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Abstract 

Background  Repeat elements (REs) play important roles for cell function in health and disease. However, RE enrich-
ment analysis in short-read high-throughput sequencing (HTS) data, such as ChIP-seq, is a challenging task.

Results  Here, we present RepEnTools, a software package for genome-wide RE enrichment analysis of ChIP-seq 
and similar chromatin pulldown experiments. Our analysis package bundles together various software with carefully 
chosen and validated settings to provide a complete solution for RE analysis, starting from raw input files to tabular 
and graphical outputs. RepEnTools implementations are easily accessible even with minimal IT skills (Galaxy/UNIX). To 
demonstrate the performance of RepEnTools, we analysed chromatin pulldown data by the human UHRF1 TTD pro-
tein domain and discovered enrichment of TTD binding on young primate and hominid specific polymorphic repeats 
(SVA, L1PA1/L1HS) overlapping known enhancers and decorated with H3K4me1-K9me2/3 modifications. We cor-
roborated these new bioinformatic findings with experimental data by qPCR assays using newly developed primate 
and hominid specific qPCR assays which complement similar research tools. Finally, we analysed mouse UHRF1 ChIP-
seq data with RepEnTools and showed that the endogenous mUHRF1 protein colocalizes with H3K4me1-H3K9me3 
on promoters of REs which were silenced by UHRF1. These new data suggest a functional role for UHRF1 in silencing 
of REs that is mediated by TTD binding to the H3K4me1-K9me3 double mark and conserved in two mammalian 
species.

Conclusions  RepEnTools improves the previously available programmes for RE enrichment analysis in chromatin 
pulldown studies by leveraging new tools, enhancing accessibility and adding some key functions. RepEnTools can 
analyse RE enrichment rapidly, efficiently, and accurately, providing the community with an up-to-date, reliable 
and accessible tool for this important type of analysis.
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Background
Chromatin immunoprecipitation followed by high-
throughput sequencing (ChIP-seq) is a popular and very 
powerful technique to identify DNA sequences and the 
corresponding genomic loci that interact with a protein 
and/or carry specific post-translational modifications 
(PTM) of chromatin associated proteins (Fig.  1A). This 
experimental approach comes in many different flavours 
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and has spawned numerous protocols, including CIDOP 
(Chromatin Interacting Domain Precipitation) [1]. This 
employs a histone modification interacting domain 
(HiMID) fused to an affinity tag to capture native mon-
onucleosomes carrying a specific histone PTM. From 
these enriched nucleosomes, the DNA sequences are 
detected using short-read sequencing, typically Illumina, 
creating FASTQ files for bioinformatic analysis.

A principal step in the bioinformatic analysis of these 
experiments is matching the DNA sequences detected 
in the experimental pulldown samples or input (reads) 
to a reference genome assembly. The advent of the first 
gapless telomere-to-telomere (T2T) human assembly 

(chm13v2.0) marks the current pinnacle in linear assem-
blies, providing a scaffold that contains essentially all 
DNA sequences from a haploid hydatidiform mole and 
the Y-chromosome from another source [2, 3]. This led 
to an addition of 8% more sequences to the human refer-
ence sequence, which can have a big impact on ChIP-seq 
analysis of histone PTMs [4].

Analysis of typical ChIP-seq data from heterochro-
matin and the associated repeat elements (REs) poses 
many challenges, suffering from both the low relative 
abundance of heterochromatin in the solubilized chro-
matin used as starting material [5], as well as techni-
cal challenges and issues in bioinformatic processing, as 

Fig. 1  RepEnTools is an automated repeat enrichment analysis package for ChIP-seq data. A In chromatin immunoprecipitation followed 
by sequencing (ChIP-seq) experiments chromatin is isolated and fragmented, by sonication or MNase treatment. The nucleosomes still carry 
the DNA sequence information. Affinity reagents such as antibodies or chromatin interacting protein domains are then used to retain specific 
targets while the rest of the chromatin is washed away. The enriched DNA fragments are then isolated and sequenced, typically using the Illumina 
platform. As a control, an equal amount of the input chromatin is also sequenced. The FASTQ files generated contain these DNA sequences. B 
RepEnTools is an automated repeat enrichment analysis package for ChIP-seq data. It takes as input the FASTQ files from two replicates of ChIP-seq 
and the respective input chromatin datasets, trims adapters, runs QC, and aligns the sequences to chm13v2, the first complete human genome 
assembly. The optimised settings result in rapid and low-cost alignments, while efficiency and quality are comparable to other popular software. 
The repeat masker (RMSK) annotation is then used to identify and count reads on individual instances of repeat elements (REs) genome-wide, 
summing them up for each type of RE. The data for all experimental replicates are then collected, normalised, compared to input for enrichment 
or depletion, analysed for reproducibility, and reported in tables. At the end, a volcano plot of significance log10(p) versus fold-change log2(ChIP/
input) and bar diagrams of enrichment (ChIP/input) for the RE families visualise the enrichments and the depletions of RE types
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their repetitive nature causes trouble in finding optimal 
matches for the detected sequences (reads) on the refer-
ence assembly and in assigning them to “unique” coor-
dinates. At the same time, the assemblies do not always 
fully represent the underlying complexity, as shown in 
chm13v2.0 and the Human Pangenome [2, 3, 6, 7], with 
mounting evidence of sequence exchanges, duplication 
and evolution in certain genomic areas [6, 8, 9]. This is 
of particular concern for elements prone to polymor-
phism, such as evolutionary young repeats, centromeres, 
etc. which were found to vary among individual human 
donors [10–14]. These points demonstrate that typi-
cal ChIP-seq workflows are suboptimal to analyse such 
regions [4, 13–15].

In the past, a number of tools and specialised meth-
ods for RE enrichment analysis have been developed to 
address some of these issues [16–18], which have been 
described in a thorough review of the computational 
resources for RE analysis [19]. Additional resources can 
also be found on TEhub.org [20]. However, based on the 
current state of technology, it is possible to improve upon 
the previously available programmes for RE enrichment 
analysis by leveraging new tools, enhancing accessibil-
ity and user friendliness, and adding some key functions. 
To this end, we created RepEnTools, a RE enrichment 
analysis package for ChIP-seq and similar experiments. 
The programme is designed to use FASTQ files from two 
replicates of ChIP-like chromatin pulldown experiments 
and their respective fragmented input chromatin to trim, 
map, and analyse the pulldown data, and report the sta-
tistically reproducible enrichments in RE groupings 
(Fig. 1B). RepEnTools is fast, efficient and accurate, with 
readily comprehensible steps and bias reduction strate-
gies. It can be implemented with minimal (UNIX version) 
or even zero programming skills (Galaxy workflows).

UHRF1 (Ubiquitin like with PHD And Ring Finger 
Domains 1) is a multidomain protein comprising a Ubiq-
uitin-Like domain (UBL), Tandem-Tudor domain (TTD), 
Plant Homeodomain (PHD), SET- and RING-associated 
(SRA) domain, and Really Interesting New Gene (RING) 
domain. UHRF1 stands at the center of several epige-
netic processes, including DNA methylation and gene 
expression regulation [21, 22]. It is a known reader of 
H3K9me2/3, via the TTD [23, 24], interacts with vari-
ous chromatin associated proteins, and accumulates on 
H3K9me2/3 foci of pericentric heterochromatin of inter-
phase nuclei [25]. Recently, we investigated genome-wide 
binding of hUHRF1-TTD using CIDOP-seq, and focus-
ing on well-resolved (non-blacklisted) regions of the hg38 
assembly, we demonstrated highly preferential enrich-
ment in nucleosomes carrying H3K4me1-K9me2/3 [26]. 
However, this work did not address possible binding of 
UHRF1 in heterochromatin, as the repetitive nature 

and the low coverage in typical ChIP-seq data made the 
enrichment analysis challenging.

Here, we demonstrate that the newly devel-
oped  RepEnTools analysis package  is fast, efficient, and 
accurate, i.e. suitable for multi-sample repeat enrich-
ment analysis of UHRF1 TTD CIDOP-seq data. 
Using RepEnTools we discover binding of human UHRF1-
TTD  in evolutionary young primate and hominid spe-
cific, polymorphic REs (SVAs and L1PA1/L1HS) and 
detected mouse endogenous full-length UHRF1 at young 
mouse specific RE loci (IAPLTRs and IAPEz). We corrob-
orate these results experimentally by targeted  CIDOP-
qPCR for human TTD. With RepEnTools, we provide 
the programme package and the necessary files for 
implementation in human chm13v2.0 and mouse mm39 
including scripts for automated installation and use 
(UNIX version) or as Galaxy workflows with an accom-
panying platform independent spreadsheet. This enables 
the research community to conduct high-throughput 
repeat element enrichment analysis of ChIP-seq data 
with ease and high efficiency.

Results and discussion
Development of RepEnTools
Inspired by previous works [16–18] and the latest inno-
vations in bioinformatics and genomics, we developed 
RepEnTools aiming to further develop previously estab-
lished methods for repeat element (RE) enrichment 
analyses (Table  1). The central idea, first presented in 
the seminal Repeat Enrichment Estimator [16], is to align 
HTS  sequencing reads from pulldown experiments to 
a genome assembly with RE annotation. The annota-
tion contains information on the specific types of REs, 
and their higher-order classification. Then, reads on REs 
are counted and summed by RE type, subfamily, family 
as appropriate. Finally, comparison to expected abun-
dance reveals enrichments and depletions (Fig. 1B). Later 
developments provided an updated and more accessible 
solution for this type of analysis [17], and looked into 
the details that constitute best practices to analyse RE 
enrichment [18]. However, in recent years, significant 
progress in sequencing technologies and data processing 
have given us much improved means to conduct this type 
of bioinformatic research. The usage of new tools and 
meticulously validated details of implementation grant 
to RepEnTools unique features in RE enrichment analysis. 
Prime among them is the use of HISAT2, a graph aligner 
capable of handling SNPs and small InDels in an efficient 
manner [27], and the use of chm13v2.0, a gapless tel-
omer-to-telomer (T2T) human genome assembly [2, 3], 
allowing for analysis of repeat masker (RMSK, developed 
by A.F.A. Smit, R. Hubley, and P. Green; see repeatmas-
ker.org) annotated regions [13] (Table 1). Comparison to 
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input is implemented for bias reduction, while usage of 
two experimental replicates allows to determine statis-
tics on enrichment and depletion in a clear and easy to 
interpret manner. Finally, the entire analysis package can 
be comprehensively installed and executed in a UNIX 
environment or on public Galaxy servers followed by 
data analysis in Excel spreadsheets, drastically increasing 
accessibility of RE enrichment analyses.

New UNIX users can retrieve RepEnTools as a zipped 
archive (github.com/PavelBashtrykov/RepEnTools) and 
use the installation commands to automatically retrieve, 
install and set-up all required software (Fig. 2A), followed 
by the necessary files for use with chm13v2. To smoothly 
deploy all the components of RepEnTools with their dif-
ferent dependencies, we chose the elegant solution of  
individual miniconda3 environments (repo.anaconda.
com/miniconda). All functions are performed by custom-
made bash and python scripts. The ~ $ ret script regulates 
the conda environments, the bioinformatics packages 
that RepEnTools uses, the Python scripts written specifi-
cally for RepEnTools, and all subsequent steps. To vali-
date the set-up, RepEnTools can be run in demonstration 
mode with reduced size datasets from two replicates.

The RepEnTools analysis starts with the raw FASTQ 
files obtained from sequencing of the ChIP-seq (or 
CIDOP-seq) and input libraries. These are first quality- 
and adapter-trimmed using Trimmomatic, quality con-
trolled by FASTQC, and then aligned to chm13v2.0 using 

HISAT2 (Fig.  2B). The optimised HISAT2 settings (see 
Materials and Methods section) require an additional 
input of the maximum fragment size reliably observed in 
the specific ChIP-seq library, but a default value is pro-
vided as well (an example is shown in Additional file  1: 
Fig. S1). As reads from REs might be multi-mapping, 
meaning that they have multiple equally good matches 
to the reference assembly, one alignment from the group 
of the optimal ones is randomly assigned as the primary 
alignment and all others as secondary (Additional file 2: 
Text S1). Accurate, single counting of multi-mapping 
reads is achieved by the  exclusive use of primary align-
ments in all downstream analyses. Following literature 
recommendations [18], RepEnTools does not discriminate 
between “unique” and multi-mapping read alignments, 
as final counts are anyway summed up for each type of 
RE. The alignments are reported as BAM files and used 
as input for featureCounts [28] along with an adjusted 
Repeat Masker (RMSK) gtf file used for annotation of the 
known REs. The latter was generated from the BED12 
data available from the UCSC Table Browser [13, 29], 
and was adjusted to accurately reflect the correct coordi-
nates of the REs for analysis (Additional file 1: Fig. S2A). 
The featureCounts settings were optimised to accurately 
represent the counts of reads (Additional file 1: Fig. S2B). 
The output is a table that adds up the reads that aligned 
to REs across the many genome-wide instances of every 
repeat element type.

Table 1  Overview of key features of  the principal previous programmes for repeat enrichment analysis of ChIP-seq data and 
RepEnTools 

Repeat element (RE) enrichment analysis within short-read high-throughput sequencing (HTS) data, such as ChIP-seq, is a challenging task. In the past, certain 
publications paved the way for RE enrichment analysis [16–18]. RepEnTools substantially improves upon those programmes, using the landmark chm13v2.0 
(T2T) human assembly, the corresponding RMSK annotation, and an improved aligner. Normalisations, usage of input for enrichment analysis and usage of two 
experimental replicates for statistics on enrichment reproducibility reduce biases and put the data in meaningful context. RepEnTools comes as a complete analysis 
package that can be auto-installed in a UNIX environment or used on Galaxy servers. In either case, the only required input is to define the files to be used and the 
maximum fragment size for each FASTQ. The scripts incorporated in the UNIX implementation will then output all the necessary files, including tables and plots of 
enrichment. The Galaxy workflows we provide are supplemented by a spreadsheet to easily perform the table operations and generate the plots

Repeat Enrichment 
Estimator [16]

RepEnrich [17] Teissandier et al. [18] RepEnTools (This study)

Year 2010 2014 2019 2023

Genome hg18 & RE pseudo-genome hg19 & RE pseudo-genome Not reported chm13v2.0 (T2T)

Aligner Modified SeqMap & bwa Bowtie1 STAR​ HISAT2

RMSK annotation Standard & Repbase canoni-
cal & instances

Standard & instances Standard & LTR dictionary Adjusted standard

Normalisation to library size ✓ ✓ - ✓
Use of input Optional Manual option - ✓
Replicate analysis - manual option - ✓
Environment UNIX UNIX UNIX Galaxy/UNIX

Installation requirements Source code & dependen-
cies

Source code & individual 
programmes & dependen-
cies (conda)

Individual programmes & 
dependencies

None on public Galaxy serv-
ers, Auto-installer for individ-
ual programmes & dependen-
cies (UNIX)

raw FASTQ → plots - - - ✓



Page 5 of 24Choudalakis et al. Mobile DNA            (2024) 15:6 	

The genome-wide and coordinate-independent tabu-
lar summary of RE counts of each ChIP-seq experiment 
and its matching input are then subject to normalisa-
tions. First, we normalise to the library size (the sum 
of mapped primary reads), effectively normalising to 
sequencing depth, and thereby converting the summary 
counts over RE types to probabilities within the specific 
ChIP-seq dataset. A conceptually similar approach uses 
probability distributions for quantitative ChIP-seq, albeit 
in a significantly more complex manner [30]. Next, we 
use the normalised counts to calculate the ChIP over 
input ratio and determine enrichment or depletion  of 
specific RE groups. This step compensates for changes 

in experimental availability from mononucleosome gen-
eration, protocol effects including PCR amplification, as 
well as sequencing and software artefacts. Essentially, the 
input data serve as a baseline of RE representation in the 
starting material against which we can compare the pull-
down data and determine the magnitude of the enrich-
ment or depletion of REs in the sample pulldown. Finally, 
using data from two replicates, we calculate Z-scores 
and the p-value of enrichment or depletion, and for the 
summation tables of groupings (superfamilies, etc.) we 
normalise to the number of elements within the group. 
Some families contain particularly problematic elements, 
i.e. very short and/or elements with very low coverage. 

Fig. 2  RepEnTools has scripts for automated installation, data analysis and plotting figures for rapid RE enrichment analysis of ChIP-seq 
on the human chm13v2 genome assembly. A RepEnTools in UNIX contains scripts to easily install all components, retrieve all necessary data 
for analysis using the human chm13v2 genome assembly and also the option to run in demonstration mode. The demo mode RepEnTools dataset 
is a reduced-size (200K reads per file) version of the UHRF1-TTD CIDOP dataset (GSE213741) providing two biological replicates. B Simplified 
workflow of the automated repeat enrichment analysis by the RepEnTools ~ $ ret script in UNIX. The FASTQ files (yellow) of two biological replicates 
of ChIP-seq and corresponding Input chromatin must be provided by the user with standardised names, and RepEnTools provides the repeat 
masker (rmsk) file for chm13v2 (blue). The white boxes indicate the data processing steps. Our Python scripts for data analysis are in light orange, 
and the tabular outputs are in green. Each programme is run in an individual miniconda environment, managing the changing dependencies. 
The ~ $ ret script regulates the conda environments, the bioinformatics packages that RepEnTools uses, the Python scripts written specifically 
for RepEnTools, and all subsequent steps. See also Additional file 1: Fig. S2C. C RepEnTools in UNIX is rapidly installed, and ready for use on a new 
UNIX system. Analysis of a full-size dataset (comprising 2 CIDOP + 2 Input FASTQ files) was consistently completed in under 105 min, using 
commodity hardware. Testing was conducted on a 64-bit, Intel i5-6500 @ 3.2 GHz × 4 (2015), 16 GB RAM, 1TB HDD desktop running freshly installed 
Ubuntu 23.04 or Debian 12.2
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Low complexity, unknown, Simple repeats and t-RNA 
genes are prone to creating challenges for reliable enrich-
ment reports. These regions are included in the analysis 
but removed from the bar graphs. We recommend care-
ful evaluation of the data if their enrichment is taken into 
consideration. In the UNIX implementation, these cal-
culations and operations are performed by our Python 
script compute enrichment, whereas Galaxy users can 
use our step-by-step instructions to generate the same 
output (Fig.  2B). Our plot enrichment script produces 
the two most important visualisations, while on Galaxy 
the corresponding tool is called Volcano plot. A graphi-
cal description of the RepEnTools workflow for Galaxy is 
provided in Additional file 1: Fig. S2C. On UNIX, com-
prehensive installation, data retrieval and demo mode 
were consistently completed in < 20 min. Using commod-
ity hardware, RepEnTools consistently analysed a com-
plete set of full-size datasets (comprising 2 CIDOP + 2 
Input FASTQ files) in under 105 min (Fig. 2C). Step-by-
step instructions and additional information for UNIX 
users of different skill levels can be found on github, and 
corresponding resources are available for Galaxy users on 
figshare.

RepEnTools uses HISAT2 to rapidly align reads on a T2T 
assembly
The alignment software, the corresponding settings and 
the choice of the genomic assembly can greatly affect 
the computational costs of the alignment, the size of the 
output, and its quality. Given the impact these param-
eters can have on RE enrichment analysis, we carefully 
investigated the alignment using a variety of criteria. 
In RepEnTools, we utilise HISAT2 in optimised settings 
to map the trimmed, high-quality reads against the 
chm13v2 assembly. HISAT2 is one of the newest map-
ping software available, a particularly fast and effi-
cient de Bruijn graph aligner, able to handle SNPs and 
small InDels, with specialised subroutines and thereby 
efficiently handle repeat sequences [27]. RepEnTools-
HISAT2 represents the optimised settings of HISAT2 
used by RepEnTools with a defined maximum fragment 
length, suppression of spliced alignment, and improved 
randomisation of multimapping reads. In common prac-
tice, a number of aligners are used for ChIP-seq data. 
STAR​ is an aligner designed for RNA-seq [31], and rec-
ommended for RE enrichment analysis [18]. Bwa-aln/
backtrack is one of the first mapping software developed 
for HTS [32], with some specific advantages, but largely 
superseded by successors. Chief among them bwa-mem 
and bowtie2, inarguably the two most popular mappers in 
the field [33, 34]. A number of pre-set expert settings are 
available for bowtie2, adjusting sensitivity and computa-
tional cost.

To reflect standardised software implementations and 
routine use by average users, we conducted all operations 
on a public Galaxy server (usegalaxy.eu). Similarly, the 
choice of aligners, their default settings and optimisation 
thereof were restricted to those available by the Galaxy 
GUI, and the datasets analysed were the real experimen-
tal data (n = 4) from a previous study [26]. These were 
generated from two biological replicates of ChIP-like 
(CIDOP) enrichment experiments and their correspond-
ing inputs. Sequencing was performed on an Illumina 
NovaSeq 6000, using 150 bp paired-end (PE) reads yield-
ing a minimum of 11 million paired-end reads for each 
dataset (Additional file 1: Fig. S3A).

To benchmark the aligner (HISAT2) and the optimised 
settings used by RepEnTools alongside various other 
popular options, we mapped real experimental reads to 
chm13v2 and compared computational costs. The data-
sets (n = 4) originate from pulldown enriched fragments 
and input chromatin, as described above. As can be seen 
in Fig.  3A, the RepEnTools settings of HISAT2 result 
in faster completion of read alignment than all other 
software, with an average processing time of 14  min/
ChIP dataset (see Material and Methods for setting 
details). This can be attributed to the lower CPU times 
that HISAT2 required (Fig.  3B) at comparable memory 
requirements (Fig. 3C). HISAT2 employs local Ferragina 
Manzini (FM) indexes of 57.3 kb, small enough to fit in 
the CPU cache rather than the slower RAM [27]. It also 
has optimised strategies for multithreading, and uses 
space efficient tables for memory minimisation. Expert 
users can take advantage of these to optimise the choice 
of resources and their allocation in high-performance 
computing, a particularly interesting option for large 
datasets or high-throughput analyses [35]. Interestingly, 
this efficiency directly translates to a lower financial cost 
of the computational operations as calculated by usegal-
axy.eu (Additional file 1: Fig. S3B).

RepEnTools uses HISAT2 for efficient and reliable 
alignments on a T2T assembly
Having demonstrated the lower requirement of com-
putational resources and fast processing times of the 
RepEnTools-HISAT2 implementation, we wondered if 
this comes at the expense of quality. We retrieved the 
number of primary mapped reads from SAMtools flag-
stat reports [36] and compared it to primary total reads 
(Fig.  3D), to find comparable mapping efficiency across 
all aligners but STAR​. Mapping quality (MAPQ) is an 
exclusion criterion that is commonly applied after map-
ping of ChIP-seq data despite an inconsistent and unclear 
implementation among different aligners. It has multiple 
components intending to represent the probability that 
a read is assigned suboptimal coordinates. Of particular 
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note, all programmes shown here intentionally lower the 
score of multimapping reads, most setting it to 0 if n ≥ 3 
regardless of alignment quality. Thus, MAPQ is ill-suited 
as an exclusion criterion for RE analyses. A threshold 
of ≥ 40 is empirically considered to reflect “unique, high-
quality” alignments. This criterion is used sometimes to 
assess mapping quality in a dataset. Using this criterion, 
we observe comparable results with RepEnTools-HISAT2 
to the best aligners (Fig. 3D, Additional file 1: Fig. S3C). 
Of note, the primary output of RepEnTools analysis is the 
genome-wide and coordinate-independent tabular sum-
mary of all instances of each RE subfamily without dis-
crimination between “unique” and multi-mapping read 
alignments. RepEnTools does not aim to analyse ChIP 
enrichment patterns of individual RE instances located at 
a specific genomic site, but only aggregated patterns of a 
particular RE type across the entire genome. This avoids 
the problems and limitations of short-read sequencing 
in assigning unique coordinates to RE sequences of high 
similarity as discussed previously in [12, 18].

An alternative indicator of the alignment quality is the 
insert size, i.e. the length of the sequences delimited by 
mapped paired reads. Finding alignments that position 
both reads of a pair relatively close to the experimentally 
expected insert size is an indication of a biologically rel-
evant and experimentally plausible alignment. Straight-
forward and unambiguous, it is an established quality 
criterion and standard part of ChIP-seq quality control 
tools such as BAMQC [37], but seldom explicitly stated 
in guidelines and literature [35]. For PE reads that have 
one read multimapping on REs, placing both reads in 

relative proximity is a particularly fast way to find more 
biologically relevant matches, and HISAT2 uses local FM 
indexes of 57.3 kb to quickly find sequence matches [27]. 
We separated the datasets in non-enriched input and 
TTD CIDOP for clarity (Fig. 3E), showing that all aligners 
in all settings produce insert sizes of comparable statis-
tics. This demonstrates the generally reliable and repro-
ducible quality of alignments with modern software.

However, as each of these plots refers to an excess of 
107 datapoints, we also looked at the outliers, namely the 
inserts that exceed 2 × the length of the maximum frag-
ment/insert size (FS/IS) reliably observed in the specific 
sequencing library (Additional file  1: Fig. S1). Interest-
ingly, a discrepancy of more than one order of magni-
tude is seen between aligners (Fig.  3F). With the same 
data, RepEnTools-HISAT2 and the bowtie2 algorithms are 
able to find more often solutions closer to the expected 
values. Of note, the < 104 long inserts from bowtie2 and 
RepEnTools-HISAT2 in datasets that exceed 107 PE 
sequences are a very small fraction and entirely plausi-
ble considering our definition of maximum FS, and the 
detection limits of such assays. While a certain num-
ber of outliers was expected, the much greater number 
obtained with some aligners, using the same data, is a 
clear red flag for the biological relevance and quality of 
these alignments. This behaviour was also observed for 
cut-off values smaller than 2 × IS.

To further illustrate the point, we counted the mapped 
bases of these outliers and found a staggering differ-
ence of 2 orders of magnitude. RepEnTools-HISAT2 
and bowtie2 outliers originate from approximately 

(See figure on next page.)
Fig. 3  RepEnTools produces fast, efficient and reliable mapping of HTS reads on the human chm13v2 genome assembly. A RepEnTools-HISAT2, 
the alignment programme employed in RepEnTools, is faster than a range of popular alternatives for ChIP-seq data alignment to a T2T assembly. 
On average, it requires 14 min to align one ChIP-seq dataset (1.1–1.3∙107 paired-end sequences). RepEnTools-HISAT2 uses the optimised settings 
of HISAT2 with a defined maximum fragment length, suppression of spliced alignment, and improved randomisation of multimapping reads. 
D—default. The settings are described in detail in Material and Methods. See also Additional file 1: Fig. S3A-B. The datasets (n = 4) originate 
from pulldown enriched fragments (2 datasets) and input chromatin (2 datasets). B RepEnTools-HISAT2 has low demands on CPU resources 
due to HISAT2 optimised software architecture [27]. C RepEnTools-HISAT2 has low memory requirements due to HISAT2 memory minimisation 
strategies [27]. D RepEnTools-HISAT2 generates a comparable number of primary alignments to popular alternatives using the same datasets. 
Application of the MAPQ ≥ 40 criterion shows comparable number of “unique, high-quality” primary alignments. See also Additional file 1: Fig. 
S3C. Primary mapped read counts were reported by flagstat (SAMTools) [36] for all aligners for consistency, and divided by the number of total 
primary reads of each BAM file. Filtering for primary reads with MAPQ ≥ 40 done using SAMTools. E All alignment algorithms produced insert sizes 
(IS) of comparable statistics for these very large datasets (> 107 datapoints). Here, input datasets (n = 2) are shown beside the CIDOP datasets (n = 2) 
for each algorithm. Insert size (IS) was extracted from the TLEN of primary alignments from SAM files and plotted using MatPlotLib. The central line 
is the median, box borders are 25th to 75th percentile, and the whiskers show the deviation by 1.5 times the inter-quartile range (0.35th to 99.65th 
percentile in a normal distribution). F Using RepEnTools-HISAT2, the fraction of insert size (IS) outliers is comparable to the best alternatives. Among 
IS outliers, i.e. the inserts that exceed 2 × the length of the maximum fragment size reliably observed in the specific ChIP-seq library, discrepancies 
of more than an order of magnitude are seen. STAR​ alignments always have zero (0) inserts at IS ≥ 2 × max. See also Additional file 1: Fig. S3D. The 
data presented here were generated using the two biological replicates of hUHRF1-TTD CIDOP and their respective inputs. The bar diagrams 
represent the average of n = 4 independent datasets and the whiskers are standard deviation. Open circles show individual datapoints. All jobs were 
run on usegalaxy.eu, using m3.2xlarge (30 GB / 8 vCPUs / Intel Xeon E5-2670 v2 (Ivy Bridge/Sandy Bridge)) machines, except all STAR runs, that were 
allocated to m5d.4xlarge (64 GB / 16 vCPUs / Intel Xeon Platinum 8175) machines. All job metrics were retrieved from the individual usegalaxy.eu 
dataset details
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50  kb genome-wide, whereas bwa-mem outliers exceed 
2,000  kb (Additional file  1: Fig. S3D), indicating that 
the problematic behaviour of the former is restricted to 
a smaller part of the genome. Hence, we interpret the 
reproducibly small number of outliers with RepEnTools-
HISAT2 as a sign of biologically more appropriate align-
ment and better quality. To clarify, this criterion as well 
as MAPQ ≥ 40 are only useful to benchmark RepEnTools-
HISAT2 alignment quality. RepEnTools analysis anyway 
only counts truly sequenced data, not inferred sequences 
between the two reads of a pair. In brief, we investigated 
multiple criteria to show comparable or better alignment 

performance with the RepEnTools implementation of 
HISAT2 versus other popular software for a fraction of 
the computational cost. This validated the suitability 
of  the RepEnTools aligner and its settings, as well as the 
genome-wide quality of the data generated by our pipe-
line so far.

RepEnTools is suitable for analysis on RMSK regions
Some REs have significantly lower mappability 
than the rest of the genome [12] making them chal-
lenging targets. Having validated the suitability of 
RepEnTools-HISAT2 in aligning experimental HTS data 

Fig. 3  (See legend on previous page.)
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genome-wide, we aimed to verify the same on RMSK 
regions. We restricted our analysis to the aforemen-
tioned non-enriched input samples (n = 2) to avoid 
the enrichment bias of CIDOP, and benchmarked 
the efficiency of RepEnTools-HISAT2. Analysis of 
reads on RMSK regions showed that RepEnTools-
HISAT2 achieves comparable efficiency and number 
of MAPQ ≥ 40 primary alignments to the best soft-
ware (Fig.  4A, Additional file  1: Fig. S4A). Looking at 
the number of insert size outliers, RepEnTools-HISAT2 
again produced comparable results to the best previ-
ously available aligners (Fig. 4B). Interestingly, bwa-aln 
and bwa-mem generated more large inserts than other 
aligners and the problem overwhelmingly stems from 
RMSK annotated regions (Additional file  1: Fig. S4B). 
RepEnTools-HISAT2 and bowtie2 produced almost two 
orders of magnitude more biologically relevant solu-
tions (Additional file  1: Fig. S3D). The majority of the 
remaining outliers are still found on repeats, but to a 
smaller degree (Additional file 1: Fig. S4B).

RepEnTools analyses are precise and reproducible, 
excluding some Simple repeats
At this point, we had validated the suitability of 
RepEnTools-HISAT2 in aligning experimental HTS  data 
both genome-wide and on RMSK regions, while care-
fully verifying the accuracy of our counting scheme with 
featureCounts (Additional file 1: Fig. S2B). After mapping 
and counting the sequencing data from two replicates of 
ChIP and input, RepEnTools normalises the counts to the 
size of the corresponding library using pseudocounts for 
zero reads, and calculates enrichment as ChIP over input. 
From the two replicates, enrichment and depletion sta-
tistics are determined using the Z-score and correspond-
ing p-value (see Materials and Methods section). Next, 
we sought to validate the reproducibility of these parts 
of the RepEnTools pipeline. Using the same experimen-
tal datasets (2 CIDOP and 2 Input FASTQ files), we per-
formed independent and complete runs of RepEnTools 
for the Galaxy and the UNIX implementation to find that 
RepEnTools RE enrichment scores are well reproducible 
regardless of the platform (Fig. 4C), and our programme 
is even more precise when the Simple repeats are not 
considered. The > 5 × 106 RE instances in the chm13v2 
human genome annotated in RMSK are grouped by their 
name resulting in 15,745 REs with genome-wide occur-
rence. To investigate reproducibility in a RE specific man-
ner, we plotted the average read density of each RE from 
RMSK (n = 15,745) in the input data and the CIDOP data. 
As a third dimension, we coloured the data by relative 
variance across RepEnTools runs (Fig.  4D). Clearly, bad 
reproducibility correlates well with low read density in 

both input and CIDOP. Moreover, the REs with low read 
density and bad reproducibility are almost exclusively 
a fraction (< 500) of the 14,346 Simple repeats (Fig.  4D, 
Additional file 1: Fig. S4C-D).

RepEnTools analysis of RMSK regions is accurate, 
excluding some Simple repeats
To address the accuracy of the RepEnTools pipeline, and 
assess the validity of the RE assignments against data 
of known true origin, we employed ART​ [38], a simula-
tor of HTS data with platform-specific artefacts. Using 
chm13v2 as the source of the sequences, we gener-
ated simulated data at various depths of PE reads of 
150  bp using the Illumina HiSeqX TruSeq characteris-
tics (Fig.  5A). A file containing the original coordinates 
of the simulated reads was also created and annotated 
on RMSK, named here “reference”. Then, we used the 
FASTQ file with simulated reads as input for RepEnTools 
and compared the analysis to the reference data. Inter-
estingly, our simulation data substantiate the need for 
adequate sequencing depth in all experimental datasets, 
as the fingerprint plots clearly reveal the incomplete 
coverage for sequencing depths < 1x (Additional file  1: 
Fig. S5A). Inadequate genome-wide coverage adversely 
impacts RE analyses, as evident in the non-linear 
improvement of RE coverage with increasing genome-
wide coverage (Fig.  5B). The high correlation between 
RepEnTools analysis and the reference conclusively veri-
fied the accuracy and suitability of the entire workflow 
of RepEnTools for RE enrichment analysis for all simula-
tion depths tested (Fig. 5B). A closer look into the data, 
reveals strong correlation between REs with large errors 
in recovery and lower read density, as well as the propen-
sity of Simple repeats to be challenging in analysis even in 
bigger datasets (Additional file 1: Fig. S5B). Exclusion of 
the 14,346 Simple repeats further improved the correla-
tion between RepEnTools analysis and reference. The size 
of RepEnTools’ error in recovering REs (excluding Simple 
repeats) is on average below 1% even at low coverage and 
improves at greater simulation depth (Additional file  1: 
Fig. S5C).

L1PAs, SVAs and other young REs are characterised 
by very low mappability [10, 12], so we investigated how 
well RepEnTools handles them, and revealed exceptional 
similarity to the reference. Further investigations dem-
onstrated that RepEnTools analysis of these elements 
ranges between 99 and 100% accuracy, with a single out-
lier (SVA-C) at 97.8% (Additional file  1: Fig. S5D). The 
1 × dataset was selected as the closest to our experimen-
tal data (Additional file 1: Fig. S3A). We also developed 
strategies to visualise data, which were tested on the very 
challenging full-length young REs (SVA, L1PA). Their 
suitability was validated with excellent reproducibility 
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Fig. 4  RepEnTools analysis is reliable for repeat masker regions, excluding some simple repeats. A Using real data, RepEnTools-HISAT2 shows 
comparable mapping efficiency on Repeat Masker (RMSK) annotated regions to popular alternatives. Applying the MAPQ ≥ 40 criterion, we found 
comparable number of “unique, high-quality” primary alignments. The real data in this analysis are the two biological replicates of HepG2 inputs. 
CIDOP data were not used to avoid bias from experimental enrichment. The bar diagrams represent the average of n = 2 and the whiskers are 
standard deviation. D—default. Data were processed as in Fig. 3D. See also Additional file 1: Fig. S4A. B Using real data with RepEnTools-HISAT2, 
the fraction of insert size (IS) outliers, exceeding 2-times maximum IS, is comparable to the best alternatives. STAR​ alignments always have zero 
(0) inserts at IS ≥ 2 × max. Data were processed as in Fig. 3F. See also Additional file 1: Fig. S4B. C Using real experimental data (2 CIDOP + 2 Input), 
RepEnTools outputs enrichment scores that are well reproducible within the same implementation (Galaxy or UNIX), as well as across platforms. 
RepEnTools is even more precise when the Simple repeats are not considered. Pairwise Pearson correlations (r) were calculated for independent, 
complete runs of RepEnTools, considering either all 15,745 REs in RMSK, or only the 1,399 non-Simple repeat subfamilies. Each RepEnTools run 
processed all the datasets. D Comparison of the average enrichment scores between two complete and independent runs of the Galaxy 
implementation demonstrates the overall good reproduction of RepEnTools, while some Simple repeats are suboptimal for this type of analysis. Out 
of the 15,745 REs in RMSK, 436 are outliers with ≥ 2.5% relative difference in average enrichment scores. It is clear that this error in reproducibility 
is overwhelmingly seen among a fraction (< 500) of the 14,346 Simple repeats and correlates to low read density/abundance. See also Additional 
file 1: Fig. S4C-D
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between reference and RepEnTools aligned data at a 
simulation depth resembling typical experimental data 
(Additional file  1: Fig. S5E). Taken together, our analy-
ses demonstrate the precise, accurate, and thus reliable 
analysis of RepEnTools for REs, excluding Simple repeats. 
Even the notoriously challenging young REs are analysed 
remarkably well by RepEnTools. These REs are also known 
to cause mobile element insertions (MEI). Therefore, we 
investigated in a targeted manner how RepEnTools can 
handle previously identified human MEIs. These were 
not present in the reference assembly, and were classi-
fied to originate from ERVK, SVA, L1, and Alu [39]. The 
efficiency of the RepEnTools analysis varied by family 
(Additional file 1: Fig. S6). We found overall very efficient 
mapping (≥ 82%) and assignment to RMSK annotated 

regions. We expect this is due to the similarity of the MEI 
to the elements which are represented in chm13v2.0. 
Genomic deletions of REs in the samples will not affect 
the RepEnTools analysis as they are equally absent in the 
input chromatin and pulldown datasets.

Finally, we extended RepEnTools for use with the lat-
est mouse genome (mm39). Application of the valida-
tion workflow based on simulated data prepared with 
ART​ [38] as described above for human chm13v2.0 
revealed a high correlation between RepEnTools analy-
sis and the mm39 reference (Fig.  5C), even for the 
mouse-specific ERVKs named IAP [40]. The size of 
RepEnTools’ error in recovering murine REs (excluding 
Simple repeats) is on average around 1%, slightly worse 
than the values found for the human T2T genome. 

Fig. 5  Simulated datasets show that RepEnTools analysis is reliable for repeat masker regions in human (chm13v2) and mouse (mm39) genomes 
excluding some simple repeats. A We used the read simulator ART​ with chm13v2 to generate simulated paired-end reads of 150 bp at various 
sequencing depths [38]. At the same time, ART​ created a SAM file containing the true coordinates of the simulated reads. The ground-truth data 
were assigned to REs while the FASTQ reads were processed by RepEnTools. The normalised counts from the “reference” and the RepEnTools analysed 
data were compared. This benchmarked the trimming, mapping and RMSK assignment strategies employed by RepEnTools. B Using simulated data 
from chm13v2, RepEnTools analysis of reads on RMSK annotated elements, in particular young repeats, accurately reproduces the reference data 
for all sequencing depths tested. At low coverage, 9,062 of the 15,745 REs in RMSK have no reads in the reference file, demonstrating the non-linear 
relationship between RE coverage and genome-wide coverage. See also Additional file 1: Fig. S5A-C. RepEnTools’ analysis of reads on full-length 
young repeats (SVA, L1PA) is exceptionally faithful. See also Additional file 1: Fig. S5D-E. r—Pearson correlation. C RepEnTools’ analysis using 
the latest mouse assembly (mm39) accurately reproduces the reference data on RMSK annotated elements for all sequencing depths tested. See 
also Additional file 1: Fig. S7A-B. RepEnTools analysis of reads on species-specific repeats (IAP) is exceptionally faithful. See also Additional file 1: 
Fig. S7C
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However, IAPs can be faithfully recovered (≥ 97.9%) 
with the recovery of potentially active IAPEz-int at 
99.79% (Additional file  1: Fig. S7). Overall, these data 
support that RepEnTools can be used with additional 
mammalian genomes, provided a suitable RMSK file is 
made and the ART​ validation workflow yields convinc-
ing results.

RepEnTools screening reveals hUHRF1‑TTD enrichment 
on SVAs and ERVs
RepEnTools uses FASTQ files from two replicates of 
ChIP-like chromatin pulldown experiments and their 
respective input chromatin to produce enrichment tables, 
volcano plots and bar diagrams of the most relevant RE 
families and subfamilies. This permits rapid screening 
to identify enriched and depleted RE groups. To dem-
onstrate the application of RepEnTools, we processed 
previously generated human UHRF1-TTD CIDOP-seq 
datasets. The analysis of hUHRF1-TTD binding on non-
repetitive regions of the human genome revealed a strong 
association with the H3K4me1-K9me2/3 double marks 
[26]. Here, these datasets were analysed with RepEnTools 

to identify enrichment and depletion of RE families in the 
chromatin fraction bound by TTD and the new findings 
were validated bioinformatically as well as experimen-
tally. The datasets were created using HepG2 micro-
coccal nuclease digested chromatin and hUHRF1-TTD 
(residues 126–280) tagged with glutathione S-transferase 
(GST) (Fig.  6A) [26]. Dataset sizes were described in 
Additional file  1: Fig. S1A. Interexperimental reproduc-
ibility of the CIDOP data was high as documented by 
Pearson correlation (Additional file  1: Fig. S8A). The 
overlapping fingerprint plots document both the repro-
ducibility and the enrichment of CIDOP datasets versus 
the inputs (Additional file 1: Fig. S8B). On average, 67.7% 
of TTD reads were mapped to REs (Additional file 1: Fig. 
S8C) meaning that repeats represent a significant part of 
the enriched data. While this does not correspond to a 
strong enrichment of the 64.9% of REs in the input, the 
distribution of repeats is very different in pulldown and 
input datasets, with several families enriched or depleted 
in the TTD reads.

RepEnTools analysis revealed that many of the 
15,745 REs show statistically significant genome-wide 

Fig. 6  RepEnTools screening revealed enrichment of hUHRF1 Tandem-Tudor Domain binding on SVAs and ERVs. A Domain structure of the UHRF1 
protein containing a Ubiquitin-Like domain (UBL), a Tandem-Tudor domain (TTD), a Plant Homeodomain (PHD), a SET- and RING-associated 
(SRA), and a Really Interesting New Gene (RING) domain. Bottom: Scheme of the human TTD construct (Uniprot Q96T88, residues 126–280) 
used in a previous work with an N-terminal GST-tag in CIDOP-seq (Chromatin Interacting DOmain Precipitation) to selectively enrich HepG2 
mononucleosomes [26]. B The volcano plot provided by RepEnTools reveals the reproducible enrichment and depletion of various repeat elements 
(REs) by analysis of TTD CIDOP signals versus input. The plot depicts significance log10(p) versus fold-change log2(ChIP/input) on the y-axis 
and the x-axis, respectively. The colour code indicates the False Discovery Rate (FDR) adjusted p-values ≤ 0.05 of enrichment and depletion 
with statistical significance, correcting for the multiple comparisons. REs with enrichment scores of log2 |(TTD/Input)|≤ 0.5 are not meaningful 
and are coloured grey. C The bar diagrams from the RepEnTools output reveal the repeat families most and least enriched in TTD CIDOP versus input. 
The top genome-wide hit, the SVA family, reveals enrichment in all SVA subfamilies, but strongest in SVA-F, the youngest and hominid-specific 
repeat [10]. The second most enriched family, the ERVK, reveals highest enrichment in the LTR22 subfamilies. ERVK depletions can be seen 
in Additional file 1: Fig. S8D. Of the ERV1 family, the highest enrichment is found on HERVE-internal regions. This also represents the most 
enriched individual RE genome-wide. In all bar diagrams, the bar indicate the mean, and the whiskers represent the standard deviation. All data 
with reproducibility p ≤ 0.05, n = 2 pairs of TTD/input. D Localised TTD enrichment is found at the 3′ end of SVA regions, confirming RepEnTools’ 
enrichment finding. Profile of all SVA models (pHMM) on chm13v2 (6274 regions), anchored to the 3′ end. RE track shows density of actual SVA 
annotated segments within the model. pHMM retrieved from RMSK bed12 output found on UCSC Table Browser [13, 29]. pHMM – profile Hidden 
Markov Model, RPKM—Reads per kilo base per million mapped reads. See also Additional file 1: Fig. S8E. For an illustration of the differences 
between pHMM of a RE and the actual RE see Additional file 1: Fig. S2A. E Broad TTD enrichment is centred on LTR22 regions, aka HERVK(HML-5) 
[41], confirming the enrichment findings by RepEnTools. Profile of all LTR22 models (781 regions). F Very strong TTD enrichment is seen at the center 
of HERVE-internal regions confirming the enrichment findings by RepEnTools. Profile of all HERVE-int models (142 regions). G TTD enrichment 
has a similar pattern at the center of the HERVE-int consensus (7.9 kb), when aligning the same datasets with bowtie2. This demonstrates 
that the findings of RepEnTools are reproducible even with a different aligner and reference. The peak in the middle of the HERVE pol gene overlaps 
the ORF of a 269 aa polypeptide bearing 92% similarity to a RNase H2-like domain found in reverse transcriptases. TTD and input data aligned 
by bowtie2 (fast, local), consensus sequence and gene positions retrieved from dfam [42]. See also Additional file 1: Fig. S8F, Additional file 2: 
Text S2. H The alignment strategy employed in RepEnTools (chm13v2—HISAT2) aligns a comparable number of reads to an alternative strategy 
(consensi—bowtie2), for a RE well represented by its consensus sequence (HERVE-int). This reproduction validates the strategies of RepEnTools, 
and demonstrates its advantages. I TTD CIDOP was reproduced with WT domain and the D142A binding deficient mutant. Assayed by qPCR, 
a H3K9me2 reporter locus and one for H3K4me3 demonstrated similar enrichments and depletions as shown for the samples that gave the HTS 
data [26]. All data from n = 2 biological replicates, bar indicates mean. J The new CIDOP-qPCR experiments corroborated the TTD enrichments 
and depletions reported by RepEnTools using carefully designed and validated qPCR assays on selected targets. CIDOP-qPCR was performed using 
TTD and chromatin from HepG2 cells in two biological replicates. Enrichment of TTD WT over D142A represents specific over unspecific pull-down. 
The assays shown here target HERVE-int, the most enriched RE genome-wide, and X4b, a member of TcMar, the most depleted family. For validation 
of the qPCR assays see Additional file 1: Fig. S9 and S10, and Additional file 3: Table S2. See also Additional file 1: Fig. S10E

(See figure on next page.)
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enrichments and depletions in TTD CIDOP versus input, 
albeit not many have a strong change (Fig. 6B). Figure 6C 
compiles the ten most enriched and depleted families. 

The most enriched RE families are SVA (SINE-R, Vari-
able number of tandem repeats, Alu-like), a very young, 
primate-specific family of composite repeats (Additional 

Fig. 6  (See legend on previous page.)
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file 3: Table S1). Its youngest subfamily is the highly poly-
morphic SVA-F [10], which is also the most enriched 
type of the group. The next most enriched groups are 
ERVKs, subtelomeric satellites (TAR) and ERV1s. Among 
the ERVKs, different types of LTR22 drive the trend, 
while others are not enriched (Additional file 1: Fig. S8D). 
Subtelomeric TAR loci differ in epigenetic marks from 
non-telomeric ones, despite insignificant sequence dif-
ferences, and thus their analysis requires particular care 
[4]. Finally, HERVE-internal (ERV1) is the most enriched 
RE genome-wide (Figshare Files - Galaxy analyses). The 
graphical data presented here (Fig.  6B-C) are screen-
ing data generated by RepEnTools using the Galaxy 
implementation.

As primary confirmation of the output from 
RepEnTools, we focused on the enrichment calcula-
tions in our programme and investigated the groups 
found to contain more TTD reads than input, visualis-
ing the mapped signal profiles without additional trans-
formations. As expected, SVA elements demonstrate 
localised enrichment above the input signal (Fig. 6D). A 
special note can be made to the very highly polymorphic 
sequences of VNTR in SVA, resulting in a lower input 
signal because of the inevitably impacted mapping (Addi-
tional file 1: Fig. S8E). As with the SVAs, profile plots of 
LTR22s and HERVE-int confirm the enrichments found 
by RepEnTools (Fig. 6E and F).

A second validation regarded the mapping on RE and 
corresponding enrichment found by RepEnTools. We 
mapped the TTD and input data against the consensus 
sequence of HERVE-int taken from DFAM [42] using a 
different aligner and reproduced the localised enrich-
ment of TTD over the pol gene (Fig. 6G). The TTD peak 
on the pol gene overlaps the ORF for a 269 aa peptide 
that bears 92% similarity to a RNase H2-like domain 
found in reverse transcriptases (Additional file  1: Fig. 
S8F, Additional file  2: Text S2). This demonstrates that 
the findings from RepEnTools are reproducible even with 
another aligner and reference sequence. This analysis was 
restricted to HERVE-int as the other two top hits are not 
well-represented by their consensus sequence and thus 
suboptimal for this type of analysis. Comparison of the 
reads mapping to HERVE-int in chm13v2 and mapping 
to the HERVE-int consensus shows a 96% overlap for 
input and 79% overlap for TTD CIDOP (Fig.  6H). The 
discrepancies can be explained by the lower complex-
ity of the consensus sequence, and hence suboptimal 
mapping, an apt demonstration of the advantages of the 
RepEnTools approach.

To conclusively validate our bioinformatic results, 
we repeated CIDOP from HepG2 chromatin with the 
hUHRF1-TTD WT and the binding deficient D142A 
mutant [26] in two biological replicates. By qPCR, we 

found enrichment of a H3K9me2 reporter locus and 
depletion of a H3K4me3 locus in the pulldown (Fig. 6I) 
similar to our previous report [26]. Then, we carefully 
developed and validated qPCR assays to evaluate the 
pull-down of RE loci (Additional file 1: Fig. S9 and S10, 
Additional file  3: Table  S2). This convincingly repro-
duced the results obtained in our RepEnTools analy-
sis, looking at the most enriched RE (HERVE-int) and 
a depleted RE (X4b: 0.8 TTD/Input) from the most 
depleted family (TcMar) (Fig. 6J).

RepEnTools targeted search reveals hUHRF1‑TTD 
enrichment on young full‑length L1PAs
RepEnTools does not only output graphs but also gener-
ates comprehensive enrichment tables with the counts, 
enrichment scores and p-values to be analysed by user 
defined criteria. This can be particularly useful for a 
hypothesis-driven search of enrichments. Recently, 
shRNA mediated reduction of hUHRF1 levels was 
shown to result in mild loss of DNA methylation at 
promoters of L1 repeats and upregulation of L1-ORF1 
mRNAs [43], which were shown to be transcribed from 
full-length young L1PA1-3/L1P1 elements [13]. There-
fore, we took a closer look at hUHRF1-TTD binding at 
the L1 superfamily (Fig. 7A) and observed enrichment 
in the primate specific L1HS/L1PA1, as well as other 
evolutionary recent L1PAs [11, 13, 44] (Additional 
file  3: Table  S1). First, we confirmed TTD enrichment 
at the 5´ end of the top hit L1PBa1 (Additional file  1: 
Fig. S11A). Next, we prepared a heatmap of all L1PA 
regions, as was done recently [13], and observed clear 
and reproducible enrichment of TTD on the promoter 
region of full-length elements (Fig.  7B). In contrast, 
TTD was depleted at L1ME subfamilies (Additional 
file  1: Fig. S11B) described as the oldest transposable 
elements [13, 44].

Restricting our analysis to full-length L1PAs con-
firmed the strong enrichment of TTD in these elements 
(Fig. 7C). Further analysis demonstrated that L1PA1 and 
L1PA2, i.e. the youngest L1s, are more often full-length 
than others (Additional file 1: Fig. S11C). Comparing the 
likelihood to observe full-length elements to the TTD/
input enrichment reveals a very strong correlation of 0.95 
(Fig. 7D), strongly suggesting that hUHRF1-TTD enrich-
ment on these repeats is connected to their full-length 
status and hinting at a functional connection. To verify 
that RE abundance was not the cause of this observation, 
we plotted the number of L1PAs against TTD enrich-
ment and found no correlation (Additional file  1: Fig. 
S11D).

To investigate a possible connection of TTD enrich-
ment to functional elements, we summarised the data 
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in a profile plot and annotated the functional regions 
present in L1PA [11, 42, 49] revealing TTD peaks at 
the 5′ UTR and at the intergenic region before ORF2 
(Additional file 1: Fig. S11E). As a control, we looked at 
full-length L1MEs and no TTD enrichment was found 
(Additional file 1: Fig. S11F).

hUHRF1‑TTD binds to H3K4me1‑K9me3 on young 
RE‑based enhancers
Recently, we demonstrated that UHRF1-TTD, previ-
ously known as an H3K9me2/3 reader, preferentially 
binds to H3K4me1-K9me2 as well as H3K4me1-K9me3, 
but the former is far more abundant in HepG2 cells 
[26]. To investigate the histone marks underlying TTD 
peaks on L1PAs, we plotted a heatmap of the cor-
responding ChIP-seq data [26, 46]. This revealed a 
broad H3K9me2/3 density and a specific enrichment in 
H3K9me3 at the beginning of many full-length L1PAs. 
Moreover, a heatmap demonstrates the presence of the 
H3K4me1-K9me3 double mark in the subset of them 
bound strongly by TTD (Additional file  1: Fig. S12A). 
In addition to the previous validation of the employed 
visualisation workflow (Additional file 1: Fig. S5E), vis-
ualisations of RepEnTools alignments on representative 
L1PA loci show high reproducibility using biological 
replicates of the UHRF1-TTD CIDOP experiments as 
well as with simulated data (Additional file 1: Fig. S13).

To bring together TTD binding, histone marks, func-
tional annotation and spatial information in a coher-
ent plot, we averaged the TTD replicates and focused 
on the first 2 kb of the full-length L1PAs (Fig. 7E). The 
5´ end of L1PAs harbours a known enhancer, specific 

to the L1PA lineage, bearing H3K4me1 and transcrip-
tion factor binding motifs (TFBS) [11, 45]. There, the 
TTD peak motifs follow the H3K4me1-K9me3 double 
mark, as we examined in detail previously [26]. We also 
reproduced our recent finding of enhanced TTD bind-
ing on and around enhancers.

On the young L1PA1, TTD enrichment and the dou-
ble H3K4me1-K9me3 signal was even stronger and 
centred on the antisense promoter (Fig. 7F), experimen-
tally shown to strongly enhance transcription of adja-
cent genes [47]. Intrigued by this, we extracted the TTD 
bound sequences and looked for TFBS using XSTREME 
[50] and observed enrichment of KLF4/1 and E2F4 bind-
ing motifs in both replicates (Additional file 1: Fig. S12B), 
in agreement with literature data showing that KLF4 
ChIP-seq was enriched in L1PA1-3 at transposable ele-
ment enhancers (TE-Enhancers) [48]. These are evo-
lutionary recent REs (L1PAs, SVAs, HERVK/LTR5HS) 
bearing developmental and tissue-specific enhancers [13, 
48]. On SVAs these enhancers are positioned at the 3′ 
end. A profile plot illustrated strong H3K4me1 and TTD 
enrichment on the HERVK and LTR5-like regions of full-
length SVAs (Fig. 7G). In line with the literature on TTD 
and our previous analyses [26], H3K9me2/3 was also pre-
sent. Specifically, HERVK demonstrated enrichment in 
H3K9me3, while the LTR5-like region carried H3K9me2. 
A heatmap of the full-length SVAs clearly demonstrates 
the co-occurrence of the H3K4me1-K9me2/3 double 
marks and TTD binding at defined genomic loci (Addi-
tional file 1: Fig. S12C). The pattern of TTD enrichment 
on regions with H3K4me1-K9me3 and H3K4me1-K9me2 
double marks was also found upon examination of 

(See figure on next page.)
Fig. 7  RepEnTools targeted search reveals enrichment of human UHRF1 Tandem-Tudor Domain binding on promoters of young, full-length 
L1PAs and the flanks of known enhancers. A The bar diagrams produced by RepEnTools, focusing on the L1 superfamily, reveal the subfamilies 
most and least enriched in TTD CIDOP versus input. The former contain the youngest evolutionary subfamilies (L1PA family), while the latter are 
dominated by the oldest (L1ME family). See also Additional file 1: Fig. S11A and Additional file 3: Table S1. B TTD enrichment is found at the 5′ 
end of many full-length L1Pas. This confirms RepEnTools’ findings, and is in agreement with hUHRF1 dependent L1 promoter DNA methylation 
and silencing of L1 transcription [43]. Heatmap of all L1PA models (pHMM), anchored to the 5′ end, and arranged by mean L1PA track intensity. 
L1PA track shows position and density of actual L1PA annotated segments within the model. pHMM – profile Hidden Markov Model. See 
also Additional file 1: Fig. S11B. C Restricting analysis to the full-length L1PAs reveals strong TTD enrichment in two reproducible peaks. Heatmap 
arranged by mean TTD track intensity. D hUHRF1-TTD CIDOP enrichment correlates well with the ratio of full-length elements within L1PA 
subfamilies (r 0.95). Only reproducibly enriched/depleted subfamilies are considered (p ≤ 0.05, n = 2). Enrichment of TTD over input was calculated 
by RepEnTools, while the ratio of full-length elements is shown in Additional file 1: Fig. S11C. See also Additional file 1: Fig. S11D. E TTD enrichment 
is highest around and on the L1PA antisense promoter (AS), overlapping the H3K4me1-K9me3 double mark. This is a known enhancer, specific 
to the L1PA lineage, that harbours transcription factor binding motifs [11, 45]. H3K4me1 and H3K9me3 ChIP-seq RPKM scale on the right axis [46]. 
The vertical axes are identical for all three profile plots of this figure. The change in scale reflects the differences in experimental and sequencing 
methods. RE track shows density of actual L1PA annotated segments within the model. RE annotation from dfam consensus sequence [42]. 
See also Additional file 1: Fig. S12A. F TTD enrichment on the youngest subfamily of L1PAs, L1HS/L1PA1, is centred on the antisense promoter 
(AS), experimentally shown to strongly enhance transcription of adjacent genes [47]. RE annotation from dfam consensus sequence [42]. 
See also Additional file 1: Fig. S12B. G TTD enrichment is strongest on the HERVK and LTR5-like regions of full-length SVAs, shown to harbour 
TEENhancers [13, 48], overlapping the H3K4me1-K9me2/3 double marks. Annotations compiled using comparative information from dfam [42]. 
See also Additional file 1: Fig. S12C-E. H CIDOP-qPCR experiments corroborated the TTD enrichments and depletions reported by RepEnTools using 
carefully designed and validated qPCR assays on selected targets. All data from n = 2 biological replicates, bar indicates mean. See also Additional 
file 1: Fig. S10E
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the other top-hits of RepEnTools analysis, LTR22s and 
HERVE-int (Additional file 1: Fig. S12D-E). Interestingly, 
also LTR22s and HERVE-int were recently described to 
function as enhancers of protein-coding genes, specifi-
cally in cancers of endodermic lineage [51]. A brief analy-
sis of HepG2 experimental literature data [52] revealed 
that sequences from all the REs discussed here can have 
enhancer functions in HepG2 cells (Additional file 1: Fig. 
S12F). Thus, literature reports document enhancer func-
tions for L1PA, SVA, LTR22, HERVE in different cells.

Taken together, the histone marks, TFBS, and STARR-
seq data indicate that the TEs discussed here match two 
recently described enhancer classes, namely the closed-
chromatin enhancers and the cryptic ones [53]. These 
represent weakly active or inactive enhancers. Finally, we 
corroborated our bioinformatic findings in the wet-lab by 
TTD CIDOP-qPCR targeting the L1PA1/L1HS and SVA 
enhancer regions (Fig. 7H, Additional file 1: Fig. S9 and 
S10). The strong binding of hUHRF1-TTD to H3K4me1-
K9me2/3 double marks on TE-Enhancers agrees fully 

Fig. 7  (See legend on previous page.)
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with our recent report of TTD association to cell-type 
specific enhancers [26].

mUHRF1 ChIP is enriched on IAPEz colocalising 
with H3K4me1‑K9me3
ChIP-seq datasets of full-length UHRF1 are only avail-
able from mouse embryonic stem cells (mESC) [54, 55]. 
The technically best dataset was generated by inserting 
a triple FLAG-tag at the C-terminus of the endogenous 
UHRF1 locus in mESC. Chromatin was crosslinked, frag-
mented, immunoprecipitated with anti-FLAG antibody, 

and the DNA fragments sequenced using paired-end 
100 bp for a total of 6 Gb in two replicates (Fig. 8A). Using 
this dataset, genome-wide comparisons of full-length 
UHRF1 binding to histone marks revealed good but not 
perfect correlation to H3K9me2 (r 0.7) and H3K9me3 (r 
0.8) and some correlation to H3K4me1 (r 0.5) (Fig. 8B). 
This recapitulated the analyses of the human TTD 
CIDOP, shown to have similar genome-wide correlations 
to these marks [26]. The mESC data showed higher simi-
larity to H3K9me3 than to H3K9me2, likely due to the 
drastically lower levels of H3K9me2 in ESC [56].

Fig. 8  RepEnTools reveals enrichment of murine UHRF1 binding on young, species-specific REs with overlapping H3K4me1-K9me3. A Experimental 
design of Haggerty et al. for endogenous mUHRF1 ChIP-seq in murine ESC [54]. B Genome-wide Pearson correlation r-value comparison 
of the mUHRF1 profile to various histone H3 marks using 5 kb bins. C RepEnTools analysis reveals mUHRF1 enrichment on LTRs flanking IAP 
and IAPEz internal sequences. D Confirming RepEnTools’ findings, UHRF1 enrichment is found over the entire length of many IAP-LTRs at regions 
overlapping the H3K4me1-K9me3 double mark. IAP-LTRs contain experimentally validated enhancer sequences [57, 58]. E UHRF1 is enriched 
at the 5′ end of IAPEz longer than 5 kb, colocalising with H3K4me1- K9me3, and it was implicated in silencing IAPEz-gag expression [54, 59]. IAPEz 
are young, mouse-specific ERVKs. ChIP-seq data for mUHRF1 and the histone H3 marks from mESC were published previously [54, 60, 61]
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Application of RepEnTools to analyse the mUHRF1 data 
demonstrated enrichment in LTRs flanking IAPs, and in 
IAPEz, the youngest, mouse-specific subfamily of ERVK 
TEs (Fig. 8C). The findings of RepEnTools align with the 
literature describing IAPEz as the principal RE dere-
pressed by UHRF1 ablation [59]. A heatmap of all IAPL-
TRs reveals the colocalization of H3K4me1, H3K9me3, 
and mUHRF1 at regions flanking the main ERV 
sequences (int) (Fig.  8D). The internal regions of IAPEz 
encode the gag, polymerase and envelope proteins of 
these ERVKs, and the large instances are still competent 
of transcription and transposition [40]. Validating these 
findings of RepEnTools, mUHRF1 enrichment is seen 
at the flanking LTRs and the promoter of the gag-ORF 
together with H3K4me1-K9me3 (Fig.  8E). Experimental 
reduction of UHRF1 levels in mESC has been shown to 
lead to IAPEz—gag upregulation, normally silenced via 
promoter H3K9me3 and 5mC [54, 59, 62]. As TTD is 
the only known element of UHRF1 able to preferentially 
and specifically interact with the H3K4me1-K9me2/3 
containing chromatin [26], it is reasonable to associ-
ate the previously observed  mUHRF1 mediated silenc-
ing of  young ERVK RE, and the full-length UHRF1 and 
H3K4me1-K9me3 double mark enrichment presented 
here (Fig.  8) with the hromatin binding of the TTD 
domain [26]. This aligns with the hUHRF1 mediated 
silencing of young L1s [43] that also carry H3K4me1-
K9me3 and are bound by TTD (Fig.  7). Taken together, 
hUHRF1-TTD or mUHRF1 and H3K4me1-K9me3 
marks are enriched on the promoters of REs that are 
de-repressed upon UHRF1 ablation  in human or mouse 
cells, suggesting a UHRF1-dependent silencing mecha-
nism via TTD binding that is conserved across species, 
despite the absence of DNA sequence similarity between 
the affected REs.

Limitations of RepEnTools
A persistent problem in the analysis of REs is that some 
REs will not be identical in reference genomes and ana-
lysed samples. This caveat is especially true for mobile 
elements and polymorphic sequences in short-read data-
sets, and can only be fully overcome by de novo RE detec-
tion and annotation, which is computationally expensive, 
and requires expert users [19]. RepEnTools applies a 
more accessible approach with high efficiency and low 
computational cost, that uses the RMSK annotation, i.e. 
previously annotated REs. The RepEnTools workflow can 
efficiently handle known human mobile element inser-
tions (MEI) due to their similarity to the originating ele-
ment, but cannot characterise them as MEI. Deletions of 
REs in the originating genomic material are not affecting 
the RepEnTools data analysis as they will appear neither 

in input nor in the pulldown datasets. Greatly diverging 
sequences will not be recognised/analysed at all.

Another general problem is assigning reads of REs to 
specific genomic loci, because results very much depend 
on the search intensity, potential variations from the 
reference sequence, sample sequencing mistakes and 
alignment parameters. Hence, it is difficult to ensure if 
a “unique” read is really unique and if the “best” found 
alignment indeed identified the true genomic origin of 
the read. Because of this, it can be difficult to connect 
RE reads from short-read datasets with specific REs at 
defined genomic loci [12, 18]. This problem cannot be 
solved by RepEnTools or other available standard pro-
grammes. However, the RepEnTools algorithm assigning 
multi-mapping reads randomly to one occurrence in the 
genome ensures a consistent, reliable and reproducible 
analysis of the aggregated enrichment and depletion of 
RE subfamilies in ChIP-seq and Pulldown-seq data as 
shown by the analyses presented in this manuscript.

The results generated by RepEnTools should be evalu-
ated taking into consideration the limitations of the 
sequencing and bioinformatic processes involved, as 
well as the biological context of the investigated REs. 
We highly recommend careful wet-lab validations of 
key findings. We do not recomment using RepEnTools 
for TE enhancer-to-gene assignments. Any such screens 
should be assessed carefully and critically, cross-vali-
dated with alternative methods and confirmed in the 
wet-lab [40, 57].

Conclusions
In light of the recent advances in high-throughput 
sequencing, the number of T2T genomes will increase in 
the near future. For humans there are already available a 
haploid (chm13v2) and most recently a diploid male T2T 
genome [2, 3, 7], and the human pangenome project will 
continue to broaden these horizons [6]. These new tools 
have already generated a wealth of new information and 
given valuable insights into some epigenetic processes on 
REs [4, 13, 14, 63]. At the same time, our understanding 
of RE function and their important influence on epige-
netic regulation during development [48], in health [64, 
65] and disease [66–69] increases. These developments 
highlight the need for better  epigenome analysis tools 
for REs.

To address this demand, we developed RepEnTools, a 
pipeline that analyses ChIP-seq data to find enrichments 
of REs in a rapid and efficient manner. We benchmarked 
the alignment software used in RepEnTools and its opti-
mized parameters to demonstrate that across multiple 
criteria, we produce comparable or better primary align-
ments compared to other popular software. Using experi-
mental and simulated data, we establish that RepEnTools 
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is suitable for reproducible and accurate RE enrichment 
analyses in chromatin pulldown experiments. The pri-
mary function of RepEnTools is to perform a genome-
wide, coordinate-independent analysis summarizing data 
from all instances of each RE type.

To demonstrate the performance of our workflow, we 
used hUHRF1-TTD CIDOP data [26] and discovered 
TTD enrichment on young primate and hominid specific 
polymorphic repeats (SVA, L1PA1/L1HS), both being 
REs implicated in oncogenesis and development [48, 66, 
68]. We corroborated the bioinformatic findings with new 
experimental data using carefully validated qPCR assays. 
The REs bound by TTD carry the H3K4me1-K9me2/3 
double modification, in agreement with the preferred 
binding of TTD to the double marks in well-resolved 
genome regions discovered recently [26]. This also agrees 
with the hUHRF1 dependent DNA methylation and 
silencing of human L1 [43]. Next, in line with the previ-
ously reported TTD binding to enhancers [26], we dem-
onstrated TTD enrichment overlaps known and putative 
enhancers in these repeat elements [3, 48]. Finally, we ana-
lysed mUHRF1 ChIP data to show that the endogenous 
murine UHRF1 protein is also found on promoters of REs 
colocalizing with H3K4me1 and H3K9me3. Furthermore, 
these RE were silenced by UHRF1 [59]. Thus, our new data 
suggest a functional role for UHRF1 in silencing of REs 
that is mediated by TTD binding to the H3K4me1-K9me3 
double mark and is conserved in two mammalian species.

The implementation of RepEnTools has automated 
workflows to be user-friendly even for users without pro-
gramming skills. We placed emphasis on creating a trans-
parent, light-weight, and user-friendly analysis package 
that can be modularly adapted to future developments in 
the field, increasing longevity. RepEnTools will make RE 
analysis of ChIP-seq data more accessible, and support 
the community in developing further this exciting field.

Methods
Analysis of HTS data
Data analysis was performed on a Galaxy server (usegal-
axy.eu) [70]. Publicly available ChIP data were obtained 
as raw reads from SRA (ncbi.nlm.nih.gov/sra), accession 
codes are given in Additional file  3: Table  S3. The SAM-
tools [36], deeptools2 [71], and BEDtools [72] suites, as 
well as ChAsE [73] and Integrative Genomics Viewer (IGV) 
(software.broadinstitute.org/software/igv/) [74] software 
were used for data processing and visualisation.

Pre‑processing of HTS data
Adapters were clipped and low-quality reads removed 
with Trimmomatic (v0.38) [75] using the default settings 
for PE libraries with TruSeq3 adapters, namely

-jar PE ILLUMINACLIP:$ADAPTERS_PATH/TruSeq3-
PE.fa:2:30:10:8:true SLIDINGWINDOW:4:20

Output was quality controlled with FastQC (v0.11.8) 
developed by Andrews, S. (bioinformatics.babraham.
ac.uk/projects/fastqc).

Mapping of HTS data to chm13v2.0
Analyses on usegalaxy.eu used the built-in genome 
“Human chm13 2.0 (T2T Consortium) Jan. 2022”. The 
chm13v2.0.fa.gz file for UNIX was obtained from github.
com/marbl/CHM13 (file created 31st March 2022). The 
high-quality, clean reads were mapped to chm13v2 using 
a variety of aligners and settings. Here we provide the 
settings used, as documented in the usegalaxy.eu com-
mand line. It is important to note that some settings are 
only seen in the command line if explicitly changed from 
the default values.

STAR​ (2.7.8a) [31]
STAR​ –outSAMprimaryFlag OneBestScore –out-

SAMmapqUnique 60 –outFilterMultimapNmax 1000 
–outSAMmultNmax 1 –outFilterMismatchNmax 3 –
winAnchorMultimapNmax 1000 –alignEndsType End-
ToEnd –alignIntronMax 1 –alignMatesGapMax 350.

The STAR​ command line is particularly verbose. Here 
we applied the recommended settings for RE analysis as 
close as possible using the Galaxy GUI [18].

BWA (0.7.17.5) [32]
Bwa aln chm13v2 && bwa sampe chm13v2.0 first.sai 

second.sai.
Here, we used the default settings of the Galaxy GUI.
BWA-MEM (0.7.17.2) [33]
Bwa mem -v 1 -I ’AverageInsertSize’ chm13v2.0
Here, we used the default settings of the Galaxy GUI 

and the expected median insert size (range 170 – 290 bp) 
instead of the expected average insert length.

Bowtie2;def (2.5.0) [34]
bowtie2 -p -x chm13v2.0
Here, we used the “just use defaults” pre-set settings of 

the Galaxy GUI.
Bowtie2;v.sens (2.5.0)
bowtie2 -p -x chm13v2.0 –very-sensitive
Here, we used the “very sensitive” pre-set settings of 

the Galaxy GUI.
HISAT2 (v2.2.1) [27]
hisat2 -p -x chm13v2.0 –summary-file summary.txt
Here, we used the default settings of the Galaxy GUI. 

This was only included for instructive purposes. The 
developers of HISAT2 recommend using the no-spliced-
alignment for DNA-seq data. The effect is negligible out-
side the blacklisted regions on hg38, but very notable on 
the (peri-)centromeres of chm13v2.

HISAT2 (v2.2.1) with RepEnTools settings
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hisat2 -p -x chm13v2.0 –no-spliced-alignment -I 0 -X 
"MaxSizefromElectropherogram" -k 5 –non-determinis-
tic –seed ’0’ –summary-file summary.txt

•	 The no-spliced-alignment flag is required to align 
DNA-seq data on chm13v2, especially with an inter-
est in genome-wide and (peri-)centromeric REs.

•	 The maximum fragment length for valid paired-end 
alignments (-X) is retrieved from experimental data 
(Additional file 1: Fig. S1) to allow proper insert size 
determination.

•	 Search for at most 5 (-k) distinct, primary alignments 
for each read is the default setting. Increasing this up 
to 50 resulted in minimal improvement in number 
of primary alignments (~ 0.1%), a testament to the 
strengths of this de Bruijn graph aligner.

•	 Using a non-deterministic pseudo-random generator 
for each read based on the time the read was accessed 
improves randomisation of primary flag assignment 
among multi-mapping alignments. Unexpectedly, it 
also reduces computational cost.

We found that deviations from these recommenda-
tions affect computational cost adversely but provide 
no or insignificant benefits. In the bundled version of 
RepEnTools we also add “–no-unal –omit-sec-seq” to sup-
press unaligned reads and secondary alignment quality 
information from the bam output, thus reducing file size.

Quality control of BAM files was done with Qualimap 
2—BAMQC (v2.2.2c) [37].

Mapping of HTS data on RE consensus sequences
RE consensus sequences used for Fig.  6G, qPCR assay 
design, and to identify functional regions were retrieved 
from dfam.org [42] as FASTA files. Alignment was done 
with Bowtie2 (2.5.0) using the “fast-local” pre-set settings 
of the Galaxy GUI.

bowtie2 -build ’FASTA.dat’ genome && bowtie2 -p -x 
’genome’ –fast-local –no-unal –omit-sec-seq

Counting of genome‑wide reads
The number of total and mapped primary reads was reported 
by flagstat (SAMtools) [36] for all aligners for consistency. Fil-
tering for MAPQ ≥ 40 and exclusion of reads marked as “The 
alignment of this read is not primary” & “Supplementary 
alignment” (eq. flags 256 and 2048) was done using  SAM-
tools. IS filtering was done using BAMtools [76].

Statistics in figures
Standard deviations were calculated using the STDEV.P 
command in Excel.

Repeat masker annotation file
The UCSC Table Browser allows retrieval of the repeat 
masker (RMSK) files generated specifically for chm13v2 
(hub_3671779; last updated: 2022–04-27) [13, 29]. The 
annotation file for RepEnTools was generated by adjust-
ing the bed12 file. We extracted the exons as gtf using 
gene2exon1 and bed2gff1 of the Galaxy tools, sorted and 
merged overlapping annotations of identical name twice 
(in-house script), and performed table operations to 
optimise the RE information for each implementation. 
For an illustrated example see Additional file 1: Fig. S2A. 
The RMSK file for mm39 (last updated: 2020–07-30) was 
retrieved from UCSC Table browser, inspected for cor-
rectness in IGV and optimised the RE information for 
RepEnTools using table operations.

Quantitation of coverage on RMSK
With our adjusted RMSK gtf file (Additional file  1: Fig. 
S2), we employ featureCounts (v2.0.1) [28] to accurately 
count reads on the REs using the commands

featureCounts -F "GTF" -o "output" -s 0 -Q 0 –primary 
-t ’exon’ -g ’gene_id’ -O -M.

–minOverlap 1 –fracOverlap 0 –fracOverlapFeature 0
Average read density refers to the count of reads meas-

ured by featureCounts for a specific type of RE, divided by 
the size of the library (primary mapped reads from flag-
stat). Zero counts are replaced with 0.1 as pseudocount.

RepEnTools analysis package – table operations
For each library we replace zero counts with 0.1 as pseu-
docount, and normalise the counts to the size of the 
library (primary mapped reads from flagstat). Then, for 
each RE in each biological replicate we calculate the 
enrichment score as ChIP/input, the arithmetic mean of 
two biological replicates and the standard deviation (SD). 
Then we calculate Z-scores of the enrichment:

The p-value of each element is calculated in Excel as 
(1-NORM.S.DIST(Z-score,TRUE)).

In the UNIX implementation, scripts are employed to 
the same effect.

To generate the Volcano plot, we calculate the false 
discovery rate (FDR) adjusted p-value, using the Benja-
mini–Hochberg procedure [77]. First we restrict p-val-
ues to a minimum value of 10–16, then sort the 15745 
REs by p-value (ascending), rank each as k = 1,…, 15745, 
and finally calculate the FDR-adjusted p-value for each 
element:

(1)Z = score =
(Mean enrichment − 1)

SD of enrichment
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We set the statistical significance at α = 0.05 level.

RepEnTools UNIX package – testing
Testing was conducted on a 64-bit, Intel i5-6500 @ 3.2 
GHz × 4 (2015), 16 GB RAM, 1TB HDD desktop running 
freshly installed Ubuntu 23.04 or Debian 12.2. The dem-
onstration mode dataset is a reduced-size version of the 
UHRF1-TTD CIDOP dataset, containing just 200K reads 
in each file.

Mapping of HTS data to mm39
Analyses on usegalaxy.eu used the built-in genome 
“mm39 Full”. HISAT2 (v2.2.1) was used with RepEnTools 
settings, as described above.

Simulation of HTS data
For ART_Illumina (V 2.5.8) [38], we employed the set-
tings described by a very recent publication [78], only 
adjusting the simulation depth. This permitted the gen-
eration of data with comparable characteristics to the 
thorough analysis found in that publication. In brief, we 
selected the HiSeqX TruSeq platform profile settings, 
the newest Illumina settings available, and used the 
command

art_illumina -i chm13-2.fa -ss HSXt -l 150 -m 450 -f 
[Fold_coverage] -s 30 -p -sam -o.

with Read length: 150, Mean fragment length: 450, 
Std deviation: 30, Fold coverage: 0.1 to 3.

For each RE, the relative difference of average read 
densities between reference and RepEnTools analysis 
was

In Additional file 1: Fig. S5D we use 100 ∙ Analysis/Ref-
erence, which is equal to 1-relative error. Pearson corre-
lations were calculated with the PEARSON command in 
Excel.

Analysis of mobile element insertion sequences using 
RepEnTools
MEI sequences were retrieved from dbRIP.org in four 
groups, according to attributed originating RE (ERVK, 
SVA, L1, and Alu) [39], reference MEIs were filtered out 
(column 16), then the data were converted to single  .fa 
files with multiple entries, and used as source of genomic 
sequences for ART_Illumina (V 2.5.8) [38]. Coverage was 

(2)pFDRk = pk ·
15745

k

(3)

Relative error (%) = 100 · 2 ·

∣

∣

(

Reference− Analysis
)∣

∣

(

Reference+ Analysis
)

1x, all other settings were as described above. RepEnTools 
analysis was conducted using chm13v2.0. Each RE group 
was processed separately by ART​ as well as RepEnTools.

Quantitation of genome‑wide coverage
Using bamcoverage of deepTools2 (v3.5.2), the mapped 
reads were quantified in 10 bp bins using Reads Per Kilo-
base of transcript, per Million mapped reads (RPKM) 
and using only primary alignments.

bamCoverage –outFileFormat ’bigwig’ –binSize 10 –
normalizeUsing RPKM –scaleFactor 1.0 –samFlagEx-
clude 256

In Fig. 7E-G and Additional file 1: Fig. S12, biological 
replicates were pooled using bigwigcompare reporting 
the mean RPKM signal.

Pearson correlation factors were calculated with multi-
BigwigSummary and plotCorrelation (v3.5.2), using 5 kb 
bins for genome-wide comparisons.

multiBigwigSummary bins –bwfiles –binSize ’5000’ –
distanceBetweenBins ’0’

plotCorrelation –corData –plotFile –corMethod ’pear-
son’ –whatToPlot ’heatmap’ –colorMap ’RdYlBu_r’ 
–plotNumbers

Fingerprint plots were created using plotFingerprint 
(v3.5.2).

plotFingerprint –plotFileFormat svg –outQualityMet-
rics –binSize ’5000’ –numberOfSamples ’100000’ –min-
MappingQuality ’0’ –samFlagExclude 256

Heatmaps and profiles
For the bed file representing all coordinates of models 
for a specific RE, we started from the bed12 RMSK file 
retrieved from UCSC, filtered for the RE using grep, and 
retained only the first columns to create a bed6.

For the bed file representing full-length REs, we started 
from our adjusted RMSK gtf (Additional file 1: Fig. S2A), 
filtered for the RE using grep, filtered the regions for 
reciprocal ≥ 90% overlap to the model bed6 using bed-
tools intersect (v2.30.0), and converted the gtf output to 
bed4. Setting the overlap requirement to 100% results in 
many false negatives and 90% is the next possible option.

bedtools intersect -f 0.9 -F 0.9 -u
Heatmaps and profiles were generated using deepTools2 

(v3.5.2), with 50 bp bins
computeMatrix –regionsFileName ’BED.bed’ –avera-

geTypeBins ’mean’ –missingDataAsZero –binSize 50
plotHeatmap –matrixFile –plotFileFormat ’png’ –aver-

ageTypeSummaryPlot ’mean’ –plotType ’lines’ –missing-
DataColor ’black’ –colorMap RdYlBu_r –alpha ’1.0’

plotProfile –matrixFile –plotFileFormat svg –avera-
geType ’mean’
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TFBS identifications
As the literature regarding the exact position of TEEn-
hancers on L1PA1/L1HS is unclear [13, 48], and the 
consensus sequence only contains partial motifs, we 
extracted the sequences from the primary alignments 
that overlap the full-length L1HS coordinates using 
samTools-fastx (v1.15.1), sanitised the FASTA using fil-
ter FASTA (v2.3), and looked for enriched TFBS motifs 
in the two biological replicates of UHRF1-TTD CIDOP 
against the corresponding inputs on meme-suite.org/
meme (analysed on 10th June 2023) using XSTREME 
(v5.5.3) [50] and HOCOMOCOv11_core_HUMAN [79].

samtools sort -n samtools fasta -f 0 -F 2304 -G 0 input 
| gzip

python ’filter_by_fasta_ids.py’ -i –min_length 15 -o

GST‑recombinant proteins
The hUHRF1-Tandem Tudor domain (UNIPROT 
Q96T88, residues 126–280) with a N-terminal fusion to 
GST, was previously purified from E. coli, flash-frozen 
and stored at -80 °C [26].

CIDOP and ChIP
Cell culture work was performed as described previously 
[26]. Briefly, HepG2 cells were acquired from DSMZ—
German Collection of Microorganisms and Cell Cul-
tures (No: ACC 180) and grown in RPMI 1640 medium 
(Gibco) supplemented with 10% FBS, 100 U/ml penicillin 
and 100 mg/ml streptomycin at 37  °C under humidified 
air with 5% CO2. Cells were harvested at 300  g (5  min, 
4  °C) and the pellets were washed once with 1  ml PBS, 
flash-frozen and stored at -80 °C. For CIDOP-qPCR, bio-
logical duplicates were generated.

Mononucleosome generation and CIDOP using 
hUHRF1-TTD wild-type and the binding deficient 
D142A mutant were performed as described previously 
[26]. Briefly, the cells were resuspended in lysis buffer 
(10 mM Tris–HCl pH 7.4, 2 mM MgCl2, 0.5 mM PMSF, 
1  mM DTT, 0.6% v/v Igepal CA-360, EDTA-free pro-
tease inhibitor cocktail tablet), digested with ~ 135 units 
of MNase (NEB, M0247) per 1 million cells at 37  °C, 
150 rpm for 12.5 min in one tube, diluted in interaction 
buffer (20  mM Tris–HCl pH 8.0, 150  mM NaCl, 1  mM 
PMSF, 0.1% v/v Triton X-100, 50% v/v glycerol, EDTA-
free protease inhibitor cocktail tablet) centrifuged, and 
the supernatant containing mononucleosomes collected, 
flash-frozen and stored at -80 °C. One nmol of TTD was 
first incubated with 12  µl GST-Pierce magnetic beads 
for 2 h, and then with 300 nmol (60 µg) precleared chro-
matin for overnight binding. Beads were washed three 
times with PB200 (50  mM Tris–HCl pH 8.0, 200  mM 
NaCl, 2 mM DTT, 0.5% v/v Igepal CA-360), followed by 
two rinse steps (10  mM Tris–HCl pH 8.0). Samples for 

qPCR analysis were eluted (50  mM Tris–HCl pH 8.0, 
50 mM NaCl, 5 mM EDTA, 1% w/v SDS), digested with 
2.5 units of Proteinase K (NEB, P8107) at 55 °C, 900 rpm 
for 90 min, and purified with the ChIP DNA Purification 
Kit (Active Motif ).

Assessment by qPCR
All qPCR assays were performed on a CFX96 qPCR sys-
tem (Bio-Rad) using ORASEE qPCR reagent (highQu) 
at 1 × concentration, 0.4  µl of each primer (0.267  µM 
final) and 1  µl of template in 15  µl final reaction vol-
ume. Master mixes were made for each primer pair 
used, and all samples (input for 3-point calibration, no-
template control and CIDOPs) for all biological repli-
cates were pipetted in technical triplicates, assayed on 
the same 96-well plate. The oligonucleotides used for 
qPCR assays are listed in Additional file  3: Table  S2. 
Details on the qPCR programmes in Additional file  1: 
Fig. S9-S10.

Public datasets used in this study
Published ChIP-seq data were downloaded as fastq files. 
Details are provided in Additional file 3: Table S3.
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