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METHODOLOGY

T3E: a tool for characterising the epigenetic 
profile of transposable elements using ChIP‑seq 
data
Michelle Almeida da Paz and Leila Taher* 

Abstract 

Background:  Despite the advent of Chromatin Immunoprecipitation Sequencing (ChIP-seq) having revolutionised 
our understanding of the mammalian genome’s regulatory landscape, many challenges remain. In particular, because 
of their repetitive nature, the sequencing reads derived from transposable elements (TEs) pose a real bioinformatics 
challenge, to the point that standard analysis pipelines typically ignore reads whose genomic origin cannot be unam-
biguously ascertained.

Results:  We show that discarding ambiguously mapping reads may lead to a systematic underestimation of the 
number of reads associated with young TE families/subfamilies. We also provide evidence suggesting that the 
strategy of randomly permuting the location of the read mappings (or the TEs) that is often used to compute the 
background for enrichment calculations at TE families/subfamilies can result in both false positive and negative 
enrichments. To address these problems, we present the Transposable Element Enrichment Estimator (T3E), a tool that 
makes use of ChIP-seq data to characterise the epigenetic profile of associated TE families/subfamilies. T3E weights 
the number of read mappings assigned to the individual TE copies of a family/subfamily by the overall number of 
genomic loci to which the corresponding reads map, and this is done at the single nucleotide level. In addition, T3E 
computes ChIP-seq enrichment relative to a background estimated based on the distribution of the read mappings in 
the input control DNA.

We demonstrated the capabilities of T3E on 23 different ChIP-seq libraries. T3E identified enrichments that were 
consistent with previous studies. Furthermore, T3E detected context-specific enrichments that are likely to pinpoint 
unexplored TE families/subfamilies with individual TE copies that have been frequently exapted as cis-regulatory ele-
ments during the evolution of mammalian regulatory networks.

Conclusions:  T3E is a novel open-source computational tool (available for use at: https://​github.​com/​miche​lleap​
az/​T3E) that overcomes some of the pitfalls associated with the analysis of ChIP-seq data arising from the repetitive 
mammalian genome and provides a framework to shed light on the epigenetics of entire TE families/subfamilies.
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Background
Transposable elements (TEs) are repetitive sequences 
that comprise about half of the human genome and 
constitute large portions of other eukaryotic genomes 
[1]. TEs have been hierarchically classified into classes/
subclasses depending on their mechanisms of transpo-
sition and chromosome integration, and into families/
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subfamilies according to sequence conservation and 
phylogenetic relationships [2]. Thus, several subfami-
lies are derived from the renowned Alu family, which 
belongs to a subclass of retroelements entitled SINEs 
(short interspersed nuclear elements) of class 1 (retro-
transposons). Although a few subfamilies of TEs among 
the Alu and other families such as long interspersed 
nuclear element-1 (LINE-1) and SINE-VNTR-Alu (SVA) 
remain mobile in the human genome [3, 4], most TEs 
have lost their ability to transpose [5]. Nevertheless, TEs 
remain drivers of genome evolution, for example, as a 
source of novel cis-regulatory elements [6, 7]. Indeed, 
TEs contain transcription factor binding sites (TFBS) 
and many TE sequences have been co-opted as enhanc-
ers and alternative promoters [8, 9]. Additionally, TEs 
have been shown to modify the expression of nearby 
genes by acting as silencers or insulators [10, 11]. Cis-
regulatory function in a particular biological context is 
typically assessed by chromatin immunoprecipitation 
followed by high-throughput sequencing (ChIP-seq) 
[12]. Thus, studies aiming to uncover how TEs rewire 
the regulatory network generally use ChIP-seq technolo-
gies to quantitatively analyse the enrichment of TEs on 
regulatory regions. However, the repetitive nature of TE-
derived sequences poses a challenge for ChIP-seq-based 
studies [13].

Sequencing reads originating from TEs often map to 
multiple loci (“multimappers”) and cannot be unam-
biguously assigned to one locus. This is especially true 
for reads arising from the loci of “young” TE families/
subfamilies, whose sequences have not had time to 
accumulate many mutations and are remarkably similar 
[14]. The problem has been tackled in different ways, for 
instance, by simply discarding multimappers from the 
analysis –the policy is adopted by many large consortia, 
including ENCODE [15]. This increases the specific-
ity of the analysis, but discards a large proportion of the 
reads originating from TEs. Moreover, because of their 
sequence properties, discarding ambiguously mapped 
reads and using only uniquely mapping reads (“unimap-
pers”) tends to affect the study of young TE families/
subfamilies more than that of old ones [16, 17]. Another 
common and also simple strategy when dealing with TE-
derived sequencing reads consists of randomly reporting 
one mapping [18]. This approach increases the number of 
mapped reads, but at the cost of precision [17]. Finally, 
more sophisticated TE-centric approaches have been 
developed, such as the one proposed by Chung et al. [19], 
which probabilistically reassign ambiguously mapped 
reads to regions where unimappers have been mapped, 
e.g., using the expectation-maximization (EM) algorithm. 
Nonetheless, this approach relies on the unambiguously 
mapped reads and seems to bias particularly towards 

regions that have any uniquely mapping read content 
[16]. Therefore, the adopted approach to deal with the 
mapping ambiguity issue impacts on quantifying the 
contribution of read mappings to a particular TE family/
subfamily by counting the number of read mappings (or 
peaks) and enrichment analysis.

The most widely used tool for analysing TE families/
subfamilies is RepEnrich [20], which addresses the ambig-
uously mapping matter using a strategy of fractional 
counts. RepEnrich first maps the reads to the reference 
genome in order to identify unimappers and multimap-
pers. Then, the unimappers are checked for overlap with 
annotated TEs, whereas multimappers are remapped to 
pseudogenome assemblies for each TE family/subfamily 
containing the annotated individual copy sequences. The 
fractional count for each TE family/subfamily is com-
puted as the sum of unimappers overlapping the given 
TE family/subfamily and the counting of multimappers 
weighted by 1/n, where n is the number of TE families/
subfamilies a given multimapper mapped with. Hence, 
RepEnrich attempts to overcome the mapping ambigu-
ity of multimappers by mapping them against individual 
copies and counting for TE families/subfamilies. Since 
some multimappers may have originated from non-anno-
tated TE regions of the genome and map to those with 
a higher score [17], the procedure adopted by RepEnrich 
to map multimappers onto a pseudogenome containing 
only the individual copies of a TE family/subfamily (and 
other repetitive sequences) is likely to overestimate read 
counts for specific TE family/subfamily sequences. The 
available tools applied to the study of TEs differ in their 
strategy to distinguish reads originated from particular 
TE families/subfamilies. Instead of using a pseudoge-
nome comprehending individual copy sequences for each 
TE family/subfamily such as in RepEnrich, Sun et al. [21] 
first map the ChIP-seq reads to the unmasked reference 
genome, extract reads that map to the annotated L1HS 
genomic sites and then exclude partiallycknowledge-
ments mapped reads or reads with indels or with more 
than three mismatches. Subsequently, the filtered reads 
are remapped to the consensus sequence of the L1HS 
TE family to solve the issue of ambiguously mapping 
reads for the youngest human L1 family. This strategy 
seems beneficial for the youngest TE families/subfamilies 
counting estimation, albeit particular attention should be 
taken to interfamily ambiguities, in which reads derived 
from related TE families/subfamilies tend to map to the 
provided consensus sequence with suboptimal score 
compared to the entire genome, but still above the con-
sidered threshold score [14]. Contrary to young TE fami-
lies/subfamilies, older TE family/subfamily sequences 
have accumulated more mutations and, thus, can diverge 
substantially from their consensus sequence.
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Like other next-generation sequencing approaches, 
ChIP-seq experiments are subject to library preparation 
and sequencing biases. To identify and adjust for such 
biases, ChIP-seq datasets are analysed together with a 
control library obtained by sequencing the “input” con-
trol DNA of the corresponding experiment without ChIP. 
Besides correcting for background bias, when estimating 
the count of a particular TE family/subfamily, linear scal-
ing of read depth is often performed to make the ChIP-
seq sample library comparable with its control library. 
Thus, most approaches normalise the ChIP-seq sample 
against the measured background (input control DNA) 
[18, 21]. In the context of TE analysis, enrichment is 
often calculated against a background simulated by ran-
domly permuting the locations of the read mappings (or 
of the TEs) in the genome [18, 21]. However, because the 
distribution of the input reads is not uniform, this strat-
egy has been reported to produce artificial enrichments 
at TEs [22].

Because mapping ambiguities and inadequate TE 
enrichment analysis can produce misleading biological 
conclusions [17, 22, 23], new computational tools must 
be developed to overcome the pitfalls described above. 
Here, we introduce the Transposable Element Enrich-
ment Estimator (T3E), an algorithm that identifies TE 
families/subfamilies featuring enrichment for specific 
targets of ChIP-seq data. In a sense, the strategy of T3E is 
similar to that of RepEnrich in that it relies on the reads 
mapping to individual TE copies to compute the num-
ber of read mappings associated with an entire TE fam-
ily/subfamily. However, differently from RepEnrich, our 
algorithm maps ChIP-seq reads to the entire genome 
of interest without subsequently remapping the reads 
to particular consensus or pseudogenome sequences. 
Also, in its calculations T3E considers the number of 
both repetitive and non-repetitive genomic loci to which 
each multimapper mapped, rather than only the number 
of different TE copies to which it mapped. Additionally, 
in contrast to RepEnrich, we do not rely on a threshold 
for the number of base pairs a given read mapped on a 
TE family/subfamily, but rather, we account only for the 
portion of the read that mapped on the given TE family/
subfamily. To adjust for library preparation and sequenc-
ing biases, our strategy shuffles positions according to 
the probability of a read starting at a given position on 
the input control DNA. Thus, to reflect the expected 
distribution of the read mappings in the input set, we 
assess the expectation from the read mapping distribu-
tion of the input control DNA. Moreover, we estimate 
the enrichment of TEs by comparing the read mapping 
counting in the ChIP-seq sample and in the average of 
the input library simulations for each studied TE family/

subfamily, without any normalisation step. Finally, we 
applied our strategy to different ChIP-seq datasets to 
demonstrate the robustness of T3E and the reproducibil-
ity of the results obtained with our approach.

Results
Ambiguous mappings can lead to biases in the enrichment 
estimation at young TE families/subfamilies
To investigate the TE families/subfamilies associ-
ated with ambiguously mapping reads, we analysed 
the genomic distribution of the read mappings from 37 
ChIP-seq experiments (Methods, Fig.  1A). Specifically, 
we considered 1159 different TE families/subfamilies 
covering 45.82% of the human genome (Fig.  1B) and 
1133 distinct TE families/subfamilies covering 40.94% of 
the mouse genome (Supplementary Fig.  S1). In general, 
libraries with longer read lengths had smaller propor-
tions of multimappers, i.e., reads mapping to multiple 
genomic locations. Nevertheless, within the analysed 
range (26 bp–100 bp), we did not observe any substan-
tial differences (Supplementary Fig.  S2). We found that 
16.34–32.41% of the reads were multimappers. Interest-
ingly, 11.36–39.44% of multimappers mapped to regions 
of the genome that are not annotated as TEs. Hence, 
although most of the multimappers mapped to annotated 
TEs, a considerable fraction of them mapped to other 
repetitive sequences or non-annotated TEs. Additionally, 
47.95–68.44% of reads mapping to TEs were unimappers, 
i.e., they only mapped once in the genome. This finding 
indicates that despite the repetitive nature of TEs, indi-
vidual copies of the same TE family/subfamily are often 
not identical.

To examine the similarity among the TE families/sub-
families individual copies in more detail, we compared 
the TE families/subfamilies associated with multimap-
pers and unimappers (Methods). Approximately 9% (107 
out of 1159) of the TE families/subfamilies were predom-
inantly covered by multimappers (i.e., more than 90% 
of the reads mapping to these families were multimap-
pers). Remarkably, all these TE families/subfamilies were 
exclusive to primates and their derived clades (Fig. 1C), 
and 57% (61 out of 107) of them belonged to some of the 
youngest TE families/subfamilies, including LINE-1, SVA 
and many members of the Alu family. On the other hand, 
2.5% (29 out of 1159) TE families/subfamilies were pre-
dominantly covered by unimappers (i.e., more than 90% 
of the reads mapping to these families were unimappers), 
and all of these TE families/subfamilies expanded in the 
vertebrate genome before the evolution of mammals 
(Fig.  1C). Notably, these TE families/subfamilies were 
present especially in Amniota (75.86%), with UCONs 
(ultra-conserved element) representing almost 70% of 
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these TE families/subfamilies. These observations 
suggest that distinct strategies dealing with ambigu-
ously mapped reads may lead to different conclusions 
for the functional analysis of TEs, depending on the 

age of the TE families/subfamilies. More specifi-
cally, using the strategy of discarding multimappers is 
likely to miss functions linked to young TE families/
subfamilies.

Fig. 1  Young TE families/subfamilies are mainly covered by multimappers. A Fraction of reads mapping to TEs and regions not annotated as TEs 
(non-TE) in the human genome, separated into uni- and multimappers, for 37 ChIP-seq libraries (red) and their input controls (blue) (Datasets 1–3; 
Methods). File accession names are indicated on the x-axis. Individual copies belonging to the same TE family/subfamily are usually not identical. 
B Percentage covered by TE classes and non TEs in the human genome. TEs with unknown classification are reported as “Unknown”. The fraction 
of the human genome not covered by TEs is indicated by “non-TE”. Nearly half of the human genome comprises TEs. C Fraction of uni- (green) and 
multimappers (grey) mapping to TEs present in different eukaryotic clades. A TE family/subfamily was associated with unimappers (multimappers) 
if at least 90% of the reads mapping to its copies were unimappers (multimappers) in all ChIP-seq samples and input controls of Dataset 1. The vast 
majority of unimappers map to TEs that expanded in the common ancestor of amniotes (~ 310 million years ago); in contrast, most multimappers 
are associated with TEs that expanded in the earliest primates (~ 85 million years ago) and their descendants
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Uniform background distribution may lead to false positive 
and false negative enrichments at TEs
Next, we setup to study enrichment biases arising from 
the approach that calculates the background by randomly 
permuting the locations of the read mappings in the 
genome. Basically, this strategy assumes a uniform distri-
bution of the read mappings.

Consistent with our expectations, we found that 
although the relationship between the number of read 
mappings simulated assuming a uniform distribution and 
the number of read mappings observed for the input con-
trol was linear (Fig.  2A), there were clear deviations for 
specific TE families/subfamilies. Notably, compared to 
the input control, assuming a uniform distribution led to 
30% less read mappings for LTR13, LTR18B, LTR18C and 
LTR43-int subfamilies, and to 50% more read mappings 
for LTR12B, MamRep1151, SVA E and SVA F subfami-
lies in at least four of the seven ENCODE ChIP-seq input 
controls (Dataset 1; see Methods and Supplementary 
Table S1). In general, we observed that the TE families/
subfamilies for which the number of read mappings was 
underestimated by assuming a uniform distribution com-
prise shorter TEs than those of families/subfamilies for 
which the number of read mappings was overestimated; 
also, the former are smaller (i.e., have fewer individual 
copies in the genome) than the latter. Notwithstanding, 
the TE families/subfamilies that are underestimated/
overestimated do not differ in any obvious way from oth-
ers in terms of their size and length of their individual 
TE copies (Fig.  2B). Thus, while the TEs in the under-
estimated long-terminal repeat (LTR) subfamilies vary 
from 301 to 871 bp per copy, TEs in the overestimated 
LTR12B subfamily are, on average, 1967 bp long. Addi-
tionally, while there are only 76 and 92 copies of TEs of 
the LTR18C and LTR43-int subfamilies, respectively, the 
LTR subfamily MamRep1151 has with 1251 copies more 
than twice the median number of copies of all TE fami-
lies/subfamilies in the human genome. Therefore, using 
the uniform distribution as background for enrichment 
analysis may result in both false positive and negative 
enrichments that cannot be easily predicted.

T3E is a novel approach to estimate enrichment at TEs 
from ChIP‑seq data
To address the issues presented above, we developed 
T3E (Methods). Acknowledging technical limitations 
when it comes to characterising specific TE instances 
in the human genome, T3E computes enrichments for 
entire TE families/subfamilies, rather than for their indi-
vidual TE copies. The algorithm uses the genomic dis-
tribution of the read mappings of the ChIP-seq input 
control experiment (Fig.  3A) to estimate a background 

probability distribution (“input-based background prob-
ability distribution”, Fig.  3B). Specifically, the probabil-
ity of observing a mapping at a given genomic position 
is assumed to reflect the coverage of the input control. 
T3E then samples from this probability distribution to 
construct an appropriate background for enrichment 
calculations (“simulated input library”, Fig.  3C). Conse-
quently, the expected number of read mappings that T3E 
estimates for each TE family/subfamily is proportional 
to that observed in the input control (Supplementary 
Fig. S3). To account for the ambiguity of read mappings, 
T3E weights each read mapping to a TE copy by the num-
ber of genomic loci to which the read maps, so that the 
contribution of a particular read mapping to the total 
number of read mappings associated with that TE copy 
is inversely proportional to the overall number of loci to 
which the corresponding read maps (Fig. 3D). Moreover, 
the calculation is done at the single nucleotide level, i.e., 
only the number of nucleotides from a read mapping to a 
TE copy are considered. The process is repeated multiple 
times in order to obtain an empirical P-value. Finally, a 
Fold-Change is calculated as the ratio between the num-
ber of read mappings associated with the TE family/
subfamily of interest in the ChIP-seq sample library and 
the average number of read mappings associated with 
the same TE family/subfamily across all simulated input 
libraries (Fig. 3E). T3E is a novel, open-source framework 
for the epigenetic analysis of TE families/subfamilies 
from which the entire TE community could benefit.

The run-time and memory complexities of T3E depend 
on the library size, number of ambiguously mapping 
reads, and number of genomic loci to which ambigu-
ously mapping reads map. In the worst-case scenario, 
the library would contain only multimappers, each map-
ping to every single genomic locus. In this case, the theo-
retical complexity is proportional to genome size × input 
library size × sample library size. However, on an aver-
age ENCODE ChIP-seq sample (HepG2, see Methods), 
the algorithm showed approximately linear run-time and 
memory complexities with respect to the input library 
size (Supplementary Fig. S4).

T3E detects biologically‑relevant TE family/subfamily 
enrichments
To test how T3E can be used to characterise the epige-
netic profile of TE families/subfamilies we analysed three 
ChIP-seq libraries and their seven input control librar-
ies generated by the ENCODE consortium (Dataset 1). 
The experiments involved ChIP-seq against H3K4me3 
–a histone mark associated with euchromatin– in B-cells 
–responsible for humoral responses of the immune sys-
tem–, H3K79me1 –also associated with euchromatin– 
in a cell line isolated from normal lung fibroblast tissue 
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(IMR-90), and the transcription factor FOXP1 in a cell 
line isolated from hepatocellular carcinoma (HepG2).

Few TE families/subfamilies show enrichment for all 
three types of samples, perhaps indicating some sort 

of basic level of enrichment. Specifically, we found that 
the LTR12E (FCs between 1.14 and 9.19), LTR13 (FCs 
between 1.32 and 2.01) and MER57E3 (FCs between 1.26 
and 7.58) subfamilies of the long terminal repeats (LTRs) 

Fig. 2  Uniform background distribution creates artifact enrichments for TEs. A Each dot represents a TE family/subfamily; TEs with unknown 
classification are reported as “Unknown”. Fold-Changes (FC) were calculated as the ratio between the average number of read mappings to a TE 
family/subfamily across 100 simulations that assume a uniform distribution of the mappings in the genome and the number of read mappings for 
the input control library. Dashed lines show a log2 FC = 0. Seven ChIP-seq input control experiments (Dataset 1) are presented. Outliers in four of 
seven input controls are highlighted. Several TE families/subfamilies presented deviations in the expected number of read mappings from the input 
control library using uniform background distribution approach. B Numbers of individual copies and their average lengths for distinct TE families/
subfamilies in the human genome. Four underestimated and four overestimated TE families/subfamilies are highlighted with the colours of their 
classification in the boxplot
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are enriched in all three cell types, even though at dif-
ferent levels. This observation is consistent with reports 
about the LTRs of endogenous retroviruses (ERVs) fre-
quently having been exapted as gene promoters [24], 
which are often not cell-specific.

Supporting a functional association, we observed spe-
cific enrichment profiles depending on the cell type 
and ChIP target (Fig.  4A). For instance, six subfami-
lies of the same TE family, the endogenous retrovirus-
K (ERVK), featured enrichment for FOXP1 in HepG2 
cells, with Fold-Changes varying from 2.98 (LTR22C2) 
to 10.24 (LTR22) (Methods). These six subfamilies did 
not present enrichment in any of the other ChIP-seq 
samples. Similarly, most Alu retrotransposon subfami-
lies were only enriched for H3K79me1 in IMR-90 cells 
(FCs between 1.24 and 2.12). Moreover, the LTR21B 
and LTR10B subfamilies (FCs between 2.05 and 3.59) 

only showed enrichment in two out of three different 
cell types. Whereas the LTR21B subfamily, enriched 
both for H3K4me3 in B-cells (FC = 3.59) and for FOXP1 
in the HepG2 cancer cell line (FC = 2.70) but not for 
H3K79me1 in the IMR-90 normal cell line (FC < 1, 
P-value = 0.85), has been associated with immune check-
point activity and CD8+ T-cell expression in tumours 
[25], the LTR10B subfamily, also enriched for H3K4me3 
in B-cells (FC = 2.05) and FOXP1 in HepG2 (FC = 2.53) 
cells but not in IMR-90 cells (FC = 1.01, P-value = 0.45), 
has been associated with tumour suppressor p53 protein 
binding along with the MER61 family [26]. Curiously, the 
MER61F subfamily was enriched for FOXP1 in HepG2 
(FC = 4.68) and moderately enriched for H3K4me3 in 
B-cells (FC = 1.47) too. These enrichments indicate that 
TEs may act as cis-regulatory elements, contributing to 

Fig. 3  Overview of the T3E workflow for TE families/subfamilies enrichment estimation. A Read mappings from ChIP-seq and input control libraries 
are used as input for T3E. Note that mapping must be performed with a tool able to report all read mappings, including those that are ambiguous. 
B T3E estimates a probability for each position in the genome from the distribution of read mappings for the input control library. C T3E samples 
reads according to the probabilities estimated in (B) to generate N input libraries that are used to compute a P-value and a Fold-Change (FC). Every 
simulated input library has the same size as the ChIP-seq sample. D Read mappings are counted for ChIP-seq sample and every simulated input 
library. The read mapping count associated with the Kth TE family/subfamily (CK) is given by the sum of the portions (percentages of the length) of 
the reads that map to each of its TE copies, each weighted by the ambiguity of the corresponding mapping. E The FC of the Kth TE family/subfamily 
is calculated as the ratio between the number of read mappings for the sample (CKSample) and the average number of read mappings across all N 
simulated input libraries (CKAvgBackground)
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gene regulation by functioning as enhancers, promoters, 
silencers or insulators.

The fact that the enrichments observed are cell-type 
specific and restricted to certain transcription fac-
tors and histone marks depending on the TE family/
subfamily strongly suggests that T3E is able to capture 
functional properties of the TEs and, hence, provides 
a useful framework for the systematic investigation 

of TEs’ cis-regulatory potential in a context-specific 
manner.

TE enrichment estimations by T3E are robust to variation 
in the quality of the ChIP‑seq input control
To evaluate the impact of the quality of the input control 
on the enrichment of TE families/subfamilies estimated 
by T3E, we applied T3E to the analysis of the librar-
ies of a H3K79me1 ChIP-seq experiment performed 

Fig. 4  T3E characterises epigenetic profile of TE families/subfamilies in cell type-specific scenarios. A The heatmap shows the FCs of the TE families/
subfamilies that T3E detected as enriched (P-value < 0.01) with FC > 2 in at least one ChIP-seq experiment of Dataset 1. P-values < 0.01 are indicated 
by asterisks; FCs > 2 are shown with white asterisks. White-coloured cells represent no signal. Columns are clustered using Euclidean distance and 
complete linkage. TE families/subfamilies are enriched in a cell type- and ChIP target-specific manner. Mainly SINEs are enriched in the IMR-90 cell 
line and essentially LTRs are enriched in B-cell and HepG2 cell types. B The heatmap shows the FCs of the TE families/subfamilies that T3E detected 
as enriched (P-values < 0.01) with FC > 2 in at least one of two different ChIP-seq input controls. White asterisks indicate FC > 2. Input control 
quality impacts on the Fold-Change level of enrichments but does not change the biological interpretation of the results. C Enrichment for the 
transcriptional co-activator p300 in the dorsal cerebral wall (DCW) of E14.5 mouse embryos. Only 130 (out of 997) TE families/subfamilies with 
P-value < 0.01 are represented. Mild outliers (lying between 1.5 times and 3 times the interquartile range above the third quartile) are indicated 
by their names; only MER130 and UCON31 feature FC > 2. Ancient TE families/subfamilies might have been co-opted as cis-regulatory elements 
important to the development of the mammalian neocortex. D-E Enrichment HERV-Fc1 subfamilies for polymerases and histone marks in two 
normal (Huvec, Pbde) and three transformed and cancer cell lines (Hela, GM12878, K562). Asterisks represent P-values < 0.01. HERV-Fc1 subfamilies 
(coloured differently) feature higher enrichment for Pol-II in the K562 CML cell line compared to other cell lines and active chromatin histone marks 
(H3K27ac, H3K4me2, H3K9ac, H3K4me3, H3K79me2, H3K4me1 and H3K36me3) present higher levels of HERV-Fc1 subfamilies compared with 
histone marks associated with repressed chromatin (H3K9me1, H3K9me3 and H3K27me3) for Pol-II in the K562
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by the ENCODE Project in IMR-90 cells its two input 
controls (Methods). One of the input control libraries 
had been audited by ENCODE in the “insufficient read 
depth” category (10,800,072 processed reads, file acces-
sion: ENCFF421HCG); the other has sufficient read 
depth (47,554,621 processed reads, file accession: ENCF-
F679UAT). For both input controls, Alu families featured 
the highest enrichments, with AluJ and AluS subfamilies 
featuring higher Fold-Changes for the input control with 
sufficient read depth (“good control”) and AluY subfami-
lies presented higher Fold-Changes for the input control 
with insufficient read depth (“bad control”). Specifically, 
we found that among the 1052 TE families/subfami-
lies with 50 or more individual TE copies in the human 
genome, 16 Alu retrotransposon subfamilies and one 
fossil Alu monomer (FAM) were considered enriched 
(P-value < 0.01) for both the good and the bad controls 
and had a FC of 2 or higher in at least one of them; in 
15 cases, the Fold-Changes were higher for the good 
control (FCs between 2.01 and 2.12 for the good control 
vs FCs between 1.76 to 1.93 for the bad control), and in 
two cases the Fold-Changes were higher for the bad con-
trol than the good control (FCs between 2.02 and 2.11, 
Fig.  4B). Besides Alu retrotransposons, a few other TE 
families/subfamilies showed moderate enrichments (e.g., 
SVA retrotransposon subfamilies A-F, FLAM and FRAM, 
with FCs between 1.59 and 1.85), but their enrichment 
was always lower than 2-fold, independently of the read 
depth of the input control. Hence, within reasonable lim-
its, the quality of the input control ChIP-seq data used by 
T3E to construct the background probability distribution 
is not likely to impact the biological interpretation of the 
enrichment analysis, but rather the Fold-Change thresh-
olds chosen to define a TE family/subfamily as enriched.

Mouse neocortex enhancers present modest enrichment 
for ancient repeats
Next, we applied T3E to ChIP-seq data of the dorsal cer-
ebral wall (DCW) for the transcriptional co-activator 
p300 from mouse embryos (Dataset 2; see Methods and 
Supplementary Table S1), for which Wenger, Notwell and 
their colleagues [27, 28] had reported a striking enrich-
ment (FC = 73) for the MER130 subfamily. The authors 
used a non-TE aware approach. In summary, they 
mapped the ChIP-seq reads to the mouse genome using 
ELAND [29] and retained only reads mapping uniquely 
with two or fewer mismatches. Peaks were called with 
MACS [30] based on uniquely mapping ChIP-seq reads 
and using input DNA reads as control. The expected 
enrichment for each repeat family/subfamily was calcu-
lated by randomly shuffling the locations of the resulting 
peak set 10,000 times across the entire genome and cal-
culating the average. Only TE families/subfamilies with at 

least 50 individual copies were considered for this analy-
sis, leading to 997 TE families/subfamilies. Consistent 
with the published observations, we found that MER130 
was the TE subfamily exhibiting greatest enrichment, 
albeit with a much lower Fold-Change (FC = 4.03; 
Fig.  4C). Similarly, T3E detected enrichment for the 
UCON31 subfamily (FC = 2.79), for which the aforemen-
tioned studies had also indicated a much higher enrich-
ment (FC ≈ 35). Despite the general agreement between 
our findings, we noticed some interesting differences. For 
example, two other TE families/subfamilies reported by 
Wenger et al. as highly enriched, MER124 (FC ≈ 15) and 
AmnSINE1 (FC ≈ 5) had only moderate Fold-Changes 
according to our analysis (MER124 with FC = 1.34 and 
AmnSINE1 with FC = 1.33). Further, we saw high Fold-
Changes for six subfamilies, namely, Eulor9C, MER125, 
MER126, MER129, UCON5 and UCON7 (FCs between 
1.51 to 1.91; Fig. 4C), which had not been acknowledged 
before. Eulors (euteleostomi conserved low frequency 
repeats), MERs (medium reiterated frequency repeats) 
and UCONs are ancient transposable elements [31]. 
Eulor families present self-complementary regions which 
suggest they might have been accumulated in the genome 
by DNA transposition just as some MER families [32]. 
Since most DNA transposable elements are predicted 
to be ancient immobilized elements in the genome [33] 
that have been transposed in an imprecise manner in the 
vicinity of genes, they might have been co-opted as tran-
scriptional regulators of genes involved in developmen-
tal processes [34]. Similarly, UCON families are often 
located nearby or overlapping genes involved in regula-
tion of transcription and development [35]. This suggests 
that a broader range of ancient TE families/subfamilies 
may have been exapted as enhancers and other cis-regu-
latory elements of genes involved in the development and 
evolution of the mammalian neocortex.

RNA polymerases bind differently to LTR retrotransposons 
depending on the cell type
Finally, we applied T3E to an RNA polymerase II and 
III (RNA Pol II and Pol III) ChIP-seq dataset that had 
already been analysed with RepEnrich [20]. In agree-
ment with the results obtained by Criscione et  al. [20], 
T3E detected more TE families/subfamilies enriched for 
RNA Pol II in transformed cell lines (FCs between 2.05 
and 17.89) than in normal cell lines (FCs between 2.03 
and 3.37). In particular, we found the lowest number of 
enriched TE families/subfamilies (7 out of 1159) in the 
PBDE (peripheral blood-derived erythroblast) normal 
cell line and the highest number (62 out of 1159) in the 
K562 chronic myelogenous leukemia (CML) cell line. 
Criscione et  al. observed that many LTR retrotranspo-
sons and some SINEs featured enrichment for Pol II 
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(FCs > 2.83 and false discovery rates (FDR) < 0.05); on 
the contrary, only a few TE families/subfamilies of DNA 
and LINE retrotransposons did. This is especially true 
for transformed cell lines. Overall, Criscione et identi-
fied more than 100 retrotransposon TE families/sub-
families displaying enrichment for Pol II in transformed 
cells (GM12878 lymphoblastoid, Hela adenocarcinoma 
and K562) and at least 20 retrotransposon TE fami-
lies/subfamilies in normal cells (human umbilical vein 
endothelial cell (HUVEC) and PBDE). Using T3E, we 
only observed a total of 24 TE families/subfamilies fea-
turing enrichment for Pol II (FCs between 2.83 and 
17.89) in transformed (22 out of 24) and normal cell lines 
(2 out of 24), whereby approximately 80% were LTR ret-
rotransposons. Additionally, we did not find any LINE 
retrotransposon family/subfamily enriched for Pol II. 
Criscione et  al. suggested that RNA polymerases bind 
to TE families/subfamilies in a cell line-specific manner. 
Indeed, T3E detected 13 TE families/subfamilies that 
were enriched in only one cell line. Nevertheless, we also 
observed TE families/subfamilies enriched in multiple 
cell lines, but with lower Fold-Changes in normal cell 
lines than cancer cell lines, suggesting systematic changes 
in their epigenetic profiles in cancer. For instance, we 
found that LTR12E was enriched for Pol II in both trans-
formed and normal cell lines, although transformed 
cells tended to feature higher levels of enrichment (FCs 
between 4.55 and 9.57) compared to normal cell lines 
(FCs 2.07 and 2.19 for PBDE and HUVEC, respectively; 
Supplementary Fig. S5). This is consistent with the ability 
of some LTR12 subfamilies to recruit RNA polymerase II 
and act as cell-specific promoters in certain cell types in 
mammalian genomes [24, 36].

Criscione et al. highlighted that the human endogenous 
retrovirus HERV-Fc1 and its subfamilies were enriched 
for RNA Pol II and Pol II phosphorylated on serine 2 (Pol 
II S2). In particular, they noted that the internal region of 
HERV-Fc1 (int) was highly enriched for Pol II and Pol II 
S2 in the K562 CML cell line. Comparing the results of 
T3E with those of RepEnrich, we observed similar trends 
for HERV-Fc1, but differences for individual subfamilies. 
To illustrate, RepEnrich found enrichment for Pol II S2 at 
HERV-Fc1-int, LTR1 and LTR3 in the Hela cell line (FC 
> 2), while T3E detected moderate enrichment at HERV-
Fc1-int (FC = 1.45) and no enrichment at any of the other 
HERV-Fc1 LTRs (Fig.  4D). Like RepEnrich, T3E identi-
fied enrichment for Pol II at HERV-Fc1-int in the K562 
cell line (FC = 15.77); albeit, RepEnrich reported lower 
levels of enrichment (FC = 7). Additionally, the results of 
RepEnrich suggest that HERV-Fc1 is –with some excep-
tions– associated with histone modifications for active 
chromatin. The results obtained with T3E are similar, 
including the enrichment at HERV-Fc1 for the repressive 

mark H3K9me3 that was reported by the developers of 
RepEnrich (Fig.  4E), and the enrichment for Pol II and 
Pol II S2 at HERV-Fc1 in transformed and cancer cell 
lines (K562 and GM12878), which calls attention to the 
potential expression of HERVs in cancerous tissues [37]. 
Nonetheless, it is worth remarking that those enrich-
ments are only supported by a few annotated individual 
TE copies (3 for LTR2, 5 for LTR3, 7 for the internal 
region and 17 for LTR1). In conclusion, our data add to 
the growing body of evidence supporting the implication 
of TEs in important cellular processes.

Discussion
A collaborative effort has been made in the last decade 
to advance our knowledge and understanding of the role 
of transposable elements as cis-regulatory elements and 
their contribution to development and disease. Although 
experimental technologies have improved and numer-
ous computational strategies have been proposed, several 
challenges remain when studying the epigenetic profile 
of TEs, particularly when mapping TE-derived sequenc-
ing reads to the genome and analysing enrichment at 
TEs. Most of the computational tools developed to tackle 
TE-derived reads have been designed for RNA-seq data 
and aim to reveal patterns of TE transcription. Instead, 
ChIP-seq datasets enable the exploration of the epige-
netic signatures of TEs. RNA-seq and ChIP-seq experi-
ments are fundamentally different, and only a few tools 
are available that can properly handle ChIP-seq data. 
These tools mainly differ from each other in their strate-
gies to account for ambiguously mapping reads and their 
targeted genomic feature (TE families/subfamilies, par-
ticular TE classes, or specific TE copies) [14]. Given that 
none of the proposed approaches constitute a perfect 
solution for the challenges faced when studying repetitive 
sequences [16], it is up to the researchers to decide which 
strategy is best suited for their particular question and 
experimental design.

The algorithm presented here, T3E, estimates the 
enrichment from ChIP-seq data at the level of TE fami-
lies/subfamilies and not their individual copies. This is a 
pragmatic approach that acknowledges that the genomic 
origin of multimappers cannot be completely deter-
mined without ambiguity. In principle, using longer reads 
should reduce the number of multimappers. However, 
within the read length range analysed here, the observed 
differences were generally small to negligible (Supple-
mentary Fig.  S2). Indeed, we believe that this issue will 
only be effectively addressed with the advent of long-
read sequencing technologies for genome-wide mapping 
protein-DNA interactions. Nevertheless, to lessen the 
impact of ambiguously mapping reads in enrichment cal-
culations, T3E weights each read mapping by the overall 
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number of loci to which the corresponding read maps 
in the genome. Next, to estimate the enrichment at TE 
families/subfamilies, T3E simulates a background dis-
tribution of read mappings by randomly sampling read 
mappings based on the structure of the input control 
library. The input control varies depending on the cell 
type and condition since chromatin accessibility also dif-
fers. Additionally, biases in the chromatin fragmentation 
and amplification procedures can lead to the over- or 
under-representation of certain sequences. As a result, 
the distribution of reads from a sequencing experiment 
across the genome is not uniform [38]. Our findings show 
that assuming a uniform background distribution has an 
impact on the expected number of read mappings associ-
ated with specific TE families/subfamilies. Consequently, 
the commonly used approach of randomly permuting 
the locations of the read mappings (or of the TEs) in the 
genome can be expected to lead systematic false posi-
tives and negatives. In particular, TE families/subfami-
lies of the LTR subclass are the most affected ones. By 
estimating the background distribution using the input 
control library, T3E accounts for potential biases arising 
during library preparation, avoiding systematic biases 
in the estimation of enrichment at TE families/subfami-
lies observed when the background distribution is con-
structed by assuming that the read mappings (or the TEs) 
are uniformly distributed across the genome. Another 
advantage of T3E is that it was designed in such a way 
that there is no need for scaling the read depth of the 
libraries for the computation of the enrichment, since the 
library sizes of the simulated background libraries and of 
the ChIP-seq sample experiment are the same. Thus, our 
approach does not suffer from artifacts inherent to the 
estimation of scaling factors [39], which may impact the 
biological interpretation of the results.

Naturally, T3E enrichment estimates depend on the 
quality of the data, in particular the quality of the input 
control library which is used to estimate the background 
distribution of read mappings. Nevertheless, we showed 
that even with a drastic reduction in read depth, the 
biological interpretation of the results is sustained. Fur-
ther, assuming an average ChIP-seq library, T3E has an 
approximately linear time complexity with respect to 
the size of the input control library. When using large 
libraries, it is advisable to run T3E in a workstation with 
enough computational resources to handle the poten-
tially much larger numbers of read mappings. It is the 
number of mappings –more generally, the structure of 
the library– what has the largest impact on the compu-
tational power required to run T3E. The input control 
library of Supplementary Fig. S4 has approximately 70 M 
reads, but those reads map to 903,809,170 locations in 
the human genome. If the number of mappings is high, 

we recommend down-sampling the input control, since 
we have shown that, within reasonable bounds (20 mil-
lion reads), this does not lead to any substantial loss of 
information. Ultimately, the runtime will depend on the 
chosen number of iterations. Although we recommend 
100 iterations, 10 iterations also produce good Fold-
Change estimates. Generally speaking, we recommend 
that requirements and standards for ChIP-seq experi-
ments suggested by the ENCODE consortium [15] are 
satisfied. If unusual extremely high coverages in hetero-
chromatin genomic regions are found, most likely result-
ing from problems during chromatin fragmentation, 
using the optional T3E functionality to filter out regions 
of extremely high signals does not impact on the final 
TE families/subfamilies enrichments (Supplementary 
Fig. S6). In our analysis, we applied this functionality only 
for analyses of the mouse genome, which presents large 
portions of tandemly repeated sequences [40]. It was 
motivated by the presence of major satellites and sim-
ple repeats mainly in centromeric and telomeric regions 
which are systematically mapped with artifact read map-
pings. T3E uses BWA mem [41], but in principle, T3E 
could use a different mapping algorithm as long as it 
can be configured to report secondary alignments. Sev-
eral mappers support this and offer an option to ensure 
that a relatively large number –if not all– of all possible 
mappings of a read are reported. Such mappers include 
Bowtie2 [42] (“-a” mode) Novoalign [43] (“-r All”), and 
BBMAP [44] (“secondary = t”). In principle, they all could 
be used with T3E. Moreover, mappers typically rely on 
a large number of additional parameters. Here, we sim-
ply opted for using BWA mem with default parameters. 
Optimally setting other parameters would require con-
sidering properties of the ChIP-seq experiment such as 
read length, read quality, and the quality of the available 
reference genome. For instance, using BWA mem but 
increasing the minimum seed length (the default is “-k 
19”) reduces the number of secondary mappings at the 
cost of decreased mapping sensitivity and overall num-
ber of read mappings (Supplementary Fig. S7). Thus, T3E 
makes it possible to study the epigenetic profile of TE 
families/subfamilies using ChIP-seq data.

By applying T3E to ChIP-seq libraries of a variety 
of cell types and epigenetic marks, we hereby demon-
strated the reproducibility and robustness of the results 
obtained with our approach. By re-analysing datasets 
that had been previously examined by other studies, we 
showed that the findings of T3E are generally consistent 
with those published by other authors. Although we did 
not necessarily detect enrichment for exactly the same 
TE families/subfamilies (or at the same level), we indeed 
noted similar trends which led to the same biological 
conclusions. Our observations were also in agreement 
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with those obtained by non-TE aware strategies, although 
large differences were evident in the magnitude of the 
Fold-Changes – which appears reasonable, since they do 
not have the same interpretation. Finally, T3E identified 
additional TE families/subfamilies which are potentially 
involved in central cellular and developmental processes. 
Our findings corroborate that many TE families/subfami-
lies have contributed to the evolution of mammalian reg-
ulatory networks and play important cell-type-specific 
cis-regulatory roles.

Conclusions
Here we introduced T3E, an open-source framework for 
the study of regulatory roles of TEs at a level of families/
subfamilies. T3E proposes a solution to challenges con-
cerning the assignment of the ambiguously mapping 
reads that are typically derived from TEs and the estima-
tion of a background for enrichment analysis. We applied 
T3E to confirm results from previous studies, but also 
to point out differences, such as consistent enrichment 
patterns for the Eulor9C, MER125, MER126, MER129, 
UCON5 and UCON7 families/subfamilies, whose epige-
netic roles remain unexplored.

Methods
Publicly available ChIP‑seq datasets
We considered three different single-ended sequencing 
ChIP-seq datasets which are detailed in Supplementary 
Tables S1 and S2. We downloaded the raw data (FASTQ 
files) using UCSC Genome Browser Download Server 
[45], ENCODE Project data repository [46] and Gene 
Expression Omnibus data repository [47].

Repeat annotation
Repeat annotation for the human (GRCh38/hg38) and 
mouse (GRCm38/mm10) genome assemblies were 
retrieved from the RepeatMasker track of the UCSC 
Genome Browser [45, 48]. Repeat annotations were 
processed to filter out simple repeats (micro-satellites), 
satellite DNA, low complexity sequences, RNA repeats 
(including RNA, tRNA, rRNA, snRNA, scRNA, srpRNA) 
and non-TE elements. TE families/subfamilies were 
defined based on the “repFamily” column of the Repeat-
Masker track of the UCSC Genome Browser, which is 
based on Wicker et al’s classification [2]. In this classifica-
tion, a family is defined as a group of TEs that share 80% 
(or more) sequence identity in at least 80% of their coding 
region, internal domain, or within their terminal repeat 
regions. The subfamilies are subpopulations of large 
families that can be clearly segregated. Alu is an exam-
ple of a TE family; AluJb and AluSc are subfamilies of the 
Alu family. Our study comprehends a total of 35 and 32 
families in the human and mouse genomes, respectively, 

and 1159 and 1133 subfamilies in the human and mouse 
genomes, respectively. Overlapping and immediately 
adjacent TE individual copies of the same TE family/sub-
family were merged to produce the final annotation.

Quality control and mapping of ChIP‑seq reads
The quality of all raw ChIP-seq samples and their respec-
tive input controls (FASTQ files) was assessed using 
FASTQC v0.11.9 [49]. Sequences were trimmed or fil-
tered out for sequencing adapters, low-quality reads 
(minimum Phred score of 15) and IUPAC nucleotide 
“N” (representing any base) using BBduk (version from 
November, 2019) [50] and Trim Galore v0.6.4_dev [51]. 
Reads were mapped to the human (GRCh38/hg38) or 
mouse (GRCm38/mm10) reference genome assemblies 
using BWA mem v0.7.17 [41] with the parameter “-a”, 
which outputs all found mappings. All other parameters 
were set to their default values, except for the score “-T” 
which was reduced to 25 for samples with read length 
below 30 bp. The read length was calculated as the aver-
age of 10,000 reads of the library. Genome sequences in 
FASTA format were downloaded from UCSC Genome 
Browser [45, 48]. Duplicate reads were removed using 
PICARD v2.24.0 [52]. Remaining read mappings were 
processed using SAMtools v1.10 [53] and BEDtools 
v2.27.1 [54] to filter out reads mapping to the mitochon-
drial chromosome, unmapped reads, and non-chromo-
somal scaffolds. For Dataset 3, BAM files for replicates 
of the same condition were pooled together using SAM-
tools merge. Large sequencing libraries were randomly 
down sampled to 20 million reads to reduce the data-
set to a more manageable size for T3E computational 
calculations.

Mapping loci assessment
The genomic locations where reads mapped on were 
assessed and, in order to investigate TE families/subfami-
lies most mapped by reads ambiguously or unambigu-
ously, we considered the TE families/subfamilies in which 
more than 90% of the mapped reads were multimappers 
or unimappers, respectively. For this analysis, we consid-
ered TE families/subfamilies following the selection cri-
teria among all samples and input controls of ENCODE 
ChIP-seq experiments (Dataset 1). To identify the clades 
and species in which the selected TE families/subfamilies 
have been found, we used Dfam web browser [55].

Filtering artifactual genomic regions on the mouse 
genome
Dataset 2 mapped on the mouse genome featured major 
satellite and single repeat regions with unusual extremely 
high coverage, potentially from chromatin accessibil-
ity bias in heterochromatic genomic regions. In order 



Page 13 of 16Almeida da Paz and Taher ﻿Mobile DNA           (2022) 13:29 	

to systematically exclude such regions, we calculated 
the number of read mappings in sliding windows of size 
100 and step 50. Then, we identified the windows with 
read mappings above the 99.997th percentile for both 
chromosome and genome (Supplementary Fig.  S8), and 
excluded the corresponding genomic regions from fur-
ther analyses. Windows with zero counts were not con-
sidered for the calculation.

Input‑based background probability distribution
Our method estimates the probability of a read starting 
at an effective genomic position n on a given chromo-
some c as a fraction of the coverage of read mappings in 
the given position n and the coverage of read mappings 
in the entire chromosome c. Let S designate the set of all 
reads which map to chromosome c, |S| be the number of 
reads in S and r1, r2, …, r|S| be the reads in S. We estimate 
the coverage of read mappings in the position n (as)

where

and Nri is the number of distinct genomic locations to 
which ri maps. Let C denote the set of effective positions 
on the chromosome c, |C| be the number of effective 
positions in C and n1, n2, …, n|C| be the effective positions 
in C. We estimate the coverage of read mappings in the 
chromosome c (as)

Thus, the coverage is inversely proportional to the 
number of read mappings observed for the input control 
library mapping. More precisely, the probability of a read 
starting at n is defined as:

Nucleotide positions to which no reads were mapped 
had probability of zero. The probability associated with 
each nucleotide of the effective genome was used to cre-
ate the simulations for estimating the expected read map-
ping counting for each TE family/subfamily.

Simulated input libraries
An arbitrary genomic position was randomly selected 
according to the input-based background probability dis-
tribution described above. More precisely, this position 

covn =

|S|
∑

i=1

In(ri)

Nri

In(ri)
1, if ri maps on n
0, otherwise

covc =
∑

n∈C

covn

pn =
covn

covc

was chosen from the effective genome, defined as the 
genomic regions for which input control coverage is 
greater than zero. Let the random genomic position be 
represented by the discrete random variable X (random 
variate x) where pn = p(X = n) and let the cumulative 
probability be Pn = p(X ≤ n). Let q be a random number, 
if Pn − 1 < q < Pn then x = n. Next, among the reads of the 
input control library mapping at the random genomic 
position n, we randomly selected one using the NumPy 
(v1.19.4) random-choice function using as parameter the 
probabilities associated with each read. Let ri be the ith 
read which maps on the selected position n, we estimate 
the probability of a given read ri (as)

Then, the selected position n is shifted to be in the 
center of the selected read ri. The difference in base pairs 
of the shift is used to adjust the starting positions of each 
of the read mappings of ri. In such a manner, we obtain 
a symmetrical simulation of the input control, adding a 
systematic variation to the simulated input library. This 
procedure is performed as many times as there are reads 
in the ChIP-seq sample library of interest, resulting in a 
simulated input library of the same size as the ChIP-seq 
sample.

TE family/subfamily read mapping counting 
and enrichment analysis
The contribution of a read mapping to the counting of 
TE family/subfamily was assumed to be inversely propor-
tional to the number of mappings for the same read in 
the entire genome, taking into account the portion of the 
read that actually mapped to each individual copy of the 
TE family/subfamily under consideration, as follow:

where K is the set of all individual copies of a TE family/
subfamily in the genome, S is the set of all reads in the 
ChIP-seq library, Nri is the number of mappings of read ri, 
Lri is the length of read ri, and lk ri is the number of nucle-
otides of the i th mapping of read ri overlapping with TE 
individual copy k, where 

{

lk ri ∈ Z
+
0 : 0 ≤ lk ri ≤ Lri

}

 . 
Enrichment was calculated for TE families/subfamilies, 
not for individual TE individual copies of the families/
subfamilies. For the enrichment analysis, we simulated 
N = 100 input libraries for each ChIP-seq sample library. 
For each simulated input library, the number of read 
mappings contributing to a TE family/subfamily was 
computed as described above. An empirical P-value was 
computed for each TE family/subfamily as the number of 

pri =
(

covnNri

)−1

CK =
∑

k∈K

∑

r∈S

Nri
∑

i=1

lk ri

Nri Lri
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simulated input libraries with the number of read map-
pings associated with the TE family/subfamily higher 
than or equal to the read mapping counting for the TE 
family/subfamily in the ChIP-seq sample library divided 
by N. TE families/subfamilies with P-value < 0.01 were 
considered enriched. A Fold-Change (FC) was calcu-
lated as the ratio between the read mapping counting for 
the TE family/subfamily in the ChIP-seq sample library 
divided by the average number of read mappings associ-
ated with the TE family/subfamily across all N simulated 
input libraries.

Enrichment analysis using uniform background probability
Read mappings of the ChIP-seq sample library were ran-
domly shuffled across the entire genome using BEDtools 
v2.27.1 function shuffle with default arguments [54]. 
Then, every position in the reference genome has the 
same probability for a read starting at this given posi-
tion. The coordinates of the shuffled read mappings were 
then intersected with the repeat annotation using BED-
MAP v2.4.37 [56] with options “--echo-map” to list all 
overlapping elements from repeat annotation file and 
“--echo-overlap-size” to output the lengths of overlaps in 
base pairs. Finally, we counted the number of mappings 
associated with each TE family/subfamily. The procedure 
was repeated N = 100 times. For each TE family/subfam-
ily, an empirical P-value was calculated as the number 
of times when the number of read mappings associated 
with the TE family/subfamily was higher than or equal to 
the number of mappings for the TE family/subfamily in 
the ChIP-seq library divided by N.

Software and computational specifications
T3E was developed for UNIX environments and it is 
freely available for download under GNU General Public 
License v3.0 at GitHub (https://​github.​com/​miche​lleap​
az/​T3E). The program was written in Python (version 
3.8.5). Auxiliary scripts were written in bash, Perl (ver-
sion 5.30.0), and R (version 3.6.3). Instructions about usa-
bility, prerequisite software and libraries with the tested 
versions can be found at GitHub. The application was 
executed for samples running in parallel on a computer 
running Linux version 4.18.0 with in total 2 TB of RAM 
and with AMD EPYC 7542 32-Core Processor.

Run‑time and memory complexity analysis
We evaluated the run-time and memory complexity of 
our application by using the average-case scenario. We 
chose as average-case the ENCODE Chip-seq HepG2 
sample and input control (Supplementary Table  S1), 
both with read length of 75 bp. All the reads of the 

ChIP-seq sample library were considered. For the input 
control, we considered the entire library size of approx-
imately 70 million reads (100%) and the library size 
down sampled to 80, 60, 40, 28.7% (20 million reads) 
and 20%. We measured the time of execution and peak 
memory consumption of T3E considering each input 
control library size subset using time and tracemalloc 
modules in Python 3.
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