation LTR >Human Regulatory Alternative
promoter

Placenta Active van de
Lagemaat et
al., 2003 [73]

MKKS Molecular chaperone LTR/LINE-2 >Human Regulatory Alternative
promoter

Testis, fetal Active van de
Lagemaat et
al., 2003 [73]

NAIP Anti-apoptosis ERV >Human Regulatory Alternative
promoter

Testis Active Romanish et
al., 2007
[133]

EDNRB Placental
development/
circulation

ERV >Human Regulatory Alternative
promoter

Placenta Active Medstrand et
al., 2001
[134]

Placental
development

PTN Growth factor ERV Ape Regulatory Alternative
promoter

Trophoblast Active Schulte et al.
1996 [135]

MID1 Cell proliferation and
growth

ERV Old World
primate

Regulatory Alternative
promoter

Placenta,
fetal kidney

Active Landry et al.,
2002 [136]

NOS3 Endothelial nitric
oxide synthesis

ERV >Human Regulatory Alternative
promoter

Placenta Active Huh et al.,
2008 [137]

GSDMB Epithelial
development

ERV Ape Regulatory Alternative
promoter

Various Active Sin et al.,
2006 [138]

Placental
oestrogen
synthesis

CYP19 Oestrogen synthesis ERV Simian Regulatory Alternative
promoter

Placenta Active van de
Lagemaat et
al., 2003 [73]

AMACs Fatty-acid synthesis SVA Afr. great ape Retrotransposition Novel
genes

Placenta,
testis

Active Xing et al.,
2006 [139]

POTEs Pro-apoptosis/
spermatogenesis

LINE-1 Ape Retrotransposition Novel
fusion
genes

Testis,
ovary,
prostate,
placenta

Active Lee et al.,
2006 [140]

PIPSL Intracellular protein
trafficking

LINE-1 >Great ape Retrotransposition Novel
fusion
gene

Testis Active Babushok et
al., 2007
[141]

CDYs Chromatin
modification

Unknown Simian Retrotransposition Novel
genes

Testis Active Lahn and
Page, 1999
[142]

ADAM20/
21

Membrane
metalloprotease

Unknown >Human Retrotransposition Novel
genes

Testis Active Betran and
Long, 2002
[143]
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to Alu, a typical full-length SVA is GC-rich, and thus
constitutes a potential mobile CpG island. Importantly,
ERVs are genome builders/modifiers of exogenous ori-
gin [49]. Invasion of ERVs seems to be particularly asso-
ciated with a key mammalian innovation, the placenta
(Table 4). The endogenisation of retroviruses and the
horizontal transfer of DNA-TEs into germlines clearly
show that the Weismann Barrier is permeable, contrary
to traditional theory.
The DNA-TEs, which comprise just 3% of the human

genome, are extremely diverse, but are now completely
inactive [21,50]. Although some have been exapted
within the simian lineage as functional coding sequences
(Table 3; Table 4; Table 5; Table 6), DNA-TEs, it seems,
cannot now be a significant factor for TE-Thrust in pri-
mates, unless there are new infiltrations.

TE-Thrust influences evolutionary trajectories
A key proposal of our TE-Thrust hypothesis is that TEs
can promote the origin of new lineages and drive line-
age divergence through the engineering of specific traits.
Ancestral TEs shared across very many lineages can, by
chance, lead to the delayed generation of traits in one
lineage but not in another. For example, more than 100
copies of the ancient amniote-distributed AmnSINE1
are conserved as non-coding elements specifically
among mammals [51]. However, as they often show a
narrow lineage specificity, we hypothesize that younger
SINEs (with their partner LINEs) may have a large influ-
ence upon the trajectory and the outcomes of the evolu-
tion within clades, as is apparent with the Alu/L1 pair
in primates (Figure 1A). Probably not all SINEs are
equal in this ability; it seems that some SINEs are more
readily mobilised than others, and when mobilised,
some SINEs are more effective than others at facilitating

evolution by TE-Thrust. The extremely abundant pri-
mate Alu dimer seems to illustrate this. Whereas the
overwhelming majority of SINEs are derived from
tRNAs, Alus may have proliferated so successfully
because they are derived from the 7SL RNA gene [52],
which is part of the signal recognition particle (SRP)
that localises to ribosomes. Alu RNAs can therefore
bind proteins on the SRP and thus be retained on the
ribosome, in position to be retrotransposed by newly
synthesized proteins encoded by their partner L1 LINEs
[53].
Among the primates, the simians have undergone the

greatest evolutionary transitions and radiation. Of the
approximately 367 extant primate species, 85% are
simians, with the remainder being prosimians, which
diverged about 63 Mya. Significantly, large amplifica-
tions of L1, and thus of Alus and other sequences con-
fined to simians, offer a plausible explanation for the
lack of innovation in the trajectory of evolution in the
prosimian lineages, compared with the innovation in the
simian lineages. Since their divergence from the basal
primates, the simians have experienced repeated periods
of intense L1 activity that occurred from about 40 Mya
to about 12 Mya [54]. The highly active simian L1s were
responsible for the very large amplification of younger
Alus and of many gene retrocopies [55]. Possibly, differ-
ential activity of the L1/Alu pair may have driven the
trajectory and divergence of the simians, compared with
the prosimians. The greater endogenization of some ret-
roviruses in simians compared with prosimians [56] may
also have played a part. These events may also explain
the larger genome size of the simians compared with
prosimians [57].
A significant feature of Alus is their dimeric structure,

involving a fusion of two slightly dissimilar arms [58].

Table 4 Specific examples of transposable elements (TEs) implicated in primate-specific traits: reproduction and devel-
opment (Continued)

Placental
growth
hormone
secretion

GH Placental growth
hormone

Alu Simian Duplication Novel
genes

Placenta Passive De Mendoza
et al., 2004
[88]

Chr19
miRNAs

Unknown Alu Simian Duplication Novel
genes

Placenta Passive Zhang et al.,
2008 [144]

Enhanced
immune
tolerance at
fetal-maternal
interface

LGALS13/
14/16

Carbohydrate
recognition/immune
regulation

LINE-1 Simian Duplication Novel
genes

Placenta Passive Than et al.,
2009 [145]

Efficient
placental gas
exchange

HBG2 Fetal oxygen
transport

LINE-1 Simian Duplication Novel
gene

Fetal Passive Fitch et al.,
1991 [90]

a > = Maximum known distribution.
bERV = endogenous retrovirus
cLTR = long terminal repeat
dLINE = long interspersed nuclear element
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Table 5 Specific examples of transposable elements (TEs) implicated in primate-specific traits: immune defence

TE generated trait Gene
affected

Gene function TE
responsible

Distributiona Type of event Effect Tissue
expression

Type
of TE-
Thrust

Reference

Soluble CD55 CD55 Complement
regulation

Alu >Human Exonization Novel isoform Various Active Caras et
al., 1987
[146]

Intracellular TNFR P75TNFR Tumour necrosis
factor receptor

Alu Old World
primate

Exonization Novel isoform Various Active Singer et
al., 2004
[147]

Altered infectious-
disease resistance?

IRGM Intracellular
pathogen resistance

ERVb Afr. Great
Ape

Regulatory Major
promoter

Various Active Bekpen et
al., 2009
[148]

Altered infectious-
disease resistance?

IL29 Antiviral cytokine Alu/LTRc >Human Regulatory Positive
regulation

Dendritic
cells, epithelial
cells

Active Thomson
et al., 2009
[149]

FCER1G IgE/IgG Fc receptor/
T cell antigen
receptor

Alu Ape Regulatory Positive/
negative
regulation

T cells,
basophils

Active Brini et al.,
1993 [150]

CD8A T cell interaction
with class I MHC

Alu Ape Regulatory Tissue-specific
enhancer

T cells Active Hambor et
al., 1993
[151]

Red cell ABH antigen
expression

FUT1 Fucosyltransferase Alu Ape Regulatory Alternative
promoter

Erythrocytes Active Apoil et
al., 2000
[96]

TMPRSS3 Membrane serine
protease

Alu/LTR >Human Regulatory Alternative
promoter

Peripheral
blood
leukocytes

Active van de
Lagemaat
et al., 2003
[73]

Colon Le antigen
expression

B3GALT5 Galactosyltransferase ERV Old World
primate

Regulatory Alternative
promoter

Colon, small
intestine,
breast

Active Dunn et
al., 2003
[152]

Prolactin potentiation
of the adaptive
immune response

PRL Regulation of
lactation and
reproduction

ERV Old World
primate

Regulatory Alternative
promoter

Lymphocytes,
endometrium

Active Gerlo et
al., 2006
[153]

ST6GAL1 Sialyltransferase ERV >Human Regulatory Alternative
promoter

B
lymphocytes

Active van de
Lagemaat
et al., 2003
[73]

Vitamin D regulation of
cathelicidin
antimicrobial peptide
gene

CAMP Antimicrobial
peptide

Alu Simian Regulatory Vitamin D
responsiveness

Myeloid cells,
various

Active Gombart
et al., 2009
[98]

MPO Myeloperoxidase/
microbicidal
enzyme

Alu >Human Regulatory Thyroid
hormone/
retinoic acid
responsiveness

Myeloid cells Active Piedrafita
et al., 1996
[154]

Altered infectious-
disease resistance?

IFNG Antiviral/
immunoregulatory
factor

Alu Old World
primate

Retrotransposition Novel positive
regulatory
element

Natural killer
cells, T cells

Active Ackerman
et al., 2002
[155]

Absence of N-
glycolylneuraminic
acid/altered infectious-
disease resistance?

CMAH N-
glycolylneuraminic
acid synthesis

Alu Human Gene disruption Gene loss Various Active Hayakawa
et al., 2001
[104]

IRGM Intracellular
pathogen resistance

Alu Old and New
World
monkey

Gene disruption Gene loss Various Active Bekpen et
al., 2009
[148]

Altered malaria
resistance?

HBA2 Oxygen transport Alu >Ape Duplication Novel gene Erythrocytes Passive Hess et al.,
1983 [156]

a > = Maximum known distribution.
bERV = endogenous retrovirus
cLTR = long terminal repeat
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Table 6 Specific Examples of transposable elements (TEs) implicated in primate-specific traits: metabolic and other

TE generated
trait

Gene
affected

Gene
function

TE
responsible

Distributiona Type of event Effect Tissue
expression

Type
of TE-
Thrust

Reference

RNF19A Ubiquitin
ligase

Alu > Human Exonization Novel isoform Various Active Huh et al.,
2008 [157]

BCL2L11 Pro-apoptotic Alu > Human Exonization Novel isoform Various Active Wu et al.,
2007 [158]

BCL2L13 Pro-apoptotic Alu > Human Exonization Novel isoform Various
(cytosolic
instead of
mitochondrial)

Active Yi et al.,
2003 [159]

SFTPB Pulmonary
surfactant

Alu/ERVb Primate Exonization Novel isoform Various Active Lee et al.,
2009 [160]

Efficiency of
ZNF177
transcription and
translation

ZNF177 Transcriptional
regulator

Alu/LINE-1c/
ERV

> Human Exonization Novel isoform Various Active Landry et
al., 2001
[161]

Production of
salivary amylase

AMY1s Starch
digestion

ERV Old World
primate

Regulatory Major
promoter

Salivary gland Active Ting et al.,
1992 [99]

BAAT Bile
metabolism

ERV > Human Regulatory Major
promoter

Liver Active van de
Lagemaat
et al., 2003
[73]

CETP Cholesterol
metabolism

Alu > Human Regulatory Negative
regulation

Liver Active Le Goff et
al., 2003
[162]

Absence of
FMO1 in adult
liver/altered drug
metabolism?

FMO1 Xenobiotic
metabolism

LINE-1 > Human Regulatory Negative
regulation in
liver

Kidney Active Shephard
et al., 2007
[163]

RNF19A Ubiquitin
ligase

LTRd > Human Regulatory Alternative
promoter

Various Active Huh et al.,
2008 [157]

APOC1 Lipid
metabolism

ERV Ape Regulatory Alternative
promoter

Various Active Medstrand
et al., 2001
[134]

KRT18 Epithelial
keratin

Alu > Human Regulatory Retinoic acid
responsiveness

Various Active Vansant
and
Reynolds,
1995 [77]

PTH Parathyroid
hormone

Alu > Old World
primate

Regulatory Negative
calcium
responsiveness

Parathyroid
gland

Active McHaffie
and
Ralston,
1995 [164]

PRKACG cAMP
signalling/
regulation of
metabolism

Unknown > Old World
primate

Retrotransposition Novel gene Various Active Reinton et
al., 1998
[165]

NBR2 Unknown Alu Old World
primate

Duplication Novel gene Various Passive Jin et al.,
2004 [166]

LRRC37A Unknown Alu Old World
primate

Duplication Novel genes Various Passive Jin et al.,
2004 [166]

ARF2 GTPase/vesicle
trafficking

Alu Great ape Inversion Novel fusion
gene

Various Passive Jin et al.,
2004 [166]

Altered arterial
wall function?

ELN Elastin Alu > Old World
primate/
human

Deletion Exon losses Various Passive Szabo et
al., 1999
[167]

Low body mass? ASIP Energy
metabolism/
pigmentation

Alu Lesser ape
(gibbon)

Deletion Gene loss Various Passive Nakayama
and Ishida,
2006 [101]

a > = Maximum known distribution.
bERV = endogenous retrovirus
cLINE = long interspersed nuclear element
dLTR = long terminal repeat
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This added length and complexity seems to increase
their effectiveness as a reservoir of evolutionarily useful
DNA sequence or as an inducer of ectopic recombina-
tion. It may therefore be no coincidence that simian
genomes are well endowed with dimeric Alus. Viable
SINEs in the less fecund and less evolutionary innova-
tive prosimians are heterogeneous, and include the con-
ventional dimeric Alu, Alu-like monomers, Alu/tRNA
dimers and tRNA SINEs [59]. This distinctly contrasts
with simian SINEs; in simians, viable SINEs are almost
entirely dimeric Alus. Thus, both qualitatively and quan-
titatively, the Alu dimer seems to represent a key exam-
ple of the power of a SINE to strongly influence
evolutionary trajectory.
Although these coincident events cannot, by them-

selves, be a clear indication of cause and effect, distinct
Alu subfamilies (AluJ, AluS, AluY) correlate with the
divergence of simian lineages [38,39]. Whereas the AluJ
subfamily was active about 65 Mya when the separation
and divergence between the simians and the prosimians
occurred, the AluS subfamily was active beginning at
about 45 Mya, when the Old World monkey prolifera-
tion occurred, followed by a surge in AluY activity and
expansion beginning about 30 Mya, contemporaneous
with the split between apes and Old World monkeys
[38,39]. Thus, periodic expansions of Alu subfamilies in
particular seem to correspond temporally with major
divergence points in primate evolution. More recent Alu
activity may be a factor in the divergence of the human
and chimpanzee lineages, with Alus having been three
times more active in humans than in chimpanzees
[40,60]. Moreover, at least two new Alu subfamilies
(AluYa5 and AluYb8) have amplified specifically within
the human genome since the human-chimpanzee split
[40,60,61].
Passive TE-Thrust mediated by the Alu/L1 pair has

also been evident as a force contributing to lineage
divergence in the primates. Ectopic recombinations
between Alus, in particular, are a frequent cause of line-
age-specific deletion, duplication or rearrangement.
Comparisons between the human and chimpanzee gen-
omes have revealed the extent to which they have pas-
sively exerted their effects in the relatively recent
evolutionary history of primates. An examination of
human-specific Alu recombination-mediated deletion
(ARMD) identified 492 ARMD events responsible for
the loss of about 400 kb of sequence in the human gen-
ome [62]. Likewise, Han et al. [63] reported 663 chim-
panzee-specific ARMD events, deleting about 771 kb of
genomic sequence, including exonic sequences in six
genes. Both studies suggested that ARMD events may
have contributed to the genomic and phenotypic diver-
sity between chimpanzees and humans. L1-mediated
recombination also seems to be a factor in primate

evolution, with Han et al. [64] reporting 50 L1-mediated
deletion events in the human and chimpanzee genomes.
The observed high enrichment of TEs such as Alu at
low-copy-repeat junctions indicates that TEs have been
an important factor in the generation of segmental
duplications that are uniquely abundant in primate gen-
omes [39]. Such genomic duplications provide a major
avenue for genetic innovation by allowing the functional
specialization of coding or regulatory sequences. Karyo-
typic changes are thought to be an important factor in
speciation [65]. Major differences between the human
and chimpanzee genomes include nine pericentric inver-
sions, and these have also been linked to TE-mediated
recombination events [66]. It thus seems that both the
active and passive effects of Alu and L1 have greatly
facilitated and influenced the trajectory of simian evolu-
tion by TE-Thrust. Transfer RNA-type SINEs, with sui-
table partner LINEs, probably perform this role in other
lineages.

TE-Thrust affects evolutionary trajectory by
engineering lineage-specific traits
TEs can act to generate genetic novelties and thus speci-
fic phenotypic traits in numerous ways. Besides passively
promoting exon, gene or segmental duplications (or
deletions) by unequal recombination, or by disruption of
genes via insertion, TEs can actively contribute to gene
structure or regulation via exaptation. On multiple occa-
sions, TEs have been domesticated to provide the raw
material for entire genes or novel gene fusions [11].
More frequently, TEs have contributed partially to indi-
vidual genes through exonization after acquisition of
splice sites [67,68]. Independent exons generated by TEs
are often alternatively spliced, and thereby result in
novel expressed isoforms that increase the size of the
transcriptome [69]. The generation of novel gene
sequences during evolution seems to be heavily out-
weighed by genetic or epigenetic changes in the tran-
scriptional regulation of pre-existing genes [34,70].
Consistent with this, much evidence indicates that a
major way in which TEs have acted to functionally mod-
ify primate genomes is by actively inserting novel regu-
latory elements adjacent to genes, thus silencing or
enhancing expression levels or changing expression pat-
terns, often in a tissue-specific manner [71-73]. More-
over, because they are highly repetitious and scattered,
TEs have the capacity to affect gene expression on a
genome-wide scale by acting as distributors of regula-
tory sequences or CpG islands in a modular form [74].
Many functional binding sites of developmentally impor-
tant transcription factors have been found to reside on
Alu repeats [75]. These include oestrogen receptor-
dependent enhancer elements [76] and retinoic acid
response elements, which seem to have been seeded
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next to retinoic acid target genes throughout the pri-
mate genome by the AluS subfamily [77]. As a conse-
quence, TEs are able to contribute significantly to the
species-specific rewiring of mammalian transcriptional
regulatory networks during pre-implantation embryonic
development [78]. Similarly, primate-specific ERVs have
been implicated in shaping the human p53 transcrip-
tional network [79] and rewiring the core regulatory
network of human embryonic stem cells [80].
Certain classes of retro-TEs can actively generate

genetic novelty using their retrotranspositional mechan-
ism to partially or fully duplicate existing cellular genes.
Duplication is a crucial aspect of evolution, which has
been particularly important in vertebrates, and constitu-
tes the primary means by which organisms evolve new
genes [81]. LINEs and SVAs have a propensity to trans-
duce host DNA due to their weak transcriptional termi-
nation sites, so that 3’ flanking regions are often
included in their transcripts. This can lead to gene
duplication, exon shuffling or regulatory-element seed-
ing, depending on the nature of the sequence involved
[37,82,83]. Duplication of genes can also occur via the
retrotransposition of mRNA transcripts by LINEs. Such
genes are termed retrocopies, which, after subsequent
useful mutation, can sometimes evolve into retrogenes,
with a new, related function. There are reportedly over
one thousand transcribed retrogenes in the human gen-
ome [84], with about one new retrogene per million
years having emerged in the human lineage during the
past 63 Myr [26]. Some primate retrogenes seem to
have evolved highly beneficial functions, such as GLUD2
[37].

Specific evidence for TE-Thrust: examples of traits
engineered by TEs in the higher primates
TEs seem to have heavily influenced the trajectories of
primate evolution and contributed to primate character-
istics, as the simians in particular have undergone major
evolutionary advancements in cognitive ability and phy-
siology (especially reproductive physiology). The
advancement and radiation of the simians seems to be
due, in part and all else being equal, to exceptionally
powerful TE-Thrust, owing to its especially effective Alu
dimer, partnered by very active novel L1 families, sup-
plemented by ERVs and LTRs. These have engineered
major changes in the genomes of the lineage(s) leading
to the simian radiations and major transitions. We iden-
tified more than 100 documented instances in which
TEs affected individual genes and thus were apparently
implicated at a molecular level in the origin of higher
primate-specific traits (Table 3; Table 4; Table 5; Table
6). The Alu SINE dominated, being responsible for
nearly half of these cases, with ERVs/sLTRs being
responsible for a third, followed by L1-LINEs at 15%

(Figure 1A). Just 2% were due to the young SVAs, and
1% each to ancient MIR SINEs and DNA-TEs. More
than half the observed changes wrought by TEs were
regulatory (Figure 1B). As discussed below, TEs seem to
have influenced four main aspects of the primate pheno-
type: brain and sensory function, reproductive physiol-
ogy, immune defence, and metabolic/other (Figure 1C
and Table 3; Table 4; Table 5; Table 6). Notably, ERVs,
which are often highly transcribed in the germline and
placenta [85], were strongly associated with reproductive
traits, whereas Alus influenced these four aspects almost
equally (Figure 2).

Brain and sensory function
The large brain, advanced cognition and enhanced col-
our vision of higher primates are distinct from those of
other mammals. The molecular basis of these character-
istics remains to be fully defined, but from evidence
already available, TEs (particularly Alus) seem to have
contributed substantially via the origination of novel
genes and gene isoforms, or via altered gene transcrip-
tion (Table 3). Most of the neuronal genes affected by
TEs are restricted to the apes, and they seem to have
roles in synaptic function and plasticity, and hence
learning and memory. These genes include multiple
neurotransmitter receptor genes and glutamate dehydro-
genase 2 (GLUD2), a retrocopy of GLUD1 that has
acquired crucial point mutations. GLUD2 encodes gluta-
mate dehydrogenase, an enzyme that seems to have
increased the cognitive powers of the apes through the
enhancement of neurotransmitter recycling [37]. The
cell cycle-related kinase (CCRK) gene represents a good
example of how the epigenetic modification of TEs can
be mechanistically linked to the transcriptional regula-
tion of nearby genes [86]. In simians, this gene possesses
regulatory CpGs contained within a repressor Alu ele-
ment, and these CpGs are more methylated in the cere-
bral cortex of human compared with chimpanzee.
Concordantly, CCRK is expressed at higher levels in the
human brain [86]. TEs may also affect the brain at a
somatic level, because embryonic neural progenitor cells
have been found to be permissive to L1 activity in
humans [87]. This potentially provides a mechanism for
increasing neural diversity and individuality. As our
human lineage benefits from a diversity of additional
individual talents, as well as shared talents, this phe-
nomenon, if confirmed, could increase the ‘fitness’ of
the human lineage, and is entirely consistent with the
concept of differential survival of lineages, as stated in
our TE-Thrust hypothesis.
The trichromatic vision of Old World monkeys and

apes immensely enhanced their ability to find fruits and
other foods, and probably aided them in group identity.
This trait evidently had its origin in an Alu-mediated
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gene-duplication event that occurred about 40 Mya, and
subsequently resulted in two separate cone photorecep-
tor (opsin) genes [36], the tandem OPN1LW and
OPN1MW, which are sensitive to long- and medium-
wave light respectively. Other mammals possess only
dichromatic vision.

Reproductive physiology
Compared with other mammals, simian reproduction is
characterized by relatively long gestation periods and by
the existence of a hemochorial-type placenta that has
evolved additional refinements to ensure efficient fetal
nourishment. Available data suggests that TE-Thrust
has contributed much of the uniqueness of the higher
primate placenta, which seems to be more invasive than
that of other mammals, and releases a large number of
factors that modify maternal metabolism during preg-
nancy. These characteristics appear to be due to the
generation of novel placenta genes and to various TEs
having been exapted as regulatory elements to expand
or enhance the expression of pre-existing mammalian
genes in the primate placenta (Table 4). The growth
hormone (GH) gene locus is particularly notable for
having undergone rapid evolution in the higher primates
compared with most other mammals. A crucial aspect
of this evolutionary advance was a burst of gene-dupli-
cation events in which Alu-mediated recombination is
implicated as a driving force [88]. The simians thus pos-
sess between five and eight GH gene copies, and these
show functional specialization, being expressed in the

placenta, in which they are thought to influence fetal
access to maternal resources during pregnancy [88,89].
Longer gestation periods in simians were accompanied
by adaptations to ensure an adequate oxygen supply.
One key event was an L1-mediated duplication of the
HBG globin gene in the lineage leading to the higher
primates, which generated HBG1 and HBG2 [90]. HBG2
subsequently acquired expression specifically in the
simian fetus, in which it ensures the high oxygen affinity
of fetal blood for more efficient oxygen transfer across
the placenta. Old World primates additionally express
HBG1 in the fetus, owing to an independent LINE inser-
tion at the beta globin locus [91]. Thus, the important
process of placental gas exchange has been extensively
improved by TEs in simians, in contrast to that of many
mammals, including prosimians, in which fetal and
adult haemoglobins are the same.
Two prominent examples of functionally exapted

genes whose sequences are entirely TE-derived are syn-
cytin-1 (ERVWE1) and syncytin-2 (ERVWE2). Both of
these primate-specific genes are derived from ERV
envelope (env) genes [92,93]. The syncytins play a cru-
cial role in simian placental morphogenesis by mediating
the development of the fetomaternal interface, which
has a fundamental role in allowing the adequate
exchange of nutrients and other factors between the
maternal bloodstream and the fetus. In a remarkable
example of convergent evolution, which attests to the
importance of this innovation, two ERV env genes, syn-
cytin-A and syncytin-B, independently emerged in the

A.

Brain/
sensory

Reproduction/
developmentImmune

defense

Metabolic/
other

B.
Brain/sensory

Reproduction/
development

Immune
defense

Metabolic/
other

(23%)

(23%)
(27%)

(27%)

(64%)

(17%)

(17%)

(3%)

Figure 2 Comparison of aspects of primate phenotype affected by (A) Alu elements and (B) LTR/ERVs. Based on the published data
shown in Tables 3 to 6.

Oliver and Greene Mobile DNA 2011, 2:8
http://www.mobilednajournal.com/content/2/1/8

Page 12 of 17



rodent lineage about 20 Mya [94], as did syncytin-Ory1
within the lagomorphs 12-30 Mya, and these exhibit
functional characteristics analogous to the primate syn-
cytin genes [95]. This example, as well as many others
(Table 3; Table 4; Table 5; Table 6) suggests the possibi-
lity that TE-Thrust may be an important factor in con-
vergent evolution, a phenomenon that can be difficult to
explain by traditional theories.

Immune defence
Immune-related genes were probably crucial to the pri-
mate lineage by affording protection from potentially
lethal infectious diseases. TEs have been reported to
contribute to higher primate-restricted transcripts, or to
the expression of a wide variety of immunologically rele-
vant genes (Table 5). One example is the insertion of an
AluY element into intron 1 of the fucosyltransferase
(FUT)1 gene in an ancestor of humans and apes. This
enabled erythrocytic expression of FUT1, and thus the
ABO blood antigens [96], an adaptation linked to the
selective pressure by malarial infection [97]. A particu-
larly good example of a primate-specific adaptation that
can be accounted for by a TE is the regulation of the
cathelicidin antimicrobial peptide (CAMP) gene by the
vitamin D pathway. Only simians possess a functional
vitamin D response element in the promoter of this
gene, which is derived from the insertion of an AluSx
element. This genetic alteration enhances the innate
immune response of simians to infection, and potentially
counteracts the anti-inflammatory properties of vitamin
D [98].

Metabolic/other
TEs seem to underlie a variety of other primate adapta-
tions, particularly those associated with metabolism
(Table 6). A striking example, related to dietary change,
was the switching of the expression of certain a-amylase
genes (AMY1A, AMY1B and AMY1C) from the pancreas
to the salivary glands of Old World primates. This
event, which was caused by the genomic insertion of an
ERV acting as a tissue-specific promoter [99], facilitated
the utilization of a higher starch diet in some Old
World primates. This included the human lineage, in
which consumption of starch became increasingly
important, as evidenced by the average human having
about three times more AMY1 gene copies than chim-
panzees [100]. Another example was the loss of a 100
kb genomic region in the gibbons, due to homologous
recombination between AluSx sites [101], resulting in
gibbons lacking the ASIP gene involved in the regulation
of energy metabolism and pigmentation, which may help
to account for their distinctive low body mass, so bene-
ficial for these highly active arboreal primates.

TE-Thrust and divergence of the human lineage
Human and chimpanzee genomes exhibit discernable
differences in terms of TE repertoire, TE activity and
TE-mediated recombination events [21,40,54,60-64].
Thus, although nucleotide substitutions to crucial genes
are important [31], TE-Thrust is likely to have made a
significant contribution to the relatively recent diver-
gence of the human lineage [102,103]. In support of
this, at least eight of the examples listed (Table 3; Table
4; Table 5; Table 6) are unique to humans. A notable
example of a human-specific TE-mediated genomic
mutation was the disruption of the CMAH gene, which
is involved in the synthesis of a common sialic acid
(Neu5Gc), by an AluY element over 2 Mya [104]. This
may have conferred on human ancestors a survival
advantage by decreasing infectious risk from microbial
pathogens known to prefer Neu5Gc as a receptor.

Conclusions
A role for TEs in evolution has long been recognized by
many, yet its importance has probably been underesti-
mated. Using primates as exemplar lineages, we have
assessed specific evidence, and conclude that it points
strongly to an instrumental role for TEs, via TE-Thrust,
in engineering the divergence of the simian lineage from
other mammalian lineages. TEs, particularly Alu SINEs,
have essentially acted as a huge primate-restricted stock-
pile of potential exons and regulatory regions, and
thereby have provided the raw material for these evolu-
tionary transitions. TEs, including Alu SINEs, L1 LINEs,
ERVs and LTRs have, through active TE-Thrust, con-
tributed directly to the primate transcriptome, and even
more significantly by providing regulatory elements to
alter gene expression patterns. Via passive TE-Thrust,
homologous Alu and L1 elements scattered throughout
the simian genome have led to both genomic gain, in
the form of segmental and gene duplications, and geno-
mic loss, by promoting unequal recombination events.
Collectively, these events seem to have heavily influ-
enced the trajectories of primate evolution and contrib-
uted to characteristic primate traits, as the simian clades
especially have undergone major evolutionary advance-
ments in cognitive ability and physiology. Although as
yet incompletely documented, the evidence presented
here supports the hypothesis that TE-Thrust may be a
pushing force for numerous advantageous features of
higher primates. These very beneficial features appar-
ently include enhanced brain function, superior fetal
nourishment, valuable trichromatic colour vision,
improved metabolism, and resistance to infectious-dis-
ease agents. Such large evolutionary benefits to various
primate clades, brought about by various TE repertories,
powerfully demonstrate that if TEs are ‘junk’ DNA then
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there is indeed much treasure in the junkyard, and that
the TE-Thrust hypothesis could become an important
part of some future paradigm shift in evolutionary
theory.
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