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Abstract

Background: Since the completion of the human genome project, the diversity of genome sequencing data
produced for non-human primates has increased exponentially. Papio baboons are well-established biological
models for studying human biology and evolution. Despite substantial interest in the evolution of Papio, the
systematics of these species has been widely debated, and the evolutionary history of Papio diversity is not fully
understood. Alu elements are primate-specific transposable elements with a well-documented mutation/insertion
mechanism and the capacity for resolving controversial phylogenetic relationships. In this study, we conducted a
whole genome analysis of Alu insertion polymorphisms unique to the Papio lineage. To complete these analyses,
we created a computational algorithm to identify novel Alu insertions in next-generation sequencing data.

Results: We identified 187,379 Alu insertions present in the Papio lineage, yet absent from M. mulatta [Mmul8.0.1].
These elements were characterized using genomic data sequenced from a panel of twelve Papio baboons: two
from each of the six extant Papio species. These data were used to construct a whole genome Alu-based
phylogeny of Papio baboons. The resulting cladogram fully-resolved relationships within Papio.

Conclusions: These data represent the most comprehensive Alu-based phylogenetic reconstruction reported to
date. In addition, this study produces the first fully resolved Alu-based phylogeny of Papio baboons.
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Background
The burgeoning diversity and availability of whole genome
sequencing (WGS) data offers intriguing possibilities for
the field of comparative primate genomics. Currently,
WGS data are publicly available for over 100 primate spe-
cies (NCBI Resource Coordinators 2016). Traditionally,
significant interest in the genetics of non-human primates
stems from their sustained role as popular research models
for studying human biology and evolution [1–5]. One such
primate—well established as a model for human genetics
and disease susceptibility—is the Papio baboon [6–11]. In
addition to close genetic relatedness, the temporal and

ecological landscape of early Papio evolution bears strik-
ing resemblance to that of early hominins [2, 12–14]. Both
include ancient episodes of admixture, as well as migra-
tion out of Africa into the Arabian Peninsula during the
Pleistocene [2, 15–20]. Appropriately, Papio baboons rep-
resent an intriguing model for human evolution.
Papio baboons occupy the largest geographical distri-

bution of any non-human primate genus on the African
continent [21–23]. These ground dwelling Old World
monkeys inhabit most of sub-Saharan Africa, to the ex-
clusion of the tropical rainforests of West Africa and the
Congo Basin, and also extend into the south-western re-
gion of the Arabian Peninsula [24, 25]. Papio systematics
have been extensively studied over the past 60 years with
much debate as to which forms warrant species status
[25]. The disagreement is in essence philosophical,
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centered on the question of what constitutes a species.
However, recent studies employ a phylogenetic species
concept [26–29], positing that consistent differences in
physical appearance, ecology and social behavior justify
the recognition of six extant species: P. anubis, P. hama-
dryas, P. papio, P. cynocephalus, P. ursinus and P. kin-
dae. In this study, we recognize all six as species.
Despite considerable interest in Papio systematics, a fully

resolved consensus phylogeny remains undetermined [20,
26, 30]. Interfertility has been documented between all
neighboring species, with persisting natural hybrid zones in
several regions where distinct morphotypes (species) come
into contact [27, 31–36]. Thus, discordance between mito-
chondrial, morphological, and nuclear phylogenetic recon-
structions could in part stem from a dense history of
admixture and reticulation persisting throughout the
course of Papio evolution. Mitochondrial based phylogenies
support the divergence of Papio into northern and southern
lineages [26, 30]. Individuals belonging to P. anubis, P.
papio and P. hamadryas are consistently placed within the
northern clade; with individuals belonging to P. kindae and
P. ursinus comprising the southern clade. In these analyses,
however, the placement of P. cynocephalus remains unclear
with individuals found in both clades. In addition, such re-
constructions have proven unsuccessful at resolving phylo-
genetic relationships within each clade. Thus additional
analyses employing novel methodologies could further
serve to elucidate evolutionary relationship within Papio.
Alu elements are well-established DNA markers for the

study of systematic and population genetic relationships
[37–47]. In part, they are effective evolutionary characters
because of their high copy number in primate genomes
and sustained mobilization throughout the course of pri-
mate evolution (~ 65 MY) [48–50]. Over 1.2 million cop-
ies have been identified in the human genome [51], with
similar numbers reported for all other haplorrhine ge-
nomes sequenced to date [52–55]. Alu elements are
discrete primate-specific DNA sequences (~ 300 bp) be-
longing to a class of non-LTR (long terminal repeat) retro-
transposons termed short interspersed elements (SINEs).
Following the transcription of a SINE, the mRNA se-
quence can be reverse transcribed into DNA, producing a
new copy at a novel position in the host genome [56–58].
Over time, this process known as target primed reverse
transcription (TPRT) can exponentially increase the retro-
transposon content of a host genome. Alu elements, as
well as all other SINEs, lack the requisite enzymatic ma-
chinery for TPRT; thus they require proteins encoded by
larger retrotransposons known as LINEs (long inter-
spersed elements) [48, 59, 60].
SINEs are valuable evolutionary characters because they

can be assumed to be identical by descent, meaning that in-
sertions shared between individuals were inherited from a
common ancestor, rather than acquired by independent

events [61]. Additionally, retrotransposons have known
directionality [62, 63], with the ancestral state being the
absence of the insertion. Alu elements are popular retro-
transposon markers because their short length makes
them particularly easy to assay using standard PCR. Con-
sidered nearly homoplasy-free [48, 49], most potential
sources of homoplasy involving Alu elements can be re-
solved through Sanger sequencing [41, 42, 61]. Recent
studies demonstrate the utility of Alu elements for Papio
species identification, as well as retrieving population
structure within distinct Papio species [28, 29]. Further-
more, Alu elements have been successfully used to resolve
controversial relationships between primates [38, 39, 42,
64]. However, little is known about the efficacy of Alu ele-
ments to resolve phylogenetic relationships involving high
levels of admixture.
Although a high-quality reference assembly currently

exists for only one Papio species (P. anubis), WGS data
have been generated for individuals representing all six
Papio species through the Baboon Genome Consortium.
Thus it is possible to conduct a comprehensive whole gen-
ome analysis of Papio phylogeny using Alu polymor-
phisms between species of the genus. For the present
study, we created a computational pipeline to identify and
characterize recently integrated Alu elements polymorphic
within the genus Papio. These Alu insertion polymor-
phisms were used to reconstruct phylogenetic relation-
ships within Papio. By utilizing M. mulatta as our
reference, our approach placed equal evolutionary dis-
tance between each Papio diversity sample and the refer-
ence assembly [Mmul8.0.1]. The computational analyses
performed in this study generated a well-supported phyl-
ogeny of Papio baboons and represents the most compre-
hensive Alu-based phylogenetic analysis reported to date.
In addition, we report a novel approach to admixture and
reticulation analysis using Alu insertions.

Methods
Samples
Whole-genome sequencing was performed by the Baylor
College of Medicine Human Genome Sequencing Center
on a panel of fifteen Papio baboons: four P. anubis, two
P. papio, two P. hamadryas, three P. kindae, two P.
cynocephalus, and two P. ursinus. In order to sample an
equal number of individuals from each species, we used
two individuals from each of the six extant Papio species
(we randomly selected two individuals from P. anubis
and P. kindae) to conduct our computational analysis.
Lastly, our panel included WGS data from the macaque
sample used to build the latest M. mulatta assembly
[Mmul8.0.1] (Additional file 1).
WGS data were accessed from the NCBI-SRA database

[65]. The SRA-toolkit (fastq-dump utility) [66] was used
to download paired-end next generation sequencing reads
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and convert them from .sra files to interleaved fastq files.
We then used nesoni (https://github.com/Victorian-
Bioinformatics-Consortium/nesoni; last accessed March
2018) to prune all known adapters, cleave bases with a
phred quality score of 10 or lower, and exclude reads
shorter than 24 base pairs in length. Two output fastq files
were produced: one containing clean paired-end reads
(both reads passed the nesoni filter), and a second con-
taining unpaired orphan reads (one of the paired-end
reads was excised).

Polymorphic Alu insertion detection
We developed a computational pipeline to identify and
characterize recently integrated Alu elements in paired-end
next-generation sequencing (NGS) data. Our approach tar-
geted young Alu insertions still polymorphic within the
panel of individuals listed in the previous section. The ap-
proximate chromosomal position of each candidate inser-
tion was estimated using a split-read method (Fig. 1). The
resulting genotypes, generated for all individuals in our
panel, revealed markers that provided phylogenetic signal.
The AluY subfamily has been identified as youngest and

most active Alu subfamily in Simiiformes [48, 67–69].
Thus, in the alignment phase, we used BWA mem [70] to
map paired-end NGS reads to a consensus AluY sequence
obtained from Repbase [71]. Individual reads were required
to map to either the head (5′) or tail (3′) of the AluY con-
sensus sequence. In addition, reads mapping to the head of
an Alu insertion were required to contain at least 15 bp of
unmapped/non-Alu sequence directly upstream of the (5′)

start of the Alu sequence. Likewise, reads mapping to the
tail of the consensus Alu sequence were required to contain
no less than 15 bases of unmapped sequence directly flank-
ing the (3′) end of the sequence. Reads were mapped to the
AluY consensus twice: once using the standard BWA mem
parameters, and a second time using more liberal parame-
ters (described in Additional file 2). Split-reads identified
using standard parameters were later used to predict the lo-
cation of an Alu integration site, while those identified dur-
ing the liberal run were used simply to provide additional
support for the insertion event. The Alu portion of each
candidate split-read was then cleaved and remaining se-
quence aligned to Mmul8.0.1 using bowtie2 [72]. Split-
reads were categorized as sequences that mapped uniquely
to the AluYconsensus and the Mmul8.0.1 assembly.
The approximate genomic position of each candidate in-

sertion was calculated directly from the mapping positions
of split-reads to Mmul8.0.1 and the AluY consensus. Alu
insertion orientation was inferred from the alignment
orientation of the supporting reads when mapped to the
AluY consensus and Mmul8.0.1 assembly. During this
phase the integration orientation of each candidate inser-
tion was predicted in the forward orientation if positioned
5′ to 3′ on the sense strand, and the reverse orientation if
positioned 5′ to 3′ on the anti-sense strand. If a split-read
mapped in the same orientation to the consensus AluY and
the Mmul8.0.1 assembly, it was predicted in the forward
orientation. If the alignment orientations were discordant,
the insertion was predicted in the reverse orientation.
Approximate genomic positions for non-reference (ab-

sent in Mmul8.0.1) Alu insertions, predicted in any of the
12 Papio individuals, were concatenated into a compre-
hensive list with the goal of identifying phylogenetically in-
formative markers. All of these insertions were predicted
from split-reads obtained during the standard Alu align-
ment run. In principle, phylogenetically informative Alu
elements would have integrated into the Papio lineage fol-
lowing its divergence from Macaca. Thus, insertions
shared between Papio and the Macaca mulatta sample
were excluded. Likewise Alu elements identified in only
one Papio sample were phylogenetically-uninformative,
and thus were also excluded from this portion of the
study. The remaining loci were genotyped in every indi-
vidual on the panel. The three possible genotypes –
homozygous present, homozygous absent, and heterozy-
gous – were determined by analyzing sequences spanning
the insertion locus. It was initially assumed that an indi-
vidual was homozygous present for every insertion pre-
dicted in that sample. Likewise, it was initially assumed
that an individual was homozygous absent for every locus
not predicted in that individual. Insertions initially deter-
mined to be homozygous present were then re-evaluated
to determine if they were in fact heterozygous present.
Heterozygosity was determined by evaluating reads that

Fig. 1 Computational detection of Alu insertion polymorphisms
using split-reads. Alu insertions were identified using sequencing
reads spanning the Alu integration locus whether these split-reads
spanned the 5′ (a and c) or the 3′ (b and d) end of the insertion.
The four split-reads represented in this figure are labeled a, b, c,
and d. Green boxes represent Alu sequence; gray boxes denote
flanking sequence. If the split-read is paired and its read-pair
mapped to the flanking sequence (b and c), these mapping
coordinates were used to provide additional support for the
location predicted by the split-read. If the split-read’s read-pair
mapped to the Alu (a and d), this was used to provide additional
support for the presence of the predicted Alu insertion
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mapped uniquely to the Mmul8.0.1 assembly. An inser-
tion was reclassified as heterozygous if we identified reads
in that individual that mapped continuously (without
interruption) through the homologous empty site in the
Mmul8.0.1 assembly. This empty site was defined as a se-
quence containing at least 15 bp of flanking both up-
stream and downstream from the predicted insertion
locus. Additionally, if a homozygous absent genotype was
predicted in a region with a local read-depth less than two
standard deviations from the global mean, the genotype
was instead considered unknown.

PCR validation
The performance of the algorithm used in this study was
assessed by comparing PCR validations performed for 494
loci in a panel of six Papio baboons: one from each extant
Papio species [29]. From this dataset, our algorithm
correctly predicted 98% of the PCR-validated events for
presence/absence. In addition, the correct genotype
(homozygous present, homozygous absent, or heterozy-
gous) was computationally predicted for 93% of all events.

Basal divergence analysis
Previous phylogenetic analyses support the ancestral di-
vergence of Papio into two clades: northern and southern
lineages [26, 30]. To evaluate this hypothesis we created a
computational method to identify the basal divergence
model best supported by our Papio dataset. A genus com-
prised of six species with three different possible phylo-
genetic topologies generates 31 different unique models
for estimating the basal divergence (Additional file 3). For
each model we determined the total number of insertions
that supported and conflicted with each basal divergence.
We calculated the standard deviation and z-score for each
model. The model with the highest z-score represents the
basal divergence model best supported by the dataset.

Phylogenetic analysis
We used the model representing the basal divergence with
the highest z-score (described in the previous section) as a
pre-condition for our phylogenetic analysis. A compre-
hensive list of Alu insertions supporting this model (con-
sistent with the north-south split hypothesis) were used to
further resolve phylogenetic relationships within Papio. A
heuristic search was performed using PAUP* 4.0b10 [73].
Since it is assumed that the absence of an Alu insertion is
the ancestral state of each locus, Dollo’s law of irreversibil-
ity [74] was used in the analysis. Thirteen individuals were
evaluated in this analysis: 12 Papio baboons, two repre-
senting each of the six extant Papio species, along with
the M. mulatta sample used to build the Mmul8.0.1 as-
sembly. Each individual received a score for each locus
based on its computationally derived genotype. The pres-
ence of an insertion was scored as “1” for a filled site and

“0” for an empty site; unknown genotypes were scored as
“?”. Using PAUP we conducted a heuristic search using
genotype data from Alu polymorphisms concordant with
the north-south split with M. mulatta set as the outgroup.
All loci were classified as individual insertions and set to
Dollo.up for parsimony analysis as described previously
[41]. Ten thousand bootstrap replicates were performed
with the maximum tree space set to all possible trees.
We wrote a series of Python scripts to sort Alu insertions

into clusters based on which baboons shared the insertion.
This allowed us to determine the total number of Alu inser-
tions shared between different sets/combinations of ba-
boons. Each cluster contained Alu insertions shared among
a distinct combination of baboons, yet absent from all other
samples. For example, one cluster contained all Alu inser-
tions shared between the P. cynocephalus samples and the
P. kindae samples, yet absent from all remaining samples.
Another cluster was comprised of Alu insertions shared be-
tween all six northern baboons, yet absent from all six
southern baboons. Each cluster represents the total number
of insertions shared uniquely between a particular “combin-
ation/set” of baboons. The resulting clusters were then ana-
lyzed to identify patterns of shared Alu polymorphisms.
Using this script we quantified the total number of Papio
indicative Alu-insertions, markers present in all six extant
Papio species, yet absent from the M. mulatta sample.
Clade indicative Alu polymorphisms were defined as inser-
tions present in every species belonging to one clade, yet
absent from all individuals in the other clade. In addition,
we evaluated patterns of shared Alu polymorphism exhib-
ited within each clade. In this analysis, we identified Alu
polymorphisms exclusive to either the northern or southern
clade, yet not present in all species within that clade. Lastly,
we quantified the total number of species indicative Alu el-
ements, defined as Alu polymorphisms present in both in-
dividuals belonging to a species, yet absent from all other
Papio individuals in our panel.

Results
Polymorphic Alu identification
WGS data for multiple Papio baboons were generated
through the Baboon Genome Analysis Consortium and
made available on NCBI. From this dataset we selected a
diversity panel consisting of 12 Papio baboons: two from
each of the six extant species. We then used our computa-
tional pipeline to process these WGS samples, targeting
Alu insertions present in multiple diversity samples, yet ab-
sent from the latest M. mulatta reference assembly
[Mmul8.0.1]. In total, we identified 187,379 Alu insertions
fitting this criterion.

Basal divergence modeling
We evaluated 31 distinct basal divergence models (see
Methods), to determine the one best supported by our
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computational genotype data (Additional file 3: Figure S1).
The model with the largest z-score divided the Papio
genus into two lineages: a northern clade containing P.
papio, P. anubis, and P. hamadryas; and a southern clade
consisting of P. cynocephalus, P. ursinus, and P. kindae
(Additional file 3: Table S1). Of the 187,379 non-reference
insertions (not present in Mmul8.0.1) reported in the
previous section, 123,120 were concordant with this
north-south basal divergence model (~ 66%) and 64,259
(~ 34%) were discordant.

Papio phylogeny
Using the data obtained from the panel of 12 Papio indi-
viduals, we constructed an Alu-based phylogeny of Papio
baboons. For this analysis we used genotype data for
123,120 Alu insertions concordant with the north-south
split hypothesis. The resulting cladogram resolved rela-
tionships within Papio with 100% bootstrap support at
each node (C.I. = 0.703, H.I. = 0.297) (Fig. 2). Bootstrap
values along with the total number of insertions sup-
porting each node are included in Fig. 2.
To further examine evolutionary relationships within

Papio, Alu insertions shared among multiple samples were
clustered according to the patterns of shared Alu insertion
polymorphisms determined for our Papio samples. This
analysis was conducted multiple times, using various

combinations of individuals from each species. Regardless of
the representative individual selected for each species, the
rank and size of each cluster, remained consistent. However,
because we were particularly interested in observing clusters
formed between individuals belonging to different species,
we used one representative sample from each species. In
each species, we selected the individual with sequencing
coverage closest to the average coverage determined across
all samples (Additional file 1). The resulting clusters are dis-
played in Fig. 3. Of the 187,379 Alu insertions identified in
all 12 samples, we retained only those shared among mul-
tiple individuals from our panel of six Papio individuals. In
total, we identified 106,204 such elements grouped into 57
unique clusters (For the full table, see Additional file 4).
Figure 3 displays the 15 largest clusters, representing a total
of 76,264 Alu insertions (~ 72% of the dataset). The largest
cluster contained 32,156 markers present in all six Papio
species (Fig. 3). Seven of the eight next largest clusters were
shared exclusively between baboons belonging to the same
clade (north/south). In total, these seven clusters contained
27,314 Alu insertions (~ 26% of the dataset). Of the
remaining clusters, four consisted of markers shared be-
tween five of the six Papio species (10,568 Alu insertions, ~
10% of the dataset), and three clusters consisted of inser-
tions shared between P. kindae, and at least one of the
northern baboons (6226 Alu insertions, ~ 6% of the dataset).
Northern and southern clade phylogenies were then

re-evaluated using all 12 Papio baboons: two from each
of the six extant Papio species, with all 187,379 Alu in-
sertions. Alu insertions shared exclusively between mul-
tiple individuals belonging to the same clade were
classified as clade-specific markers. A total of 95,703
such markers were identified: 39,795 in the northern
clade and 55,908 in the southern clade. These markers
were clustered based on precise presence/absence geno-
types determined for all 12 Papio baboons. Species indi-
cative markers were defined as Alu insertions present in
both individuals representing the same species, yet ab-
sent from all other members on the panel. In total we
identified 48,808 species indicative markers: 23,578
markers were identified in the northern clade, with
25,230 identified in the southern clade. The total num-
ber of species indicative markers determined for each
Papio species is displayed in Fig. 4a. Among northern
baboon species, the highest number of species indicative
Alu polymorphisms was determined for P. papio
(10,873), followed by P. hamadryas (8060) and P. anubis
(4645). In the southern clade, P. kindae reported the
highest number of species indicative markers (12,891),
followed by P. ursinus (9545), and P. cynocephalus
(2794). Furthermore we evaluated inter-species relation-
ships by targeting clade-specific markers shared between
all individuals belonging to two species within a clade,
yet absent from both individuals from the remaining

Fig. 2 Alu-based phylogeny of extant Papio baboon species.
Phylogenetic relationships of Papio baboons constructed using
123,120 Alu insertion polymorphisms. Genotypes computationally
determined in 12 Papio baboons were used to construct a Dollo
parsimony tree using M. mulatta as an outgroup. The percentage of
bootstrap replicates (out of 10,000 iterations) is listed below each
branch; the number of Alu insertions supporting each node is listed
above each branch. Homoplasy index (H.I.) and consistency index
(C.I.) are included below the cladogram
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Fig. 3 Common patterns of shared Alu insertion polymorphisms. a The number of Alu insertions shared exclusively between the species
highlighted in each row. Markers were clustered based on precise presence/absence genotype data determined for six Papio baboons: one
representing each Papio species. This figure displays the 15 largest clusters identified in this analysis. The colors correspond to the (b)
Geographical distributions of the six Papio species. Map extrapolated from [30]. White/empty boxes indicate an empty site in that species

Fig. 4 Analysis of phylogenetically informative Alu insertions. a Species indicative Alu insertion polymorphisms. For each species, the total number
of Alu insertion polymorphisms shared exclusively between individuals belonging to that species. All species indicative markers were identified in
multiple representative individuals. Also displayed is the number of Alu insertion polymorphisms supporting alternative northern (b) and southern
(c) clade phylogenies. These markers were shared between multiple individuals belonging to each of the sister taxa displayed, yet absent from
the third divergent species. Each phylogeny corresponds to the data point above it
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species. Within both clades, three unique clusters were
formed from these data, each supporting a different
clade phylogeny (Fig. 4b and c). A total of 7436 such ele-
ments was determined: 4220 in the northern clade and
3216 in the southern clade. Of the markers identified in
the northern clade, 52% were shared exclusively between
P. anubis and P. papio (1613 loci), 34% were shared be-
tween P. anubis and P. hamadryas (1153 loci), and the
remaining 14% were shared between P. papio and P.
hamadryas (450 loci). In the southern clade analysis,
43% of the Alu insertions were shared between P. ursi-
nus and P. kindae (1766 loci), 36% were shared between
P. cynocephalus and P. ursinus (1483 loci), and 28% were
shared between P. kindae and P. cynocephalus (971 loci).
In addition, we evaluated low-allele frequency Alu poly-

morphisms using data obtained from our complete panel of
12 individuals: two representing each Papio species. Alu in-
sertions used in this analysis were those shared uniquely
between only two species, and absent from the other four.
Thus the overall number of these insertions among Papio
was relatively low. We clustered these elements based on
their precise presence/absence genotypes. Clusters identi-
fied for each species are displayed in Fig. 5. The numbers of
insertions listed corresponds to the average of the two indi-
viduals from each species. With the exception of P. papio
and P. hamadryas, the largest clusters identified in Papio
species contained Alu insertions shared between individuals
belonging to the same clade (north/south). Although the
single largest cluster identified in both P. papio and P.

hamadryas consisted of elements shared with P. anubis,
the second largest cluster was shared with P. kindae. All of
the northern baboons shared more insertions with P. kin-
dae than with the other two southern baboon species com-
bined (P. cynocephalus and P. ursinus).

Discussion
With the increasing availability of WGS data, admixture re-
mains a fundamental challenge for evolutionary biologists.
Nevertheless, the abundance of genomic data provides
scientists the opportunity to use novel methodologies to re-
examine complex evolutionary relationships. Well-
documented extant hybrid zones coupled with a dense
history of reticulation complicate the task of neatly organiz-
ing Papio baboons into a phylogenetic tree. Baboons are
popular well-established research models for studying hu-
man disease and evolution, and therefore understanding the
pattern of genetic variation within and between baboon spe-
cies is important. As a result, an accurate and detailed un-
derstanding of Papio genomic evolution is quite valuable.
Despite the increasing availability of WGS data, high

quality assemblies are not commonly constructed for mul-
tiple species belonging to the same genus. Instead, one indi-
vidual is often used to build an assembly representative of
an entire genus. However, often times WGS data are gener-
ated from individuals belonging to different species within
that genus. For Papio baboons, a high quality (chromo-
some-level resolution) reference assembly exists only for
Papio anubis, yet WGS data have been generated for

Fig. 5 Low allele frequency Alu insertions polymorphic among Papio species. A diversity panel of 12 Papio baboons was used in this analysis: two
representing each extant species. The only elements used in this analysis were those shared uniquely between two species. Each pie chart
represents the average values determined from the two individuals representing that Papio species (the species name is listed above each pie
chart). The size of every pie chart slice represents the number of Alu insertions shared between the species listed above that particular chart and
the species represented by the color of the slice (indicated by the legend on the right). The numbers outside each pie chart correspond to the
total number of Alu insertions represented by each slice
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multiple individuals from each extant Papio species. A trad-
itional method used to identify Alu elements polymorphic
within a genus involved identifying markers present in an
assembly of interest, yet absent from the closest primate
relative with a draft assembly. For Papio baboons, a
lineage-specific Alu polymorphism would be defined as an
element present in P. anubis, yet absent in rhesus macaques
[as represented by the assembly Mmul8.0.1]. Since all of
the subsequent markers would be identified in a P. anubis
individual, this would introduce sampling bias towards
markers present in P. anubis. However, our computational
approach allowed us to align all of our representative Papio
samples against the outgroup rhesus macaque [Mmul8.0.1],
placing equal evolutionary distance between each Papio in-
dividual and the reference assembly. As a result, we were
able to identify polymorphic Alu elements with minimal
directional bias.
Analyses conducted using mitochondrial DNA support

the most basal divergence of Papio into northern and
southern clades. However, these analyses were unable to
produce a phylogeny that fully resolved evolutionary re-
lationships between Papio species. Our findings provide
support for this basal north-south split hypothesis. Fur-
thermore, this study produces the first whole genome
computational analysis of Alu polymorphisms within
Papio. By designing a computational method to detect
and characterize Alu polymorphisms from multiple
Papio individuals representing all known extant species
and evaluating various basal divergence models, we were
able to produce a fully resolved phylogeny of Papio ba-
boons with 100% bootstrap support at each node.
In addition, our analysis of elements discordant with this

phylogenetic model may offer insights into a complex his-
tory of admixture and reticulation within the Papio lineage.
In the southern lineage, P. kindae shows the highest inci-
dence of Alu insertions shared with the northern clade, yet
absent from the other southern clade samples (11,286 ele-
ments). In total, we identified 64,259 elements discordant
with topology of the phylogenetic tree (Fig. 2) that could be
due to incomplete lineage sorting (ILS) or hybridization/ad-
mixture. Continued analyses involving a greater number of
individuals would be necessary to accurately explain the
taxonomic distribution of these insertions. Such analyses
could potentially elucidate insertions indicative of speciation,
the north-south split, hybridization, and many other evolu-
tionary events. Thus, the data presented in this paper may
be utilized to further evaluate Papio evolution. Such studies
are likely necessary given the rich diversity that exists within
the genus Papio. Furthermore, this approach has outstand-
ing potential to inform analyses of other primate genera with
complex evolutionary histories (e.g. Cercopithecus, Macaca,
Chlorocebus, Aotus, Microcebus, Saimiri and others).
Contemporary arguments in favor of applying a phylo-

genetic species concept to the Papio genus rely heavily on

the rich species diversity exhibited between morphotypes.
Our findings provide support for the genetic diversity that
exists within the genus Papio. In each extant species, we
found an average of over 8000 elements shared exclusively
between members belonging to that species. Despite previ-
ous debate as to whether P. kindae warrants species level
classification, the largest number of species-specific ele-
ments characterized in this study were identified in P. kin-
dae (12,891).
One limitation of this study is that it is based on only

12 Papio individuals: two representing each species. It is
very likely that the genetic diversity observed in each in-
dividual does not comprehensively represent diversity
existing within the species as a whole. Each wild Papio
species occupies a large range across the African contin-
ent; thus proximity to hybrid zones may contribute to
interspecies diversity that is not captured in this analysis.
Several species occupy ranges that contact other Papio
species (Fig. 3b). Little is known about within species di-
versity. Only through further large-scale sampling and
analyses can this be evaluated.

Conclusions
In conclusion, this study exhibits the utility and efficacy of
a whole genome analysis of Alu polymorphisms for resolv-
ing controversial phylogenetic relationships. In addition, it
demonstrates the importance of employing diverse meth-
odologies. Knowledge of the initial divergence of Papio into
northern and southern clades, produced by previous studies
and supported in this study, was instrumental in our ana-
lysis of Papio evolution. Despite high incidence of
hybridization and sustained hybrid zones, we were able to
produce a highly supported cladogram, resolving relation-
ships within both the northern and southern clades. These
data represent the most comprehensive Alu-based phylo-
genetic reconstruction reported to date. In addition, this
study also produces the first fully resolved Alu-based phyl-
ogeny of Papio baboons. Our approach may offer useful ap-
plications for investigating other unresolved branches of
the primate evolutionary tree.

Additional files

Additional file 1: Sequencing information for the 13 WGS samples used
in this study. Individuals listed in bold indicate the panel of Papio
samples used to conduct the clustering analysis in which one
representative sample was used for each species. All of the links provided
in this file were last accessed March 2018. (XLSX 12 kb)

Additional file 2: An outline detailing the programs utilized in the
computational pipeline. Command line arguments used in each run are
provided. (DOCX 14 kb)

Additional file 3: An excel file containing a figure and table representing
possible basal divergence model reconstructions generated using all six
extant Papio species. A maximum of 31 rooted monophyletic models can
be generated from such a genus comprised of six species. These models
can be further organized into three distinct groups based on the number of
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species contained in the subsequent clades. Group I depicts the six different
scenarios when one of the six species diverges prior to the other five. Group
I-A) illustrates P. kindae diverging first, followed by B) P. ursinus first, then
C-F) P. cynocephalus, P. papio, P. hamadryas, and P. anubis diverging first,
respectively. Group II depicts the 15 different models when two of the six
species diverge prior to the other four. All possible combinations of this
scenario are illustrated in Group II A-O. Group III depicts the ten different
models generated from a basal divergence that forms two clades each
comprised of three species. All ten combinations are listed in Group III A-J.
The values listed correspond to the 31 possible phylogenetic models dis-
played in Figure S1. For each model, the number of concordant insertions
are provided in the third column; the number of discordant insertions can
be found in the fourth column. The z-score determined for the number of
discordant insertions is listed in the last column. The lowest z-score
(indicating smallest proportion of discordant elements in group) is shown in
bold font and indicates scenario III-A to be the most likely basal divergence
model. (DOCX 61 kb)

Additional file 4: An extension of Fig. 3. It is an excel file containing the
complete cluster list: all 57 clusters identified in this analysis. (XLSX 13 kb)

Additional file 5: This file lists the members of the Baboon Genome
Analysis Consortium as well as their contact information. (DOCX 13 kb)
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