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Abstract

insertions.

maintaining a good precision.

Background: Transposable elements (TEs) are an important source of genomic variability in eukaryotic genomes.
Their activity impacts genome architecture and gene expression and can lead to drastic phenotypic changes.
Therefore, identifying TE polymorphisms is key to better understand the link between genotype and phenotype.
However, most genotype-to-phenotype analyses have concentrated on single nucleotide polymorphisms as they
are easier to reliable detect using short-read data. Many biocinformatic tools have been developed to identify
transposon insertions from resequencing data using short reads. Nevertheless, the performance of most of these
tools has been tested using simulated insertions, which do not accurately reproduce the complexity of natural

Results: We have overcome this limitation by building a dataset of insertions from the comparison of two high-
quality rice genomes, followed by extensive manual curation. This dataset contains validated insertions of two

very different types of TEs, LTR-retrotransposons and MITEs. Using this dataset, we have benchmarked the sensitivity
and precision of 12 commonly used tools, and our results suggest that in general their sensitivity was previously
overestimated when using simulated data. Our results also show that, increasing coverage leads to a better
sensitivity but with a cost in precision. Moreover, we found important differences in tool performance, with some
tools performing better on a specific type of TEs. We have also used two sets of experimentally validated insertions
in Drosophila and humans and show that this trend is maintained in genomes of different size and complexity.

Conclusions: We discuss the possible choice of tools depending on the goals of the study and show that the
appropriate combination of tools could be an option for most approaches, increasing the sensitivity while
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Background

Transposable elements (TEs) constitute a very important
fraction of eukaryotic genomes, and their ability to trans-
pose, excise and produce complex genomic rearrangements
make them a key source of genomic diversity. Previous
work done over the last decades has uncovered their enor-
mous potential as gene regulators, a role that TEs play
through a variety of genetic and epigenetic mechanisms
[12, 43]. Certain TEs, such as Long Terminal repeat (LTR)-
retrotransposon carry their own promoters, and their
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insertion close to genes can generate new gene expression
patterns. In addition, TEs, and in particular LTR-
retrotransposons and MITEs (Miniature Inverted Trans-
posable Elements), have been shown to contain transcrip-
tion factor binding sites, which can be mobilized by
transposition rewiring new genes into pre-existing tran-
scriptional networks [5, 12, 20]. As a consequence, TEs
have the potentiality to generate important genomic and
transcriptional variability, and the interest in these elements
has drastically increased in the last years.

Due to their repetitive nature and their sequence
diversity, the annotation of TEs is more complex than
that of protein coding genes. Nevertheless, thanks to the
development of tools such as Repeatmasker (http://
www.repeatmasker.org) and sophisticated pipelines such
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as REPET [16], methodologies of TE detection and an-
notation in assembled genomes are today robust. The
availability of high-quality reference genomes coupled
with the exponential increment of resequencing data has
boosted our capacity to evaluate intraspecific variability.
By obtaining accurate maps of genetic variation, charac-
terizing the genetic basis of phenotypic variance is now
possible at a genome-wide scale thanks to association
studies (GWAS). Until now, most of the efforts have been
focused on analyzing the variability at the nucleotide level
(SNPs, single nucleotide polymorphisms), as there are ro-
bust algorithms to perform variant calling. However, TEs
generate an important part of the genetic variability
present in a particular species. Moreover, the timing of oc-
currence of TE and SNP mutations is different, as the
former can amplify in bursts generating a great amount of
diversity in short periods of time, whereas SNP mutation
rates are more constant in time. Therefore, the identifica-
tion of Transposon Insertion Polymorphisms (TIPs) is of
high interest. Nevertheless, our capacity to accurately
identify TIPs using re-sequencing data is hampered by the
structural complexity of TEs.

In the last few years, many laboratories have developed
bioinformatic tools to look for TIPs and have started to
analyze their impact in intra-species variability, including
crop plants [7, 10, 42]. There are two main approaches
that can be used to detect TIPs in whole-genome se-
quence data: i) inference from discordant read-pair map-
pings, and ii) clustering of ‘split’ reads sharing common
alignment junctions [2, 15]. Most of the recently devel-
oped tools incorporate both methodologies, and in some
cases TIPs have been experimentally validated [27].
Moreover, in some cases the authors have evaluated
their sensitivity and precision (also known as positive
predictive value) [11, 24]. However, in most cases these
evaluations were performed by generating simulated in-
sertions that are randomly placed in the genome, and
then used to compare with tool predictions. Simulated
insertions are far from representing the complexity of
“natural” TIPs, as many of their features are difficult or
impossible to mimic accurately (i.e.: element degener-
ation, nested insertions, insertion preferences, etc.). As a
consequence, the benchmarks done with simulated data
tend to overestimate performance of the tools analyzed
[21]. An example of such benchmarks is the one re-
ported by the developers of McClintock, a pipeline that
integrates six tools [36] (Table 1). In their study, the au-
thors provided a detailed comparison of their compo-
nent’s performance in sensitivity and positional accuracy
based on simulated LTR-retrotransposon insertions,
which also includes some real resequencing data, in the
yeast Saccharomyces cerevisiae. In spite of the interest of
such comparative analysis, the direct translation of these
results to other eukaryotic models with bigger and more
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repetitive genomes is uncertain. This is especially rele-
vant as S. cerevisiaze contains only 51 full LTR-
retrotransposons in the whole genome [8], whereas in
most plant and animal genomes the LTR-
retrotransposon load is several orders of magnitude
higher. Also, a recent study focused on simulated but
also real human AluY, L1 and SVA families revealed
huge differences in the ability of seven tools to detect
TIPs [41]. In spite of the importance of these families
for human research, they do not represent the diversity
of the TE landscape of other animals and plants, which
is far more complex, with many families from different
orders being potentially active, and where the amount of
truncated non-autonomous elements greatly outnum-
bers the active copies.

In plants, TEs are at the origin of important agronomic
traits, such as apical dominance in maize [45], the skin
and flesh colors in grape [28] and blood oranges [4]. Dif-
ferent efforts have been made recently to identify TIPs
that could be responsible for important variability in
plants. Carpentier et. al [7] screened the presence of 32
rice LTR-retrotransposon families in the 3000-rice gen-
ome dataset and uncovered more than 50,000 TIPs, most
of them occurring at a very low frequency, which is indi-
cative of recent activity. Besides LTR-retrotransposons,
MITEs are probably the most prevalent group of transpo-
sons in plants, including rice, where they have experienced
recent massive amplification bursts [10, 35]. MITEs are
structurally very different from LTR-retrotransposons, as
they are non-autonomous, usually non-coding, and rela-
tively small. They are of particular interest because they
tend to integrate close to genes and may carry regulatory
domains [20], having the potential to create or rewire
regulatory networks [12]. In the present study, we have
taken advantage of the existence of several high-quality as-
sembled genomes of different rice varieties to create a vali-
dated dataset of natural LTR-retrotransposon and MITE
insertions obtained by direct comparison between the as-
sembled genomes (Nipponbare and MH63), that we have
used to benchmark the performance of 12 TIP calling
tools. Moreover, we have also analyzed the sensitivity of
the best performing tools to detect experimentally vali-
dated TIPs in Drosophila and humans. Our results evi-
dence that tool performance is in general lower than
estimated by previous simulations, and highly variable de-
pending on sequencing coverage and TE type. Also, we
show that an appropriate combination of tools can in-
crease the sensitivity of predictions while maintaining high
precision levels.

Results

Tools selected for benchmarking

We selected 12 of the most widely used tools for the de-
tection of TIPs (Table 1). Among them, four were
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Table 1 Tools selected for the benchmark of TE insertions
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Tool Target Prediction Input  Output Perceived difficulty Manual
format Installation  Input
preparation

RelocaTE2 Non-reference All families  fastq  dff file Easy Easy https://github.com/JinfengChen/RelocaTE2
insertions

Jitterbug Non-reference All families Bam  dff file Medium Medium https://github.com/elzbth/jitterbug
insertions

Retroseq ° Non-reference All families Bam  vcffile Easy Difficult https://github.com/tk2/RetroSeq/wiki/
insertions RetroSeg-Tutorial

ITIS Non-reference Single-family  fastq  Bed file Easy Medium https://github.com/Chuan-Jiang/ITIS
insertions

MELT Reference and non-  Single-family  Bam  vcf file Easy Medium http://melt.igs.umaryland.edu/manual.php
reference insertion

PopoolationTE2 ~ Reference and non-  All families  fastqg Tool-specific  Easy Easy https://sourceforge.net/projects/
reference insertions popoolation-te2/

Teflon Reference and non-  All families  fastq  Tool-specific Medium Medium https://github.com/jradrion/TEFLON
reference insertions

Trackposon Reference and non-  Single-family  fastq  Bed file Easy Easy http://gamay.univ-perp fr/~Panaudlab/
reference insertions TRACKPOSON.tar.gz

TEMP ° Reference and non-  All families Bam  Tool-specific Easy Difficult https://github.com/JialilUMassWengLab/
reference insertions TEMP/blob/master/Manual

TE-locate ° Reference and non-  All families Sam  Tool-specific  Easy Difficult https://sourceforge.net/projects/te-locate/
reference insertions

PopoolationTE ®  Reference and non-  All families  fastq  Tool-specific Easy Difficult https://sourceforge.net/p/popoolationte/
reference insertions wiki/Workflow/

ngs_te_mapper @ Reference and non-  All families  fastq Bed file Easy Difficult https://github.com/bergmanlab/
reference insertions ngs_te_mapper

McClintock Reference and non-  All families  fastq  Bed file Easy Difficult https://github.com/bergmanlab/mcclintock

reference insertion

@ These tools were run as part of the McClintock pipeline. Perceived difficulty refers to McClintock and not the original methods
Installation: Easy = available in Conda, or automatic / semi-automatic installation. Medium = Needs several dependencies or specific versions of packages that need
manual installation. Input preparation: Easy = can be run using common formats (ie fasta, bed) without the need of specific formatting. Medium = Needs specific

formatting. Difficult = Needs very specific formatting

specifically designed to detect non-reference insertions
(not present in the reference genome) (RelocaTE2 [11],
Jitterbug [21], Retroseq [27] and ITIS [24]), and eight
were able to detect reference (present in the reference
genome) and non-reference insertions (MELT [18],
Popoolation TE2 [29], Teflon [1], Trackposon [7], TEMP
[48], TE-locate [37], Popoolation TE [30], and ngs_te_
mapper [32]. Tools specifically designed to detect pres-
ence/absence of reference TE insertions in re-sequenced
genomes (i.e.: T-lex 3) [3] were not benchmarked here.

In addition to their different targets, some of the tools
were family-specific (meaning that they run with one TE
family at a time only), whereas most of them are able to
detect insertions from all the families in the same run
(broad-spectrum). Five out of the 12 tested tools were
run as components of McClintock, a pipeline that com-
bines the use of several TIP detection tools and stan-
dardizes their outputs into the commonly used BED
format (Table 1).

The first difficulty that the user has to face is properly
installing and making the tools run, often in a computer

cluster. This can be sometimes complex due to the num-
ber of different dependencies, and especially due to the
specificity of the input file preparation. In this regard,
we found that RelocaTE2, PopoolationTE2 and Trackpo-
son were the less problematic tools (Table 1). One possi-
bility that would make the installation of these tools
much easier would be to have them integrated in an en-
vironment such as Conda. This is a possibility that fu-
ture developers should take into account.

LTR-retrotransposon and MITE landscape in Nipponbare
and MH63 genomes

In order to perform a benchmarking exercise that could
be representative of as much as possible TIP detection
in eukaryotes, we decided to use rice as a model as it
has a genome of 430 Mb, which is relatively large and
complex in terms of TE landscape, and that has already
been considered as being as close as possible to a repre-
sentative genome for angiosperms [7]. Moreover, there
are several good-quality assemblies and short-read data-
sets of rice varieties available [23, 47]. In terms of the
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TEs to be detected, we concentrated on LTR-
retrotransposons and MITEs as, in addition to be the
most prevalent TE types in plant genomes, they are
functionally and structurally very different. Indeed,
whereas LTR-retrotransposons are relatively long ele-
ments (typically several Kb-long) and contain many
structural features relatively easy to detect (e.g.: long
LTRs at their extremities, coding capacity for several
well conserved enzymatic activities), MITEs are short
(typically 100-800 nt), are non-coding and do not con-
tain structural features (except for short inverted-repeats
in most cases) allowing for structural detection.

We wused a combination of structural and
homology-based approaches to annotate a high-
quality dataset of 3733 and 3787 full-length LTR-
retrotransposons in Nipponbare and MH63 (Minghui
63) assemblies, respectively (Table 2). These elements
contain intact Target Site Duplications (TSDs), Long
Terminal Repeats as well as coding domains. All of
them were clustered at 80% similarity over 80%
length to obtain families and we derived a consensus
for each family. RepeatMasker was then run with
such consensuses to identify all the LTR-
retrotransposon copies of the genome (including frag-
ments and non-autonomous elements) related to the
characterized families. A similar strategy was used to
identify ~ 46,000 full-length MITEs, as well as ~ 200,
000 partial MITE copies (see methods section).
Whereas full-length LTR-retrotransposons represent a
very small proportion of the total number of LTR-
retrotransposon copies detected, (3%, Table 2), full-
length MITEs represent an important fraction (23%).
The distribution along the chromosomes of the two
transposon groups is also different, with LTR-
retrotransposons being more abundant in the centro-

meric and pericentromeric regions and MITEs
populating evenly the rest of the chromosome
(Fig. 1).

Table 2 Annotation of LTR-retrotransposons and MITEs in rice
assemblies

TE Classification Nipponbare MH63
LTR-all @ 131,905 117,362
LTR full-length ° 3733 3787
LTR- Gypsy 1354 1303
LTR- Copia 944 759
LTR- Unclassified © 1435 1725
MITE-all © 211,732 191,113
MITE full-length ¢ 45,963 46,725

@ Repeatmasker fragments. Includes both intact and truncated elements

P High confidence elements containing intact LTRs, TSDs and coding domains
€ Intact elements whose poor coding domain conservation doesn't allow
proper classification

9 Elements spanning more than 80% of its family consensus length
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Annotation of standard transposon insertion datasets for
tool benchmarking

The most straightforward way of identifying an insertion
polymorphism “in silico” when two high quality assem-
bled genomes are available (as it is here the case), is by
aligning orthologous loci. To identify the Nipponbare
orthologous loci to those that in MH63 contain a TE in-
sertion, we mapped the flanking regions of each MH63
full-length LTR-retrotransposon and MITE insertion
against the Nipponbare genome. As sequence diversity
and structural differences between the two genomes may
complicate this analysis, we tested different flanking se-
quence lengths and found that 500 nt was the one that
allow to identify more reference and non-reference in-
sertions (Additional file 6: Figure S1). By inspecting the
distance between the two mapped flanks, we could as-
sign the orthology status to the locus (ie, empty site or
full site). Using this approach, we were able to assign an
orthology status to 86% of the MITE loci, but only to
41% of the LTR-retrotransposons loci. This was probably
due to the difficulty to identify the orthologous loci of
insertions siting in repetitive sequences, which is much
more frequent for LTR-retrotransposons than for
MITEs. Therefore, although this strategy seems the
more straightforward, it has clear limitations. Moreover,
as defining the precise TE-genome junctions for non-full
length elements (ie, degenerated or partial elements,
which are the vast majority of LTR-retrotransposons,
Table 1) is challenging, we could not use this strategy to
analyze the possible polymorphisms arising from non-
full-length LTR-retrotransposons. To overcome those
limitations and increase the dataset of curated insertions,
we developed a strategy aimed at complementing the
TIPs dataset with TIPs predicted with the 12 tools ana-
lyzed here (Table 2), which were individually validated.
To this end we ran the different TIP-prediction tools
using MH63 paired-end reads mapped to the Nippon-
bare reference genome. We divided the Nipponbare
genome in 500 nt windows and mapped the windows
containing predicted insertions (red boxes, Fig. 2) to the
MH63 genome. An inspection of the aligned sections
allowed determining whether the predicted insertion
corresponded to a reference (shared) or non-reference
(MH63 specific) insertion or if it should be considered a
false positive (Fig. 2b). Indeed, in case of reference
(shared) insertions, the Nipponbare and the correspond-
ing MH63 sequences would perfectly align, showing that
the sequence, which contains a TE insertion is
conserved in both genomes (Fig. 2b, left); in case of a
non-reference (MH63 specific) insertion, the alignment
will be split by an insertion in the MH63 sequence cor-
responding to an annotated TE (Fig. 2b, right); and in
case where the two sequences show a continuous align-
ment in the absence of an annotated TE insertion in
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Track 3 shows the density of validated non-reference insertions (MH63-specific insertions) in the benchmarking standard. Tracks 4-8 show the

density of non-reference predictions of five tools
performed, and we decided to restrict the dataset of
LTR-retrotransposons to a single chromosome (chr5).
This strategy combined the power of detection of
read-based methods (useful for uncovering polymor-
phisms derived from both full and degenerated ele-
ments), with the reliability of the validation based on
alignments between high-quality assembled genomes. By
using this combined approach, we increased the number
of validated non-reference MITE insertions from 1898
to 3117 whereas for LTR-retrotransposons (chr5) the
amount of non-reference insertions in our validated

Nipponbare, this will indicate that the TE prediction is a
false positive (Fig. 2b, middle). After running all tools,
adjacent windows corresponding to TIP predictions of
the same category were merged to produce a final
dataset. LTR-retrotransposon insertions are frequently
more complex than MITEs (i.e: length, tendency to
form nested insertions and extremely high amount of
truncated and degenerated elements, Table 2). Because
of this, it was difficult in many cases to automatically
validate the insertions. Therefore, manual inspection of
the alignments of LTR-retrotransposons TIPs was
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Fig. 2 Individual validation of predicted insertions. Black boxes
represent TE annotations in Nipponbare IRGSP (green rectangle) and
MH®63 (blue rectangle) assembled genomes. Examples of shared
(reference) and MH63-specific (non-reference) insertions are shown
in a. Insertions predicted by each tool (shown as arrows in b) were
intersected with windows of 500 bp spanning the entire Nipponbare
IRGSP genome, and windows having an intersection (red boxes, b)
were aligned to MH63 genome. True positive reference insertions
(TP ref) were those having full-length alignments with an MH63
region where a MITE or LTR-retrotransposon was annotated. False
positives (FP) have high-quality alignments (MAQ > 30) to regions
were no MITE or LTR-retrotransposon was present. True positive
non-reference insertions (TP non-ref) alignments were those having
a spliced alignment in which the two hits were separated by a
region that overlaps with a MITE or LTR-retrotransposon annotated
in MH63

dataset increased from 22 to 239 (Additional file 2: Table
S1). The result was a high-quality dataset of True
Positive (TP) and False Positive (FP) reference and non-
reference insertions (Additional file 2: Table S1). In
addition, there were predicted insertions that did not
match neither with TP nor FP (i.e.: cases that did not fit
in the scenarios described in Fig. 2b). We analyzed the
specific cases of unclassified non-reference insertions
and found that 86% of these LTR-retrotransposon pre-
dicted TIPs and 92% of such MITE TIPs overlapped
with other transposons annotated in the reference.
These cases were not used for downstream analyses, as
most tools specifically indicate in their manuals that they
cannot properly detect nested insertions. In order to
evaluate the performance of each tool, we intersected
the windows corresponding to the TE insertions pre-
dicted by the tool (both reference and non-reference TE
insertions) with those of the curated dataset to identify
TP and FP (Fig. 2b). Insertions present in the curated
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dataset of TE insertions that were not detected by the
evaluated tool were counted as False Negatives (EN).

Most of the tools analyzed here are able to detect
insertions from all the families in the same run (broad-
spectrum). Some of these tools are able to detect refer-
ence and non-reference insertions, whereas others only
detect non-reference insertions. The programs use dif-
ferent strategies to identify these two types of insertions,
and consequently we analyzed their performance
separately.

Detection of reference insertions by broad-spectrum tools
We observed that whereas the precision detecting MITE
and LTR-retrotransposon reference insertions was very
high for both types of elements, the sensitivity levels of
most of the tools were much higher for MITEs (Fig. 3).
For MITEs, the sensitivity of most tools increased with
coverage and tended to stabilize at 20-40X coverage
(Fig. 3a). Teflon had consistently the best sensitivity and
overall performance (F1-score) in the detection of refer-
ence MITE insertions even at low coverage, reaching a
sensitivity of 74% at 10X with an almost 100% precision
(Fig. 3a). All tools showed precision levels higher than
99% at all coverages, and all tools except ngs_te_mapper
yielded a sensitivity higher than 60% at 40X (Fig. 3a,
Additional file 3: Table S2). By contrast, the sensitivity at
5X was low in general, with Teflon being the only tool
reaching more than 50% (Fig. 3a).

Regarding the detection of reference LTR-
retrotransposons, the general tool performance was
much lower than for MITEs (Fig. 3b). In this case, TE-
locate reached the maximum sensitivity followed by
Teflon and was only slightly higher than 50% (Fig. 3b),
and the other tools remained below 40% sensitivity. The
sensitivity of TE-locate was higher than 50% in all the
coverages, whereas in Teflon, PopoolationTE2 and Popoo-
lationTE it increased with coverage (Fig. 3b). When we
focused only on the detection of full-length LTR-
retrotransposons, the performance of all tools increased
considerably, reaching a maximum sensitivity of 85.4%
(Fig. 3c). TE-locate was again the best performer showing
a sensitivity over 80% for all the coverages. We excluded
the predictions of TEMP for reference insertions, as this
tool is based on the detection of absences assuming the
presence as default, which leads to an overestimation of
the number of insertions, especially at a very low
coverage.

Detection of non-reference insertions by broad-spectrum
tools

All the benchmarked tools are able to detect non-
reference insertions, a task that is more challenging than
detecting reference insertions, as the former are not
present in the reference genome to which the reads are
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mapped. In this case sensitivity was strongly dependent
on coverage (Fig. 4). Precision was very different for
MITE and LTR-retrotransposon predictions, showing a
tendency to decrease at high coverage (Fig. 4). Regarding
MITEs, Teflon was the best performer followed by
PoPoolationTE2 and Retroseq (Fig. 4a). These tools
reached a sensitivity close to 75% (up to 75.6% in 40X
coverage for Teflon), whereas the rest of the tools had a
much lower sensitivity (Fig. 4a). The precision was very
high (>95%) for most tools with the exception of TE-
locate, which dropped from 92.5% in 5X to 75.6% in
40X. All the tools improved their performance when the
coverage increased (except Jitterbug, which performed
the best at 20X), with PopoolationTE2 and Retroseq
showing the steepest increase, especially between 5X and
20X (Fig. 4a).

Regarding LTR-retrotransposons, PopoolationTE2
achieved the highest sensitivity, reaching a maximum of
88.5% at 40X (Fig. 4b). Nevertheless, these tools yielded

Page 8 of 19

a high number of false positives, which translates into
low precision levels (Fig. 4b). In general, the precision
detecting LTR-retrotransposons with respect to MITEs
was much lower for all tools. Jitterbug was the only pro-
gram with a moderate precision (> 75%) across all cover-
age levels, although its sensitivity was low (maximum of
32.7% at 40X) (Fig. 4b). According to the Fl-score,
PopoolationTE2 and Teflon were the best performers at
low coverages (5X-10X), whereas at higher coverages
PopoolationTE2 and Jitterbug showed the best balance
between sensitivity and precision (Fig. 4b). Differently to
what we previously did for reference insertions, we did
not compute the performance of the tools using only
full-length LTR-retrotransposons because they represent
only a small fraction of the non-reference annotated
insertions.

The output of most tools contains information that
can be used for filtering the putative insertions to
achieve more precise detection levels. We checked
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different filters for each program looking for gains in
precision with a low cost in sensitivity. In some cases,
such as Jitterbug, the precision was already very high,
and the filtering was not needed. In others, the cost in
sensitivity was too high and the filtering was not consid-
ered useful. For the two best-performing tools, Popoola-
tionTE2 and Teflon, filtering did result in significative
gains in precision without an excessive cost in sensitiv-
ity. For PopoolationTE2 we applied a zygosity filter of
0.7 (based on the fraction of reads supporting the inser-
tion) which led to a drop of sensitivity for both MITEs
(from 76 to 63%) and LTR-retrotransposons detection
(from 88 to 65%, Additional file 7: Figure S2), but with
an increase of precision, which was particularly striking
for LTR-retrotransposons (from 28.9 to 91.9% at 40X).
For Teflon, a zygosity filter of 1 resulted in a drop of
sensitivity for MITEs (from 78 to 61.5%) and LTR-
retrotransposons (from 57.7 to 44.2%) but with import-
ant gain in precision for LTR-retrotransposons (from
15.2 to 70.8%), which was not significative for MITEs
(98.4 to 98.5%) (not shown). In summary, based on the
Fl-score, filtering by zygosity greatly improved the over-
all performance of PopoolationTE2 and Teflon for LTR-
retrotransposon detection, whereas the effect of this fil-
ter on MITEs detection was much less pronounced due
to the already high precision of the unfiltered results.

Detection of non-reference insertions by family-specific
tools

Some tools have been designed to look only for TIPs of
a single TE family instead of all families at the same time
(i.e., ITIS, MELT and Trackposon). In order to analyze
the performance of such tools, we used the largest MITE
and LTR-retrotransposon families, which contain 194
(whole genome) and 22 (chr5) MH63-specific insertions,
respectively (Additional file 7: Table S1). The analysis of
MITE TIPs showed that ITIS and MELT did not per-
form well and displayed low sensitivity and overall F1-
score levels (Fig. 5a). By contrast, Trackposon performed
well, displaying up to 72.8% sensitivity with 93.1 preci-
sion at 40X coverage. In line with the results found for
broad-spectrum tools, sensitivity in the detection of
LTR-retrotransposons was strongly dependent on the
coverage. Trackposon and MELT showed moderate sen-
sitivity levels at 40X (58.6 and 55.2%, respectively)
whereas ITIS reached a maximum of sensitivity of
13.8%. Regarding precision, Trackposon was the best
performer with values ranging between 76.9 and 100%
(Fig. 5b).

Overlap between TIP prediction tools

As there is no tool showing 100% sensitivity, we asked
whether the predictions of the different tools were com-
mon or specific for each tool. We evaluated the overlap
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of the detected non-reference true and false positives for
the five better performing tools for MITE or LTR-
retrotransposon TIP predictions (40X), taking into ac-
count their sensitivity and precision. In spite of the dif-
ference in the amount of predictions between MITEs
and LTR-retrotransposons, the results showed very
similar trends: 54% of TP were detected only by one tool
for both MITE and LTR-retrotransposon insertions
(Fig. 6). As expected, the FP detected were tool-specific
in the vast majority of the cases (90.2% were detected by
only one tool for MITEs and 98% for LTR-
retrotransposons). The number of insertions detected by
all tools was very low (1.3% of all TIPs detected for
MITEs and 1.4% for LTR-retrotransposons). These re-
sults suggest that combining tools may increase the sen-
sitivity of the TIP detection, although this may come
with the cost of decreasing precision, as false positives
are highly tool-specific.

Combining tools to improve sensitivity

Our previous results suggest that a combination of tools
could be useful to increase the sensitivity in identifying
non-reference transposon insertions. To this end, we
combined the predictions of PopoolationTE2 (the overall
best performer) sequentially with up to four tools se-
lected based on their sensitivity and/or precision levels.
As a general trend, the combination of tools led to
higher sensitivity levels, reaching more than 90% for
both MITEs and LTR-retrotransposons at 40X coverage
when combining five different tools (Fig. 7). However,
the increase in sensitivity comes with a decrease in pre-
cision, particularly clear for LTR-retrotransposons, that
approaches 10% for 40X coverage when combining five
different tools. The results presented suggest that the
combination of two tools provided the best balance be-
tween sensitivity and precision. Specifically, the combin-
ation of zygosity-filtered PopoolationTE2 and Teflon for
MITEs reached 82.1% sensitivity and 97.4% precision at
40X. Regarding LTR-retrotransposons, the combination
of zygosity-filtered PopoolationTE2 and Jitterbug
reached 75% sensitivity and 86.7% precision at 40X.

As already mentioned, McClintock is an available
pipeline that combines several tools. Therefore, we com-
pared the performance of the combination of tools here
proposed with that of the McClintock pipeline, which
combines the use of Retroseq, TEMP, TE-locate, Popoo-
lationTE and ngs_te_mapper (we excluded RelocaTE
from the pipeline due to excessive running time). The
combination of tools here proposed (PopoolationTE2
and Jitterbug for LTR-retrotransposon insertions and
PoPoolationTE2 and Teflon for MITEs) yielded consist-
ently a better sensitivity and much better precision and
F1-scores than McClintock at all coverages (especially in
the case of LTR-retrotransposons, Fig. 8). The most
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important differences were found in precision at inter-
mediate and high coverages. As an example, for MITEs
at 40X PopoolationTE2-Teflon had 97.4% precision
whereas McClintock had 83.8% (Fig. 8a). Regarding
LTR-retrotransposons at 40X, PoPoolationTE2-Jitterbug
precision was 86.7%, whereas that of MdcClintock
dropped to 9% (Fig. 8b).

Evaluation of best-performing tools using Drosophila and
human datasets

In order to evaluate whether the benchmarking results
using rice data could be extrapolated to data obtained
from other species, we benchmarked the best performing
tools (PoPoolationTE2, Teflon and Jitterbug) using PCR-
validated TIPs from Drosophila and humans. The Dros-
ophila dataset consisted of 81 TIPs from ten Drosophila
lines sequenced at an average coverage of 42X [22]. This

dataset contained TIPs from 12 different transposon fam-
ilies, including retrotransposons (LTR and LINE) and cut-
and-paste DNA transposons (TIR) experimentally vali-
dated by Lerat et al. [31] Merenciano et al. [33] and Ullas-
tres et al. [46] (Additional file 4: Table S3). The human
dataset consisted of 148 TIPs obtained from one human
individual at a coverage of 20X [44]. This dataset consisted
of TIPs related to ALU, SVA and LINE-1 retroelements.
In the analysis of human insertions, we also included
MELT, as it is the best-established tool for the detection
of human TE polymorphisms. The detection levels of
PoPoolationTE2 and Teflon in Drosophila were moder-
ately high (69.1% of the insertions, Table 3 and Additional
file 5: Table S4), and substantially higher than Jitterbug
(44.4% of the insertions). Using the combination of the
three tools, we were able to detect 81.5% of the insertions.
These results are in high concordance with the sensitivity
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levels found using rice data with LTR-retrotransposons
and MITEs, where PoPoolationTE2 and Teflon showed
superior detection levels to Jitterbug (Fig. 4). Regarding
the human sample, MELT was the best tool identifying
homozygous insertions (97.8%, Table 4), whereas PoPoo-
lationTE2 was the best detecting heterozygous insertions
(88.2%). Taking into account both kind of insertions,
PoPoolationTE2 outperformed MELT, displaying an aver-
age detection level of 90.5%. The detection rate of these
two programs was higher on human data than in Drosoph-
ila or rice, where sensitivity levels rarely exceeded 70%
using 20X coverage (Fig. 4). The detection levels of Jitter-
bug were similar to those found using Drosophila and rice,
ranging from 47.8 to 51%. Teflon was unable to complete
the task and the process was killed after five running days.
Using the combination of tools, the detection rate in-
creased only 3.4% for the human dataset, reaching up to
93.9% (Table 4).

Running time

Computation time is a limiting factor when running TIP
detection tools in large datasets. Therefore, it is an im-
portant criterion to take into consideration for selecting
the most appropriate tool for a specific experiment. We
tested the time needed by the tools to finish the predic-
tion with a 10X dataset and 432 MITE families as input.
It is important to mention that three tools (Trackposon,
ITIS and MELT) work on a per-family basis. In these
cases, the reported time was that needed to finish the
prediction for a single family. By contrast, the remaining
tools work with all the annotated TE families at the
same time. According to our results, Trackposon was
the fastest tool, with only 1.7 CPU hours needed to fin-
ish (Fig. 9). Among the general tools, ngs_te_mapper,
TE-locate and PoPoolationTE2 were the fastest tools,
with 8.6, 9.6 and 9.7 CPU hours needed to finish the
prediction for the 432 families. RelocaTE2 took the
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largest amount of time to finish the prediction (59.1
CPU hours) (Fig. 9).

Discussion

The use of real data is essential for an accurate
benchmarking of TE insertion detection tools

There are several tools available to detect TIPs from
short-read resequencing data, and some efforts have
been made to validate the performance of such tools [36,
41]. However, their benchmarking has been essentially
based on simulated TE insertions and simulated short
reads. It is challenging to perfectly simulate sequencing
errors, local coverage variations, biases due to GC con-
tent or other genome specific biases that real short-read
datasets contain. Similarly, the heterogeneity of real

transposon insertions, with polymorphic truncated or
degenerated elements and elements inserted in highly
repetitive regions, among other confounding effects, are
also difficult to simulate. As a consequence, the bench-
marking using simulated data may be overestimating the
performance of the TIP prediction tools. Indeed, our re-
sults show that, most of the tools here analyzed have a
lower sensitivity than previously reported. For example,
RelocaTE2 and TEMP were previously benchmarked on
simulated rice data, and the sensitivity of both tools was
estimated to be higher than 99% at 10X [11]. On the
contrary, our results using a dataset of real insertions
and real short-read data show that both programs per-
form very different, with TEMP having a maximum sen-
sitivity of only 13.3% for MITE detection and
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RelocateTE2 showing a 35.6% sensitivity. Similarly, we
previously reported a sensitivity of close to 90% for Jit-
terbug, a program developed in our laboratory, using
real short reads on simulated TE insertions [21]. Our re-
sults now show that for the dataset analyzed (real TIPs
and real short reads) the maximal sensitivity is of 32.7%
(Fig. 4, LTR-retrotransposons), although it does so with
a relatively high precision. Therefore, our results suggest

that the sensitivity and precision previously reported for
TIPs detection tools, determined using simulated data,
are probably overestimated and that the real perform-
ance of these tools is probably lower. We think that the
performance levels of the different tools presented here
are a much better estimation of their detection ability on
real datasets. It is important to note, however, that de-
pending on the genome to be analyzed, parameters used

Table 3 Number of insertions detected by PoPoolationTE2, Jitterbug and Teflon using a validated Drosophila melanogaster dataset

RAL-737  RAL-40 RAL-801 RAL-802 RAL-850 RAL-502 RAL-508 RAL-491 RAL-235 RAL-21 TOTAL %
Validated insertions 17 16 9 7 4 5 7 5 4 7 81
PoPoolationTE2 12 5 9 5 3 3 6 5 3 5 56 69,1
Jitterbug 1 2 3 5 2 2 4 2 3 2 36 444
Teflon 12 6 9 4 3 4 5 4 4 5 56 69,1
Combination 15 6 9 7 3 4 7 5 4 6 66 81,5

Total number of insertions detected by each tool on each line is provided in Additional file 5: Table S4
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Table 4 Number of insertions detected by Jitterbug, MELT and
PoPoolationTE2 using a validated human dataset

Tool Homozygous Heterozygous Total
Validated insertions 46 102 148
PoPoolationTE2 44 (95,7%) 90 (88,2) 134 (90,5%)
Jitterbug 22 (47,8%) 52 (51,0%) 74 (50,0%)
Teflon @ - - -

MELT 45 (97,8%) 84 (82,4%) 129 (87,2%)
Combination 45 (97,8%) 94 (92,2%) 139 (93,9%)

2 Teflon was killed after 5 days running with 12 CPU and 300GB of RAM
Total number of insertions detected: PoPoolationTE2 (ref and non-ref) =
186,038; Jitterbug (non-ref) = 624; MELT (non-ref) =1297

and especially on the quality of the annotation of the ref-
erence genome the performance of the programs may
vary. All the programs benchmarked here are based on
the detection of discordant paired-end reads and/or
split-reads at the junction of TE insertions. Among the
different confounding factors that can interfere with the
detection process, the quality of the TE annotation of
the reference genome and in particular of the proper
definition of the TE-genome junctions, is an important
one. Therefore, it is important to work on refining the
annotation of the TEs (or at least the more interesting
TE families for the purpose of the study) before search-
ing for TIPs.

Tool performance varies depending on TE family

Eukaryote genomes contain a high diversity of TE ele-
ments with very different copy numbers and functional
and structural characteristics, which may impact on the
ability of TIP detecting programs to reliably identify
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their insertions. Because of that, we decided to bench-
mark the different programs using two very different
types of TEs that, in addition, are the most prevalent in
plants: MITEs and LTR-retrotransposons. The results
presented here show that, as expected, the analyzed tools
do not detect different TE types with the same sensitivity
and precision. MITEs and LTR-retrotransposons repre-
sent extreme examples based on their length and com-
plexity, and the performance of the tools when used
with other TEs will probably be in the range of this
case-study. The analysis of the sensitivity of the best per-
forming tools in detecting TIPs produced by different
types of transposons (including LINEs, LTR-
retrotransposons and cut-and paste TIR transposons) in
Drosophila and humans suggests that this is indeed the
case. Our results indicate that MITEs are detected with
better  sensitivity = and  precision than  LTR-
retrotransposons. The difference is especially relevant in
the detection of non-reference insertions, where most
tools show low precision levels for LTR-
retrotransposons. In the present study, we ran all sam-
ples in default mode or using the parameters described
by the authors in the corresponding manuscripts or
manuals (Additional file 1). Nevertheless, we show that
precision can be increased by applying specific filters to
the results. For example, we show that, for some pro-
grams, LTR-retrotransposon detection can be drastically
improved by applying a zygosity filtering. Applying such
filtering may be a good strategy when not intending to
study somatic insertions which should in most cases be
heterozygous. The difficulties of detecting LTR-
retrotransposons come from the complexity of the
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elements and from the local regions where they insert. It
is known that LTR-retrotransposons (especially those of
the Gypsy superfamily) tend to integrate in heterochro-
matic regions enriched in other TEs. These repetitive re-
gions are likely a source of false positives that affects all
the programs tested. These repetitive regions are, in fact,
difficult to annotate and polymorphisms within these re-
gions may be challenging to detect even using long-read
data or when aligning good-quality assemblies. By con-
trast, MITEs tend to integrate close to genes [25] and
their flanking regions are more likely to be unique in the
genome. The presence of non-repetitive TE flanks
greatly simplifies the detection of TIPs, as the probability
of finding multimapping reads in these regions is
minimal.

Another important consideration related to the differ-
ent TE families is the quality of the annotation. MITEs
are easy to annotate and usually have well defined
boundaries. By contrast, LTR-retrotransposons form
nested insertions and are often degenerated. This makes
very difficult to accurately define their boundaries, and
as a consequence many chimeric elements are usually
annotated. As already mentioned, an accurate TE anno-
tation is essential to increase the capacity of the tools to
identify TE insertions based on short-read data. In this
context, it could be a good strategy to identify and re-
move chimeric transposons from the annotation prior to
using any of these tools (ie, when working with consen-
suses or with the actual annotation). A chimeric or
nested transposon, for example an LTR-retrotransposon
with a MITE inserted inside, will be targeted by reads
arising from the two elements, and other MITE inser-
tions of the same family present elsewhere in the gen-
ome could be wrongly identified as LTR-
retrotransposons insertions by the TIP detection tools.

Influence of the type of genome on the performance of
the tools

The ability of any of the tools to detect TIPs depend on
the nature of the transposon insertion itself and its
flanking genome sequence, and none of them can detect
new transposon insertions in repetitive regions. There-
fore, in addition to the type of transposon generating the
TIP, as already discussed, the performance of the tools
may depend on the genome under study. For this reason,
we have analyzed the sensitivity of the tools that per-
formed the best using rice data on Drosophila and hu-
man data and compared their performance on the
different datasets. The sensitivity of the different pro-
grams analyzed in Drosophila was very similar to the
one obtained in rice. As the genomes of rice and Dros-
ophila are relatively different, the former being much
bigger (430 Mb vs 175 Mb) and with a higher content of
repetitive sequences (37% vs 20%), this suggests that the
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performance of the tools is relatively independent of the
genome used, and that the benchmarking here presented
could be of use for TIP analysis in many different
systems.

This analysis also showed that the tools that per-
formed best on rice had an even better sensitivity on hu-
man data. The difference of sensitivity was particularly
clear for PoPoolationTE2 and MELT. Although this
could indicate a difference of the performance of these
tools in the two genomes, it could also be due to the
particular nature of the human dataset. Indeed, the data-
set of validated TIPs in humans contains insertions from
TE families (LINE-1, ALU, SVA) that were detected in
the first place using only one method, based on split-
read and read-pair information [44] and therefore the
sensitivity of the programs on this dataset could be over-
estimated. It is worth mentioning that the PCR-validated
Drosophila and human insertions have been predicted
using a small number of tools in the original publica-
tions, and therefore it includes only a subset of all the
insertions present in these genomes. Moreover, the hu-
man and Drosophila datasets were validated by PCR,
which could have introduced a bias in the TEs that were
included in these datasets. However, note that the num-
ber of families included in the human and Drosophila
validation datasets are similar or bigger than the ones in-
cluded in the rice dataset and contain both full-length
and truncated TEs.

Sequencing coverage critically impacts TIP detection
Independently of the different performance found be-
tween TE families, we found that coverage has a major
impact on tool performance for all the TE families
tested. In general sensitivity increases with increasing
coverage. Therefore, homogenization of sample coverage
is essential when using TIPs prediction tools to quantita-
tively compare the transposition rates between organ-
isms or populations. Some tools like PopoolationTE2
have internal steps to carry out this task. Nevertheless,
for qualitative studies coverage homogenization is dis-
couraged as down-sampling high-coverage datasets leads
to a smaller number of detected insertions. It is import-
ant to note that the increase of sensitivity with increas-
ing coverage comes, in most cases, with a decrease in
precision. Therefore, depending on the goals of the study
a different level of coverage may be suitable. From the
data presented here it seems that a coverage below 20X
is probably not suited for most analyses, as the probabil-
ity of missing true insertions is very high.

Strategies to increase tool performance

The fact that an important fraction of the insertions de-
tected by the different tools are not shared supports the
fact that combining different tools may increase the



Vendrell-Mir et al. Mobile DNA (2019) 10:53

quality of the results [36]. However, simply increasing
the number of tools does not necessarily increase the
quality of predictions, due to the accumulation of tool-
specific false positives (ie, the combination of five tools
yielded 95% of sensitivity but only 11.8% precision in
non-ref LTR-retrotransposon detection, Fig. 7). This is
due to the fact that whereas many true insertions are de-
tected by several tools, most false positives are tool-
specific (Fig. 6). Combining a limited number of well-
performing tools may be the best approach. Indeed, our
results show that with the dataset used, the combination
of PoPoolationTE2 and Jitterbug to detect LTR-
retrotransposon insertions, or PoPoolationTE2 and Tef-
lon to detect MITEs vyielded superior TIP annotations
(better F1-score) than the tools alone. Also, the perform-
ance of these tool combinations was better than that of
the McClintock pipeline, especially regarding LTR-
retrotransposons. In this sense, we recommend combin-
ing tools based on their high precision and not only on
their high sensitivity (ie, PoPoolationTE2 and Jitterbug).
Nevertheless, there can be situations in which sensitivity
has a priority over precision (ie, re-sequencing of a sin-
gle individual, or interest only on a few families). In such
cases, running more tools can be an alternative and
manual curation should be considered.

Selecting the appropriate tools for detecting TE insertions
in resequencing data

Depending on the objective of the analysis, a family-
specific tool could be more interesting than a broad-
spectrum tool. For example, when tracking the effect of
certain treatment in a concrete set of elements. Another
important consideration is that the amount of storage
needed is smaller in comparison to broad-spectrum
tools, due to the smaller size of the alignment files. For
such cases, a tool such as Trackposon could be a good
option due to its fast speed, moderate sensitivity and
high precision. Nevertheless, as a drawback, Trackposon
does not report the exact insertion point and, which
could be a limitation for some studies. In those cases,
MELT can be an interesting alternative, although it re-
quires adjusting family-specific parameters to produce
high-quality results. This might be indeed the cause why
MELT did not perform well on the detection of rice
MITEs. In general, it is possible that the tools analyzed
here, which were not specifically designed for MITEs
and LTR-retrotransposons, may work better for other
types of TEs or with modifications in the parameters
used. Based on our results, if the objective of the study is
to analyze insertions of more than one family, and the
storage space is not a major limitation, using some of
the top broad-spectrum tools such as PoPoolationTE2 is
probably a better option as those programs can also be
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relatively fast and show high sensitivity and precision in-
dependently of the species and TE type analyzed.

Conclusions

Besides the important efforts of tool developers, our re-
sults suggest that the identification of TIPs is still chal-
lenging. We propose here a number of approaches, such
as combining tools, which can be followed depending on
the purpose of the study and the TE families to be ana-
lyzed, that can provide good results. However, it is im-
portant to note that in the best scenario (combining
optimal tools at best coverage, Fig. 7) and having a good
TE annotation of the reference genome, the sensitivity
could be around 70% with a precision of 80-90% for
non-reference insertions. These numbers may be enough
for most studies, but it is important to keep in mind that
some insertions will be missed, especially when estimat-
ing insertion frequencies or when using TIPs for GWAS,
for example. There are major limitations like the length
of the reads that can be resolved with current technolo-
gies (ie long-read sequencing) and will certainly improve
in the following years. But there is still the need to de-
velop new algorithms specifically designed to identify
TIPs from long reads, to generate highly curated TE an-
notations of reference genomes and also more independ-
ent benchmarks on real data to evaluate the
performance of tools under different conditions.

Methods

Sequence data used

We used the available data for the japonica Nipponbare
(GCA_000005425.2) and the indica MH63 (GCA_
001623365.1) assemblies, and the short-read resequen-
cing of MH63 (SRX1639978), which were used to gener-
ate the original assembly.

MITE annotation

MITE-hunter [19] was run on Nipponbare and MH63
assemblies to detect MITEs families, which were then
combined with the high-quality predictions available in
PMITE database [9] (only families carrying TSD). Clus-
tering at 90% was performed to remove redundancy
using cd-hit [17] and produce a final library. RepeatMas-
ker (http://www.repeatmasker.org/) was run to annotate
all regions having significant homology with any of the
MITE families. The annotations were further screened
to discriminate full-length elements (consensus length +
20%) from truncated hits.

LTR-retrotransposon annotation

LTR-retrotransposons were identified by running
LTRharvest [14] on IRGSP and MH63 assemblies with
default parameters. The internal conserved domains of
these elements were obtained running hmmscan [13],
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and only coding elements were retained for further ana-
lyses. The identified elements were clustered with Silix
[34] according to the 80-80 rule. All the elements in
each family were aligned with Mafft [26] and trimmed
with Trimal [6]. Consensus sequences were built from
the alignments using the EMBOSS package [40].

Determination of benchmarking standards

We took advantage of the availability of two high quality
rice genome assemblies (IRGSP and MH63, the former
used as reference) in order to obtain a curated dataset of
real “reference” (orthologous) and “non-reference” (spe-
cific to MH63) insertions as explained in Fig. 2. Mapping
of reference and non-reference windows to MH63 gen-
ome was performed using BBmap (https://sourceforge.
net/projects/bbmap/). Intersections between annotations
were done with BEDtools [38].

Drosophila and human benchmarking datasets

The Drosophila dataset consisted of 81 TIPs from ten
Drosophila lines sequenced at an average coverage of
42X [22], and validated by PCR by Lerat et al. [31], Mer-
enciano et al. [33] and Ullastres et al. [46] (Additional
file 4: Table S3). In Lerat et al. [31], TIPs were predicted
using TIDAL [39] and PoPoolationTE2 [29] using 14
European D. melanogaster pooled populations (average
coverage of 90X). Briefly, validated TIPs were present in
the DGRP population and at least in one European
population at >10% frequency, not present in the Y
chromosome, and with a predicted length of <6kb to
avoid problems with PCR amplification. In Ullastres
et al. [46], TIPs were predicted by TIDAL in the DGRP
population [39]. Validated TIPs were inserted in regions
with recombination rates >0, and present in at least 15
DGRP strains. Finally, in Merenciano et al. [33] TIPs
were also predicted by TIDAL in the DGRP population
[39] and all belonged to the roo family. Both full-length
and truncated copies were validated, as no TE length fil-
ter was applied.

The human dataset consisted of 148 TIPs obtained
from a human individual (NA12891, SRA accession
SRX207113) [44]. Original sequencing coverage of the
human genome was down sampled to 20X.

TIP prediction

Predictions of transposon insertions were done using the
12 tools shown in Table 2 using the default parameters
and / or following the recommendations of the authors.
The scripts used for running each of the tools are shown
in Additional file 1.

Evaluation parameters
We used the following parameters for evaluating the
ability of each tool to detect MITEs and LTR-
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retrotransposons: True positives (TP): Insertions de-
tected by any tool matching with our curated dataset of
TPs. False positives (FP): Insertions detected by any tool
matching with our curated dataset of FPs. False nega-
tives (FN): Insertions present in our curated dataset of
TPs, not detected by the evaluated tool. These primary
parameters were used for calculating the final bench-
marking ratios that have been previously used for asses-
sing the performance of similar tools [41].

Sensitivity = TP/ (TP+ EN).

Precision = TP/ (TP + FP)

F1-score = 2 x [(Precision x Sensitivity) / (Precision
+ Sensitivity)]
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