
Oggenfuss et al. Mobile DNA  (2024) 15:2 
https://doi.org/10.1186/s13100-024-00312-1

RESEARCH Open Access

© The Author(s) 2024, corrected publication 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 
International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver 
(http://​creat​iveco​mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a 
credit line to the data.

Mobile DNA

A systematic screen for co‑option 
of transposable elements across the fungal 
kingdom
Ursula Oggenfuss1,2, Thomas Badet1 and Daniel Croll1* 

Abstract 

How novel protein functions are acquired is a central question in molecular biology. Key paths to novelty include 
gene duplications, recombination or horizontal acquisition. Transposable elements (TEs) are increasingly rec-
ognized as a major source of novel domain-encoding sequences. However, the impact of TE coding sequences 
on the evolution of the proteome remains understudied. Here, we analyzed 1237 genomes spanning the phyloge-
netic breadth of the fungal kingdom. We scanned proteomes for evidence of co-occurrence of TE-derived domains 
along with other conventional protein functional domains. We detected more than 13,000 predicted proteins con-
taining potentially TE-derived domain, of which 825 were identified in more than five genomes, indicating that many 
host-TE fusions may have persisted over long evolutionary time scales. We used the phylogenetic context to identify 
the origin and retention of individual TE-derived domains. The most common TE-derived domains are helicases 
derived from Academ, Kolobok or Helitron. We found putative TE co-options at a higher rate in genomes of the Sac-
charomycotina, providing an unexpected source of protein novelty in these generally TE depleted genomes. We 
investigated in detail a candidate host-TE fusion with a heterochromatic transcriptional silencing function that may 
play a role in TE and gene regulation in ascomycetes. The affected gene underwent multiple full or partial losses 
within the phylum. Overall, our work establishes a kingdom-wide view of putative host-TE fusions and facilitates sys-
tematic investigations of candidate fusion proteins.

Introduction
Proteomes are diverse and variability extends to the 
population and individual level [1]. Causes of proteome 
diversity include alternative splicing, presence-absence 
polymorphisms, single nucleotide polymorphisms or 
larger structural variations, such as duplications, reshuf-
fling of protein domains, partial deletions or transloca-
tions [2]. Aneuploidy or gene duplication, followed by 

neofunctionalization due to relaxed purifying selection, 
can lead to diversification [3]. Gene gains can also be 
mediated by horizontal gene transfer from other species 
or by de novo gene birth [4, 5]. Proteome evolution can 
also entail pseudogenization, with pseudogenes expected 
to eventually get lost or regain function. Genetic varia-
tion can provide a highly dynamic proteome, allow-
ing populations to rapidly adapt to new or changing 
environments.

Mutations, rearrangements, losses or acquisitions of 
protein-coding genes may be facilitated by co-locali-
zation with transposable elements (TEs). In some spe-
cies, TEs are clustered into gene-poor islands [6, 7]. 
TE rich islands are under relaxed purifying selection, 
often leading to retention of single nucleotide polymor-
phisms or structural variants, and a higher rate of ectopic 
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recombination caused by repetitive sequences [8]. Genes 
located in such TE islands are thought to be under puri-
fying selection as well, allowing the accumulation of 
mutations at a fast rate [9]. Ectopic recombination of two 
copies of the same TE family can lead to the deletion of 
genes between them [10]. Some TEs such as Helitrons 
in maize or Pack-Mules in rice have the ability to cap-
ture and amplify segments containing coding sequences 
[11–17]. Finally, TEs can capture genes and horizontally 
transfer them to other species, including by the means of 
Starships in fungi or virus-like Mavericks in nematodes 
[18–23]. Exon-shuffling via the activity of TEs can lead to 
novel transcription factor binding sites, providing novel 
regulatory dynamics and ultimately new functions to 
proteins [24].

TE insertions into coding regions are typically del-
eterious and are therefore under strong purifying selec-
tion [25, 26]. Yet, TE insertions into duplicated genes, 
pseudogenes or non-essential genes are less likely to 
be deleterious and may lead to neofunctionalization or 
exonisation of the gene [4]. If retained over time, such 
host-TE fusions may lose functions related to TE prolif-
eration and become essential, a process also identified as 
TE domestication or co-option [24, 27]. Host-TE fusions 
that provide essential new functions are expected to be 
retained, although the evolutionary timeframes of such 
domestication events remain poorly understood.

The initial function of TE encoding sequences is typi-
cally restricted to a few functions related to the mobili-
zation and duplication of the elements [28, 29]. Yet, how 
TE sequences provide additional functions for existing 
coding sequences remains understudied. A well-studied 
example of host-TE fusion is the V(D) J recombination 
that leads to immunoglobin diversification and provides 
highly conserved adaptive immunity in jawed vertebrates 
[30, 31]. The recombination activating genes RAG1 and 
RAG2 retained mobility and can re-shuffle recombi-
nation signal sequences, creating the basis for rapid 
sequences changes in the face of new antigens [31]. Even 
though the V(D) J recombination is not conserved across 
all vertebrates, the fusion is thought to have occurred 
~ 500 million years ago [31, 32]. RAG1 is a host-TE fusion 
gene, containing the transposase of the Transib-like DNA 
transposon and a RING finger ubiquitin ligase at the 
N-terminal that probably acts in dimerization and as a 
ligase for ubiquitination [33]. Another example is KRA-
BINER, a host-TE fusion in vespertilionid bats consisting 
of a Mariner DNA transposon and ZNF112 [34]. KRABI-
NER controls the regulation of a large network of genes 
[34]. In the fission yeast Schizosaccharomyces pombe, 
Abp1, Cbh1, Cbh2 are centromeric pogo derived host-TE 
fusions that led to retrotransposon silencing [35–37]. A 
Bel-Pao derived gag sequence was recently shown to have 

fused with PEX14 gene, acquiring an intron and creating 
a host-TE fusion in fungi [38].

TEs are highly diverse in fungal genomes, even 
between closely related species, indicating independ-
ent TE activity [39–41]. TEs have played an important 
role in the evolution of host-associated lifestyles or local 
adaptation to external stress including tolerance of pesti-
cides [42–45]. Many fungal species show distinct genome 
compartmentalization, featuring TE-rich and gene-poor 
islands, and a fungal specific defense against repeti-
tive sequences further increases the differentiation [9, 
46–48]. Fungi associated with animals and pathogenic 
lifestyles in general tend to have higher numbers of TE 
insertions into genes, which could either be recent inser-
tions in non-essential genes or host-TE fusions [49]. Old 
TE insertions are more likely to affect genes with enzy-
matic rather than protein-protein interaction functions 
[49]. The TE content and diversity observed today may 
not necessarily correlate with the number of host-TE 
fusions, as TE activity is expected to occur in random or 
stress-induced bursts of proliferation [50]. Ancient and 
ongoing TE activity in many lineages of the fungal king-
dom and the exceptional genomic resources available for 
such compact genomes provide a vast potential to retrace 
the emergence of host-TE fusions over deep evolutionary 
timeframes.

Here, we used a systematic approach to detect host-TE 
fusions in the genomes of 1237 fungal isolates. To iden-
tify host-TE fusions, we used gene orthology and phylog-
enomic analyses to detect the emergence and retention 
of TE-derived domains in fungal proteomes. We found 
that TE-derived helicases are the dominant TE partner 
in likely host-TE fusions. The subphylum Saccharomy-
cotina, which includes model yeasts like Saccharomyces 
cerevisiae and Candida albicans, shows elevated contents 
of host-TE fusions despite typically having small and 
repeat-poor genomes. Host-TE fusions are enriched for 
binding functions to heterocyclic compounds, organic 
cyclic compounds ATP, adenyl ribonuclease and adenyl 
nucleotide. Additionally, we identified widespread can-
didate host-TE fusions in ascomycetes involved in gene 
silencing, originating from Helitron, AcademH or Kolo-
bok and Maverick domains. Phylogenetic analyses sug-
gest independent origins of identical host-TE fusions, 
uneven rates of gene retention and secondary losses.

Methods
Retrieval of genomes and gene annotations
We obtained genomes and gene annotations for 1237 
fungal isolates from two different sources. A total of 
994 genomes belong to the phylum Ascomycota, 195 
Basidiomycota, 28 Mucoromycota, 12 Chytridiomy-
cota, 8 Zoopagomycota (see Supplementary Table S1 for 
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full references and additional data). The budding yeast 
genomes were retrieved from Shen and colleagues [51]. 
We retrieved additional genomes and gene annotation 
from fungal and Oomycetes genomes from NCBI. Six-
teen oomycetes were used as outgroup to root the phy-
logenetic trees in downstream analyses (Supplementary 
Table S1).

Phylogenomic reconstruction
To build a tree, we followed the approach by Li et  al. 
[52] to reconstruct the fungal tree of life. Briefly, we 
first identified a set of single-copy orthologous genes in 
each of the 1237 genomes using BUSCO v 4.1.4 search-
ing the fungi or oomycote orthology database version 10 
for fungi and oomycetes, respectively [53]. The pipeline 
identified a maximum set of 756 BUSCO genes in the 
genome of the fungus Colletotrichum plurivorum. The 
identified BUSCO genes were then translated into pro-
tein sequences respecting the relevant genetic code (code 
12 for Saccharomycotina isolates except for Pachysolen 
tannophilus (Pactanno for which code 26 was used, and 
code 1 for all other genomes) [54]. Of the 756 BUSCO 
genes identified, a random sample of 100 of the result-
ing BUSCO protein sequences was then concatenated 
using the geneStitcher.py script (https://​github.​com/​
balle​sterus/​Utens​ils) and aligned using mafft v 7.475 
with the parameters --maxiterate 1000 --auto [55]. The 
resulting alignment was then trimmed using trimAl v 
1.4.rev15 with the -gappyout option [56]. We estimated 
the best-fitting evolutionary models for the concatenated 
100 protein sequences using partitionfinder v 2 with the 
quick option -q and default RAxML v 8.2.12 [57, 58]. The 
resulting partitioned model was then applied for phylo-
genetic inference using iqtree2 v 2.1.2 after 1000 repli-
cates for ultrafast bootstrap and 2 independent runs with 
-B 1000 --runs 2 [59]. We rooted the tree with the non-
fungal oomycete Phytophthora parasitica and visualized 
the tree using the R packages ggtree, ggtreeExtra and 
treeio [60–62].

Annotation of functional domains in the proteomes
To identify putative functional domains across the ana-
lyzed proteomes, we downloaded the annotated domains 
hidden Markov models from the PFAM release 31 [63]. 
We used the hmmsearch function from the HMMER 
package v 3.3.2 to scan all proteomes for functional 
domains with the --noali option to speed up the process 
[64]. We then filtered the matching domains for a mini-
mal bitscore of 50 and a maximal e-value of 1e-17 using 
the HmmPy.py script  (https://​github.​com/​EnzoA​ndree/​
HmmPy).

Inference of trophic modes
We categorized genomes using the CATAStrophy v 
0.1.0 pipeline [65]. Using the predicted proteins from 
all genomes, we searched for genes encoding carbo-
hydrate-degrading enzymes (CAZymes) with dbCAN 
v 8 [66]. As for the PFAM annotation, we performed 
hmmscans on each proteome using the dbCAN hid-
den Markov models as query. We then applied the 
CATAStrophy algorithm to predict the most likely 
trophic mode based on the set of encoded CAZymes.

Gene orthology analysis
We inferred gene orthology among all genomes based on 
protein sequence identity. We used Orthofinder v 2.4.1, 
which implements diamond blast v 0.9.24 for homol-
ogy searches across the pool of predicted proteins [67, 
68]. From the initial set of 13,863,658 individual proteins 
encoded by all genomes combined, Orthofinder grouped 
7,860,083 proteins into 299,713 orthogroups.

Detection of candidate host‑TE fusions
We retrieved previously reported PFAM domains asso-
ciated with fungal TE superfamilies ([49], https://​www.​
mrc-​lmb.​cam.​ac.​uk/​genom​es/​boris/​12gen​omes/​summa​
ry_​for_​CB) and filtered for genes encoding TE-associated 
PFAM domains. In a second filtering step, we removed 
proteins annotated exclusively with TE-associated PFAM 
domains. We excluded PFAM with similarity to any of 
the fungal TE PFAM based on SCOOP and HHSearch 
[69] (Supplementary Table S2). We removed all oomy-
cete genes. We filtered out genes if the identified TE and 
non-TE PFAM domains had an overlap of more than 
5% in the amino acid sequence. Such overlaps may indi-
cate that the two annotations identify the same protein 
domain. Overlaps were identified using bedtools v 2.30.0 
with the intersect function [70]. We retained candidate 
orthogroups including host-TE fusion proteins if genes 
encoding independent TE and non-TE PFAM domains 
were represented in at least five genomes and belong to 
the same orthogroup (Fig. 2A).

Indication of repeat‑induced point mutations
Given that host-TE fusions likely emerge after gene 
duplication, and gene duplication is reduced in many 
Ascomycete species due to repeat-induced point muta-
tions (RIP), we compared the number of host-TE fusion 
candidates to the percentage of RIP affected regions of 
a subset of 48 genomes, previously reported [48].

Gene ontology term enrichment analyses
We analyzed the enrichment of specific gene ontol-
ogy terms among host-TE fusion genes compared to 
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the background of all genes. To reduce the computa-
tional load, we defined the background as a 1% random 
subset of the entire set of genes (subset: n = 358,350). 
Gene ontology terms were assigned to genes using a 
GO-PFAM term translation based on Mitchell et  al. 
[71]. We created a GOAllFrame object with the Anno-
tationDbi package v 1.54.1 and constructed a Gen-
eSetCollection with GSEABase v 1.54.0 [72, 73]. We 
calculated enrichment p-values using the hyperGTest 
in the Category package v 2.58.0 [74]. For each MF 
(molecular function), BP (biological process) and CC 
(cellular component) Gene ontology term enrichment, 
a p-value cut-off of 1e-10 and a minimum term size of 
20 was applied.

Filtering for copy‑number variation in host‑TE fusion genes
To detect potential activity of the TEs represented by 
the identified PFAM domains in individual genomes, we 
analyzed potential copy-number variation of the host-TE 
fusion genes and their respective PFAM terms. To reduce 
conservatively detecting host-TE fusion genes generated 
by recent TE insertion events, we required host-TE fusion 
genes to be present in at least 5 genomes belonging to the 
same order and present in at least 20 genomes. Further-
more, we analyzed candidate host-TE fusion genes for 
their PFAM domain order along the amino acid sequence 
and removed orthogroups without a conserved domain 
order. After filtering, we extracted the predicted func-
tion of the non-TE candidate function based on the infor-
mation provided in the PFAM database [63]. To remove 
host-TE fusion gene candidates potentially erroneously 
identified due to the physical proximity of genes in fungal 
gene clusters, we performed gene cluster analyses using 
antiSMASH v 3.0 using the list of predicted gene clusters 
from Kautsar et al. [75, 76]. Finally, we generated a sub-
set of host-TE fusion gene candidates based on manual 
filtering for known TE domains. We performed this addi-
tional filtering starting from host-TE fusion candidates 
present in ≥5 genomes as described above. We manually 
removed weakly supported candidates presenting either 
a candidate TE domain that is not unambiguously recog-
nized as TE-derived or a candidate host domain that may 
potentially be of TE origin (Supplementary Table S6).

Phylogeny of helicase‑related protein families
To infer the evolutionary relationship between proteins 
that encode a helicase conserved C terminal domain, 
we first recovered all proteins that harbor such PF00271 
domains with a minimal bitscore of 50 and a maximal 
e-value of 1e-17 after hmmsearch. Using the samtools 
faidx function, we recovered all protein sequences corre-
sponding to the PF00271 domain. We removed proteins 
lacking methionine at the start or containing in-frame 

stop codons using a custom script (https://​github.​com/​
miles​rober​ts-​123/​extra​ct-​weird-​prote​ins). The PF00271 
encoding protein sequences were aligned using Clustal 
Omega allowing for 5 iterations and trimmed using tri-
mAl with the gappyout method [77, 78]. Sequences 
with more than 20% gaps over the trimmed alignment 
were removed using fasta_drop.py (https://​www.​biost​
ars.​org/p/​95129​48/). A phylogenetic tree was finally 
inferred using FastTree version 2.1.11 with the Whelan-
And-Goldman 2001 model (wag) and 1000 bootstraps 
[79]. Clusters based on the tree were computed using 
the TreeCluster version 1.0.4 and the median pairwise 
distance method (med_clade) for threshold values rang-
ing from 1 to 2.5 [80]. The tree was visualized with the R 
package ggtree.

Results
Phylogeny and genomic landscape show variation 
among genomes in the fungal kingdom
We analyzed genomes of 1237 fungal isolates belong-
ing primarily to phyla of ascomycetes and basidiomy-
cetes (Fig.  1A). Based on a set of 100 single-copy genes 
we constructed a maximum likelihood phylogenetic 
tree (Fig.  1B; Supplementary file F1). The tree resolves 
the fungal phylogeny consistently with recent analyses 
of similar scope [81, 82]. Ascomycetes are segregated 
into three larger groups including the Saccharomyco-
tina, Taphrinomycotina and Pezizomycotina. The ana-
lyzed genomes are generally of high completeness based 
on BUSCO analyses with a mean number of complete 
genes of 94.97%, and with 95.71% higher than 80% 
(Fig. 1C). The number of detected genes varied from 602 
to 22,164, with generally lower gene numbers in the Sac-
charomycotina (Fig.  1B). Assembled genome sizes were 
highly variable and ranged between 7.37–773.10 Mb 
(mean = 34.43 Mb; Fig. 1C). Genome-wide GC content is 
on average 46.4% with an observed range between 16.3–
67.8% (Fig. 1C). Genomes in Saccharomycotina, Chytrid-
iomycota, Mucoromycota and Zoopagomycota typically 
exhibit GC contents below 50%.

The number of host‑TE fusions across the fungal kingdom 
is highly variable
We next analyzed coding sequences for conserved 
domains present in the PFAM database. To define 
candidate host-TE fusion we required that at least 
one conserved domain matches a domain thought to 
be exclusively associated with TEs and at least one 
domain not associated with TEs. The stringent filtering, 
which required candidates to be detected in at least 20 
genomes, allowed us to focus the analyses on conserved 
host-TE fusions over deep evolutionary times and to 
exclude pseudogenes. From a total of 39,655 unique 
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proteins associated with a TE-associated domain across 
all genomes, we found 13,342 to also contain a non-TE 
domain (Fig.  2A; Supplementary Table S3). A total of 
1205 genomes (98.3%) carry at least one gene matching 

our criteria for host-TE fusion genes. We found on aver-
age 297.5 host-TE fusions (range 0–3311) per genome 
(Fig.  2B). Overall, 0.6–17.0% of all annotated genes of 
a genome are host-TE fusions. Genomes belonging to 
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Saccharomycotina, on average, have a higher propor-
tion of host-TE genes per genome (240 compared to 
372 across all other genomes; Fig. 2B), even though they 
generally contain fewer genes compared to other asco-
mycetes (5837 compared to 12,502; Fig.  2B). Generally, 
Saccharomycotina have a higher percentage of genes that 
are containing a TE derived sequence (4.18% compared 
to 3.04%; Fig. 2B). Outlier species with high proportions 
of candidate host-TE derived proteins include the plant 
pathogens Armillaria ostoyae (31.6%) and Fusarium poae 
(30.1%), as well as nine additional genomes with a pro-
portion > 10% (Supplementary Fig. S1A). The two high-
lighted species carry moderate proportions of TEs in the 
genome compared to other fungi [83, 84]. Fusarium spe-
cies have previously been shown to encode a large num-
ber of diverse Helitrons in their genome, which would 
explain the high number of potential host-TE fusions 
in these species [83]. We found no correlation between 
the number of detected host-TE fusions, BUSCO com-
pleteness scores, GC content or genome size suggesting 

the variation in host-TE among lineages is not meaning-
fully explained by variation in genome assembly quality 
(Supplementary Fig. S1B). Repeat-induced point muta-
tions (RIP) may impact the ability to retain duplicated 
sequences and early-stage host-TE fusions in particular. 
In a subset of genomes that were previously analyzed on 
the strength of RIP, we detected no indication of host-
TE fusions in genomes covered by more than 10% of RIP 
affected regions (Supplementary Fig. S1C). Genomes 
with lower coverage of RIP affected regions vary between 
0 and 10% of predicted proteins that are part of a host-TE 
fusion.

Transposable elements provide DNA binding sites 
to a wide range of functions
We restricted our analysis to 824 (115,497 occurrences) 
host-TE fusion orthogroups where an ortholog is pre-
sent in at least five isolates, thereby retaining the evo-
lutionarily conserved host-TE fusions. From the set of 
824 individual host-TE fusions, we identified 29 distinct 

Fig. 2  Host-TE fusion events identified across the fungal kingdom: A Overview of host-TE fusion detection steps. B Number of fusions detected 
per species, number of fusions detected per gene and number of annotated genes per genome. B Function of TE derived domains in all detected 
host-TE fusions. Squares indicate the number of individual fusions. D Function of non-TE derived domains of host-TE fusion genes
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TE-associated PFAM (Supplementary Table S4). The 
TE-related PFAM only includes domains of Helicase_C 
(PF00271) DEAD (PF00270) helicases, PIF1 (PF05970) 
and Helitron_like_N (PF14214) from the AcademH, Kolo-
bokH or Helitron TE superfamilies (Fig.  2C). Non-Heli-
case domains with more than 1000 candidates include 
Chromo domains (CHRromatin Organization Modifier; 
PF00385) from the Maverick TE superfamily and spe-
cific retrotransposons, Exo_endo_phos (Endonuclease 
/ Exonuclease / phosphatase; PF03372) from the LINE 
TE order and DDE_1 (DDE superfamily endonuclease; 
PF03184) from Tc1–Mariner TE superfamily. Impor-
tantly, Helicase domains, Chromo domains, Exo_endo_
phos are not exclusively TE-derived.

The diversity in non-TE PFAM domains consistently 
found across all orthologs of a host-TE fusion protein is 
substantially higher with 383 individual non-TE PFAMs. 
In particular, the domains included ResIII, SNF2_N, 
OB_NTP_bind and AAA_19 functions (Fig.  2D). The 
383 non-TE PFAM are associated with 66 gene ontol-
ogy terms, with highest associations in ATP binding, 
nucleosome-dependent ATP activity, nucleic acid bind-
ing, protein binding, methyltransferase activity, GTP 
binding, nucleus, zinc ionic binding, RNA processing and 
hydrolase activity, acting on acid anhydrides, in phospho-
rus containing anhydrides being the prevalent functions 
(Supplementary Fig.  2A). Among our list of candidates, 
we find the centromere protein CENP-B that is known to 
have originated from a pogo-like transposase domestica-
tion event in yeast (also known as Abp1, Cbh1 and Cbh2 
centromere protein N-domain in S. pombe; PF03184 
and PF18107) [35–37, 85]. More than 40% of all non-TE 
domains could not be associated with a gene ontology 
term.

We then focused on a more restricted set of candi-
dates including the most evolutionarily conserved host-
TE fusions by requiring an ortholog to be present in at 
least 20 genomes (and at least five species belonging to 
the same order). The resulting subset of host-TE fusions 
contains predominantly TE-associated functions related 
to helicases (Helicase_C, DEAD helicase) and 241 genes 
encoding 125 distinct non-TE PFAM domains, including 
SNF2_N, UBA, zf-H2C2, Rad60-SLD and UBA_4 (Sup-
plementary Fig. S2B). Domains with functions related to 
nucleotide binding are enriched in this set of 241 candi-
dates (Fig. 3; Supplementary Table S5). We also identified 
a fusion between a DEAD helicase and a Dicer_dimeriza-
tion domain (PF00270 and PF03368). The Dicer protein is 
involved in RNA interference and protection against TE 
activity or viral infection and has been previously identi-
fied as containing a helicase domain [86].

We highlight the detection of a previously described S. 
pombe host-TE fusion with homology to the Mit1 domain 

[87]. The Mit1 domain is a component of an effector 
complex for heterochromatic transcriptional silencing 
(SHREC) with a function in heterochromatin silencing 
(PF00271 and PF00385) [85]. SHREC is a host-TE fusion 
that includes a Helicase_C derived from AcademH, Kolo-
bokH or Helitron, an additional TE-derived Chromo 
domain from Maverick TEs and a conserved non-TE 
domain zf-CCCH_6. In addition to the conserved non-TE 
domain zf-CCCH_6 and the two TE domains Helicase_C 
and Chromo, almost all copies of SHREC contain SNF2_N 
and zf-PHD-like domains. Approximately half of the 
fusion protein variants contain ResII or PHD domains, in 
addition to 88 more rarely associated domains (Fig.  4A; 
Supplementary Fig. S3). The Mit1 homology domain is 
primarily present in ascomycetes, with the highest rep-
resentation in the Eurotiomycetes (n = 169), Dothideo-
mycetes (n = 115) and Leotiomycetes (n = 34). Lower 
numbers are found in Lecanoromycetes (n = 4), Orbili-
omycetes (n = 5), Pezizomycetes (n = 9), and Xylono-
mycetes (n = 1). The Mit1 homology domain is largely 
absent in the large class of Saccharomycotina (n = 1) and 
was only detected in Schizosaccharomyces cryptophi-
lus, S. japonicus and S. pombe of the Taphrinomycotina. 
Weak representation is also found in basidiomycetes of 
the classes Agaricomycetes (n = 4) and Dacrymycetes 
(n = 1). In two ascomycetes (Aspergillus carbonarius and 
Phialophora americana), SHREC has a paralog, with one 
duplication that affected the gene with both TE domains 
and one duplication that affected the Helicase_C domain 
gene. A multiple sequence alignment of the duplicated 
genomic regions confirms the conservation of the indi-
vidual domains (Fig.  4B). We further investigated evi-
dence for helicase domains associated with host-TE 
fusion candidates focusing on the PF00271 underpinning 
helicase conserved C-terminal domains. The phyloge-
netic tree of proteins encoding PF00271 domains across 
the fungal kingdom includes both TE-host fusion candi-
dates and other proteins. We found that helicase host-TE 
fusions were heterogeneously distributed across the tree 
with multiple terminal branches carrying host-TE fusion 
candidates (Supplementary Fig. S4). This is consistent 
with a pattern of repeated emergence of host-TE fusion 
candidates.

Manually refined inspection of host‑TE fusion candidates
Host-TE fusion candidates likely include many false posi-
tives due to uncertainty in assigning protein domains 
to be of TE origin. To investigate a reduced but more 
strongly supported set of host-TE fusion candidates, we 
manually curated proteins shared by ≥5 genomes both 
for carrying an unambiguous TE-derived domain and 
at least one unambiguous non-TE domain (Supplemen-
tary Table S6). The stringent curation strongly reduced 
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the candidate set to only 152 species. Outliers for high 
proportions of host-TE fusion candidates remained A. 
ostoyae (n = 668) and F. poae (n = 108). The curation 
removed also most helicase domains as these often are 
ambiguous in their origins. The most frequent retained 
domains include retroelements (i.e. RVT_1/ PF00078, 
reverse transcriptase, n = 417), followed by gag-polypro-
tein putative aspartyl protease/PF13975 (n = 296) and 
RVP_2/ PF00077 (retroviral aspartyl protease, n = 232).

Discussion
Transposable elements are important facilitators of 
genome evolution, by providing regions of relaxed selec-
tion, positions of breakpoints from chromosomal rear-
rangements, by providing the means for horizontal gene 
transfer, gene mobility and reshuffling in the genome, or 
by providing coding regions, transcription factor binding 
sites and other structures to facilitate de novo proteins. 
The impact of TEs can be reversible, locally limited and 
short-lived. Yet, TEs may also have an impact over longer 
evolutionary time frames on the proteome diversification. 

Our analyses across 1237 fungal genomes revealed an 
uneven distribution of potential host-TE fusions among 
major fungal phylogenies, with a higher percentage of 
genes involved in host-TE fusions in Saccharomycotina. 
Opposed to vertebrates, plants and nematodes, where 
terminal inverted repeat transposase domains are pre-
dominantly associated with host-TE fusions, we detected 
helicases as the most abundant TE-derived domains 
[20, 27, 34]. The host domains of host-TE fusions show 
a broader diversity in function, but tend to be associated 
with processes involved in genome integrity and likely 
defense against foreign sequences including TEs.

TE‑driven dynamics in the Saccharomycotina
We observed that the compact genomes of Saccharomy-
cotina contain a higher proportion of host-TE fusions 
per gene compared to other fungi, while maintaining 
similar absolute numbers of host-TE fusions per genome. 
Given that all analyzed Saccharomycotina genomes have 
extremely low TE counts, we hypothesize that a signifi-
cant proportion of detectable TEs in these species may 

Fig. 3  Gene enrichment analysis: gene enrichment analysis of the non-TE derived domains and the corresponding TE-derived domains. * active 
with either ribo- or deoxyribonucleic acids and producing 5′-p hosphomonoesters
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be integrated into host-TE fusions [88–91]. Even tough 
TEs are rare and potentially less active than in other spe-
cies, they might still play crucial roles in Saccharomyco-
tina evolution, as seen for CENP-B. Notably, the absence 
of the ascomycete-specific defense mechanisms known 
as RIP (repeat-induced point mutations) against TEs in 
Saccharomycotina and Taphrinomycotina increases the 
potential for gene duplication followed by insertions of 
TEs and subsequent host-TE fusions events [48]. RIP is 
a mechanism that induces point mutations in all cop-
ies of duplicated regions of a certain length, affecting 
both transposable elements and genes [92–94]. RIP can 

introduce early stop codons or other deleterious muta-
tions in coding regions, leading to loss-of-function of 
duplicated sequences [95]. Active RIP in a lineage can 
significantly limit the evolution of essential gene func-
tions through gene duplication [96]. Consequently, RIP 
may underpin low rates of gene duplicates in ascomy-
cetes [97]. In this context, host-TE fusions of essential 
genes could plausibly emerge after gene duplications, 
where one copy remains essential, while the other copy 
is under relaxed purifying selection, potentially leading 
to the gain of new functions through TE domain fusions. 
While RIP is elevating mutation rates for genes close to 

Fig. 4  Host-TE fusion candidate Mit1 domain homolog distribution in the fungal kingdom: A Subset of the phylogenetic tree for species 
with indication of a presence of Mit1 domain homologs from SHREC. The phylogenetic tree only shows Ascomycetes classes, not including the 
class of Saccharomycotina. Color indicates the class. Presence of the Mit1 domain homolog in the species is indicated by a black rectangle, 
and the presence of TE-derived domains and host-derived domains are represented with a red rectangle. B Multiple Sequence Alignment 
of a selected number of proteins that are homologs to the Mit1 domain from SHREC
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TEs, RIP may reduce the potential to create new host-
TE fusions. With the absence of RIP in Saccharomyco-
tina and Taphrinomycotina, host-TE fusions could arise 
and be retained at higher rates. Having lower numbers 
of host-TE fusions in genomes highly affected by RIP is 
an indication that this might hold true, yet the absence 
of RIP is not leading to high amounts of host-TE fusions. 
Future studies may test in Saccharomycotina whether 
host-TE fusion proteins could be themselves involved in 
defenses against TEs in providing a mechanism to repress 
TEs low in the subphylum.

Helicase domains are predominant in fungal host‑TE 
fusions
Most detected host-TE fusions encode helicase domains 
of likely TE origin. The most common source of heli-
cases appears to be TEs of the DNA TE superfamilies 
AcademH, KolobokH or Helitron [98]. The specific DEAD 
and Helicase_C helicase domains were only recently rec-
ognized as of TE origin likely due to the recent discov-
ery of AcademH and KolobokH TEs [49]. AcademH has 
been found as low-copy TEs in Basidiomycota, Ascomy-
cota as well as Mucoromycota [98]. Helicases in general 
provide functions for the unwinding of DNA, DNA bind-
ing, and they are involved in DNA repair pathways [99]. 
Helicases from Helitrons though are known to be able to 
capture neighboring regions during transposition events 
[12, 100]. Helitrons might thus generate host-TE fusions 
through the capture of genes by a TE, rather than their 
own insertion into coding sequences. Once established, 
helicase-containing host-TE fusions might remain able to 
capture surrounding regions, which could be explained 
by a high presence-absence polymorphism of additional 
domains in most potential host-TE fusions involving heli-
cases. A gene capture mechanism would also explain the 
high diversity of functions in host-TE fusions involving 
helicases, as well as the putative repeated fusion events 
across clades of PF00271-encoding proteins (Supple-
mentary Fig. S4). Whether the preponderance of host-TE 
fusions with AcademH, KolobokH or Helitron helicases 
is related to such a promiscuous mechanism to capture 
neighboring genes remains unknown. Recurrent gene 
capture by helicase containing TEs could explain the high 
helicase diversity in fungi and their dominance among 
host-TE fusion genes [100].

Fungal host‑TE fusions might be involved in silencing 
of repetitive regions
DNA binding activity is predominant among fungal host-
TE fusion genes and is also featured among the most 
phylogenetically conserved fusions. The overrepresenta-
tion of DNA binding activity likely stems from the broad 
roles helicases play in nuclear functions. The domain 

Mit1 in the Snf2/Hdac repressive complex (SHREC) host-
TE fusion candidate shows a patchy distribution in some 
classes of ascomycetes, with sparse presence in other 
clades. Some classes of ascomycetes do not contain the 
Mit1 homology domain, which could be an indication 
that this host-TE fusion was randomly lost. In S. pombe, 
SHREC is known to transcriptionally silence genes and 
TEs [87]. The host-TE fusion consistently contains two 
TE-derived domains, Helicase_C and Chromo. Chromo 
domains are known in the superfamilies of Maverick 
(alternatively Polinton) and chromoviruses (a group of 
RLG, formerly known as Gypsy) and are located at the 
C-terminus of the integrase [101–103]. Chromo domains 
interact mostly with methylated histones [102, 104]. The 
patchy distribution of the Mit1 homology domain and 
the prevalent partial loss of the Chromo domain indicate 
that the complex might not be present or not functional 
in all fungi, respectively [105].

Fungal proteomes have been significantly shaped by 
ancient and ongoing TE insertions, which may increase 
functional diversity and influence speciation. The exact 
mechanisms for creating functional proteins remain 
poorly documented. However, screens of populations 
will improve our understanding of these mechanisms. 
Identifying the processes responsible for creating host-
TE fusions remains challenging. Regardless of genomic 
defenses, non-deleterious insertions of TEs into open 
reading frames of existing genes are likely very rare. We 
suggest gene capture by TEs (i.e., Helicases) as an alter-
native mechanism to TE insertion into introns followed 
by alternative splicing to create host-TE fusion. Detecting 
host-TE fusions in genomes presents several challenges 
due to the complex nature of the events and the fact that 
most fusions are ancient and likely no longer recogniz-
able as host-TE fusion events. Accurately detecting 
host-TE fusions is further complicated by fragmentated 
genome assemblies, incomplete knowledge of TE-derived 
domains, and the rarity of events leading to host-TE 
fusions. Additionally, bioinformatics-based approaches 
often cannot predict novel functions of host-TE fusion 
genes. Future research with improved genome assembly 
quality, refined curation, improved computational tools 
and functional investigations will expand our under-
standing of contemporary and historic host-TE fusions in 
the fungal kingdom.
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