Tempel and Talla Mobile DNA 2014, 5:9
http://www.mobilednajournal.com/content/5/1/9

Mobile
DNA

O

SOFTWARE

Open Access

Visual ModuleOrganizer: a graphical interface
for the detection and comparative analysis of

repeat DNA modules

Sebastien Tempel and Emmanuel Talla"

Abstract

http://Icb.cnrs-mrs.fr/spip.php?rubrique313.

Background: DNA repeats, such as transposable elements, minisatellites and palindromic sequences, are abundant
in sequences and have been shown to have significant and functional roles in the evolution of the host genomes. In a
previous study, we introduced the concept of a repeat DNA module, a flexible motif present in at least two
occurences in the sequences. This concept was embedded into ModuleOrganizer, a tool allowing the detection of
repeat modules in a set of sequences. However, its implementation remains difficult for larger sequences.

Results: Here we present Visual ModuleOrganizer, a Java graphical interface that enables a new and optimized
version of the ModuleOrganizer tool. To implement this version, it was recoded in C++ with compressed suffix tree
data structures. This leads to less memory usage (at least 120-fold decrease in average) and decreases by at least four
the computation time during the module detection process in large sequences. Visual ModuleOrganizer interface
allows users to easily choose ModuleOrganizer parameters and to graphically display the results. Moreover, Visual
ModuleOrganizer dynamically handles graphical results through four main parameters: gene annotations, overlapping
modules with known annotations, location of the module in a minimal number of sequences, and the minimal length
of the modules. As a case study, the analysis of FoldBack4 sequences clearly demonstrated that our tools can be
extended to comparative and evolutionary analyses of any repeat sequence elements in a set of genomic sequences.
With the increasing number of sequences available in public databases, it is now possible to perform comparative
analyses of repeated DNA modules in a graphic and friendly manner within a reasonable time period.

Availability: Visual ModuleOrganizer interface and the new version of the ModuleOrganizer tool are freely available at:

Keywords: Compressed suffix tree, Maximal repeats, Repeat modules, Graphical interface

Background

Repeated sequences (e.g. transposable elements, mini-
satellites, ...) are present in all living organisms studied
until date [1]. They are evolutionary conserved sequences
and have been shown to have a significant functional
importance [2]. Recent studies show the role of trans-
posable elements in the evolution of host genomes
[3-5], including transposable elements domestication
(neogene), exaptation, and transcription regulators [1,6,7].
A number of tools has been described for the search of
repeated elements in a genome. However, most of them

*Correspondence: talla@imm.cnrs.fr
Aix-Marseille Université, CNRS, LCB, UMR 7283, 13009 Marseille, France

() BiolMed Central

(RepeatMasker (8], Censor [9], and ISFinder [10]) are
BLAST-like tools that detect repeats (such as transposable
elements) using a library of consensus sequences. Except
for phylogeny analysis, there are few bioinformatic tools
(VISTA [11], GATA [12], GraphDNA [13], Recon [14] and
DomainOrganizer [15]) that facilitate the analysis of rela-
tionships and variations between the copies of a given
family of repeats [16,17].

In a previous study, we developped ModuleOrganizer
that indexed all maximal repeats (MR) of sequences via
a suffix tree in order to detect conserved modules within
the repeated sequences [18]. Indeed, the algorithm recur-
sively associates two MR if the spacer between them is
smaller than the size of the largest maximal repeat and if

© 2014 Tempel and Talla; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication

waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise

stated.

http://lcb.cnrs-mrs.fr/spip.php?rubrique313
mailto: talla@imm.cnrs.fr
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Tempel and Talla Mobile DNA 2014, 5:9
http://www.mobilednajournal.com/content/5/1/9

the edit distance between spacers of all occurrences is not
greater than the size of the smallest maximal repeat. The
MR association yields to the formation of modules under
restrictions defined by the user such as the minimal length
of the module (MinSizeModule) and the minimal number
sequences (MinSequences) [18].

Although the previous version of the ModuleOrga-
nizer tool can efficiently detect repeated modules within
sequences of smaller sizes (<100 Kbp), its implementation
with larger sequences remains problematic. This is often
because memory usage becomes bottleneck. Since Mod-
uleOrganizer command lines are the limiting factors for
its use, a graphical interface should be useful for launch-
ing and analyzing ModuleOrganizer results. To overcome
these difficulties, we propose an optimized version of the
ModuleOrganizer software with its corresponding graph-
ical interface called Visual ModuleOrganizer.

Implementation

Since the previous algorithm was written in C language,
the new version of ModuleOrganizer [18] was first com-
pletely recoded in C++ which drives better memory man-
agement. Then, as using a standard suffix tree [19] to
compute and store all maximal repeats (MR) leads to a
high memory usage during the process of ModuleOrga-
nizer, a data structure based on the compressed suffix
tree Valimaki [20] was applied to the new algorithm
version.

Therefore, the final re-implementation of the new ver-
sion contains options of the previous algorithm such as
‘search of palindromic modules’, ‘search of exact repeats’,
‘search of truncated modules’, ‘creation of a classifica-
tion tree file’, ‘search in a minimal number of sequences’
and ‘association distance between MR'’. In addition, new
options were also developed including: the “limit inte-
ger’ option which stops the ModuleOrganizer run pro-
cess after the detection of integer modules, and the
“f MinSizeMR’ option that selects MR of equal or greater
size than MinSizeMR bp before the formation of the mod-
ule. This option decreases the ModuleOrganizer run time
but have little effects on the sensitivity/specificity of mod-
ule detection (data not shown). Finally, the new option
“p m’ prints each m minute the approximative progress of
the software.

As the input, ModuleOrganizer needs FASTA file con-
taining the nucleotide sequence(s) (input-filel, manda-
tory). It can also use a FASTA reference (input-file2,
optional) file. This reference sequence file must contain
a unique sequence. The “REF input-file2’ option limits
the module detection to MR present in both input and
reference sequences.

ModuleOrganizer creates one mandatory output file
(named ‘Module File’) that contains the list of detected
modules in a tabular format as follows:

Page 2 of 8

>seqgl name length seql

START1 END1 MODULE x nb_sequence orientation

START2 END2 MODULE y nb_ sequence orientation

>seg2_name length seqg2

START3 END3 MODULE x nb_sequence orientation

START4 END4 MODULE y nb sequence orientation

where START1, START2, START3 and START4 (END],
END2, END3 and END4) correspond to the start (end)
location of modules within the sequences. x and y repre-
sent the identification number of modules. nb_sequence is
the number of sequences in which the module is present
and orientation gives the orientation of the module in
sequences (letter ‘d’ for the direct strand and letter ‘¢’ for
the reverse strand).

If the input file contains three or more sequences, Mod-
uleOrganizer creates an Unweighted Pair Group Method
with Arithmetic Mean (UPGMA)-based tree from the
matrix of presence/absence of modules in sequences. This
tree is then saved as a second output file, with ‘upgma’
extension name. The “MR’ option writes out (in a tabular
format) the list of detected MR (see Additional file 1). The
option ~SVG’ allows the creation of an optional output
file in Scalar Vector Graphics (SVG) format, a XML-based
vector language that grants modifications with any Scalar
Vector Graphics-enabled image processing tool.

The new ModuleOrganizer version was successfully
compiled and tested on Linux 64 bits, Windows7 32/64
bits, and MacOsX 64 bits. The Visual ModuleOrganizer
interface was coded and compiled with Java version 1.6.

Results and discussion

Data-processing improvements

During the run process of the previous algorithm, posi-
tions of the selected MR are first copied in the computer
memory space before the building of all potential mod-
ules. By consequence, this method might lead to high
memory usage and therefore slows down the detection
process. In order to improve the efficiency of ModuleOr-
ganizer memory usage, the new algorithm directly reads
the MR positions through the compressed suffix tree data
structure. As shown in Figure 1, this change (from suffix
tree to compressed suffix tree) dramatically decreases the
memory usage of ModuleOrganizer, particulary for large
sequences. Indeed, in the previous and the new version,
artificial random sequences from 10 to 240 Kbp exhibit
a memory usage of 29 to 5326 Mb and 13 to 25 Mb,
respectively. As shown in Figure 1, the expected required
memory space for a 1 Mbp genome should be about 21
Gb with the previous program (>8 Gb of RAM memory

Tempel and Talla Mobile DNA 2014, 5:9
http://www.mobilednajournal.com/content/5/1/9

Page 3 0of 8

100000

-
-
_.-'-—
-
- -

10000

® NEW

1000

Memory Usage (in Mb)
= OLD

100

10
10 100 1000

Sequence Length (in Kbp)

Figure 1 Memory usage comparison between old and new versions of the ModuleOrganizer algorithm. The blue (red) line corresponds to
the old (new) version of the algorithm. The size range of the sequences is from 10 Kbp to 1000 Kbp. Experienced and expected results are displayed

with plain and dotted lines, respectively.

for a standard computer) while it should only require 98
Mb with the new version. Interestingly, a typical running
process with the new version of ModuleOrganizer reduces
the required memory space by at least 120 times in aver-
age when compared to the old version. Moreover, the new
ModuleOrganizer version is faster than the previous one,
especially for sequences greater than 200 Kbp (Additional
file 2). Indeed, for a 240-Kbp sequence, the new tool is 4.8
times faster than the previous version (57 and 277 min-
utes, respectively). For larger sequences (about 1 Mb), the
expected running time do not exceed four hours with the
new algorithm of ModuleOrganizer.

The visual ModuleOrganizer graphical interface

For an user-friendly ModuleOrganizer and results easily
handle, a Visual ModuleOrganizer interface was created
and divided into two main areas as described below.

The visual ModuleOrganizer tool parameters

Through Visual ModuleOrganizer, ModuleOrganizer
parameters (Area 1 in Figure 2) can be used in two dif-
ferent ways: (i) ModuleOrganizer is launched by selecting
‘No’ on the ‘Using Previous Results’ button; or (ii) pre-
vious results from ModuleOrganizer are displayed by
selecting ‘Yes” with the same button.

In the first case, the two first mandatory parameters are
the ‘Input: FASTA File’ button, which selects the input file,
and the ‘Output: Module File’, in which ModuleOrganizer
results are written and displayed by the Visual Module-
Organizer interface. The third mandatory parameter (e.g.
MinSizeModule) is the minimal size of the module, which
is chosen from a list (Figure 2). Therefore, a module is
detected and selected by the algorithm if its size is equal or
longer than MinSizeModule. By default (with ‘Automatic’
size), ModuleOrganizer proposes to set MinSizeModule to
the minimal value of x such that it does not exists a word
of size x in the sequence(s).

In addition to the three mandatory parameters, Visual
ModuleOrganizer has the seven optional parameters. The
three first parameters (‘Palindromic modules’, ‘“Truncated
modules’, and ‘Exact repeats’) provide binary choices and
were described in the previous version [18]. Four others
were computed in the new version of ModuleOrganizer.
‘Minimal number of sequences’ (e.g. MinSequences) and
‘Maximal number of modules’ (e.g. MaxModules) options
require an integer value x, and limit the detection of mod-
ules in at least x sequences and to a maximal number of
modules x in the whole set of sequences, respectively. The
option ‘Module located in a reference’ refers to detected
modules located in the reference sequence as well as in
the mandatory ‘Input FASTA File’ sequences. The last
option, labeled ‘Annotations’, opens a new frame (see
upper right frame in Figure 2) that allows the user to add
genomic annotations from Genbank [21], EMBL [22], AB-
BLAST [23], or NCBI-BLAST [24] and/or repeat annota-
tions from RepeatMasker [8], Censor [9], and Repet [25]
formats within the graphical interface. It is noteworthy
that each annotation should be added independently for
each sequence. Interestingly, the user can add its own
annotation in a tabular format.

In the second case, when the button ‘Yes’ from ‘Using
Previous Results’ is selected (see upper left frame in
Figure 2), ModuleOrganizer parameters become invisible.
They are replaced by a mandatory parameter ‘Input: Mod-
uleOrganizer File’ and two optional parameters labeled
‘Option: Tree file’ from an upgma-based tree and ‘Annota-
tions’ as described above. Both ‘Input: ModuleOrganizer
File’ and ‘Option: Tree file’ use the result file created from
a previous ModuleOrganizer run.

In both cases, once all the parameters are selected,
the user launches the ModuleOrganizer algorithm with
the ‘RUN ModuleOrganizer’ button. Detailed information
about parameters and graphical options are available with
the ‘HELP’ button (Additional file 3).

Tempel and Talla Mobile DNA 2014, 5:9
http://www.mobilednajournal.com/content/5/1/9

Page 4 of 8

annotations are shown under the graphic display.

Pravious Results ¥ Owo e palindromic modules.
Truncated modues
mputOutput fles
oD Entes your Genbark Pl
nput; Modulerganizor Fla oryous o
\nput: ModuleCrganizer F st i of seoeneos O Enter your EMBL Fi
O Enter your annotation File: Your Anmotation L)
Option: Tree File b e DL ANQOT ERter One Repeat File
Modules located in a reference. Enter your BLAST File: BLAST (.out)
s R Ta et ati i e e Annotations. OR Enter your Repaatacker File
on Entery o Pl
RUN ModuleOrganizer OR Enter your Repet File:
~ O Enter your Repeat File:
Save Annotations and Bd:
Save and clase
N
Options:
Previous Results N G L Palindromic modules Yes ® No
Truncated modules Yes (& No
filos :
Exact repeats O Yes ® No
-
< home/Desktop/input.tit Input: FASTA File
Minimal number of sequences
w |
(I Maximal number of modules
< homeiDesktopiOutput. tit Output: Module File
]
| | Modules located in a reference Reference Sequence]
winimum size of modul Automati - .
nimum size of modules omatic Add annotations to sequence(s) b annotations
I
RUN MeoduleOrganizer
— Oraw Annotations: Oraw Overlapping Modules: Oraw Modules present in at least M Sequences: Oraw Modules by Size:
Annotations Menu ALL Modules ~ G v
= NO Annotatic ALL Modules 1 2 3 13 103 193 283 373
T NO Overlap with Annatations
Overlap with i
Genes
Graphiy 1 ExonS
Introns
5 ¥ UTRs
Pseudos
MiscRNAS SEQ 3 & 4 el
MODULE: 9
Repeats b t 4+ + 14! Position: 713to 803 ; A+ b+ A
390 Sequence: SEQ 1 170 1560 1950
Display the module sequence
Display all copics of the
SEQ1 &) fH = e
5 | . ||
o~ |
<C 5
w B <
& f 1 f
< 390 780
see2 - EH H HHL S E«Cl ¥
5 = -
bbbttt} Positon: 4210 679 ;
390 | sequence:sEQ2 g0 1170 1560
Legene: N N [O+ s EEEe o EEEe 5 o MY [JReverse moduie [SS]Truncated moduie
[Joene [N exon wiron [5> ure [pscudo [wiscann nepaat ¢ lp orientation of qp of Repeat
ave result:
Whole Sequences (.png)
Graphic Window (.png)
Enlarge Graph Zeomin ‘ Zoom out ‘ Global view Save results: =

Figure 2 Screenshoot of the Visual ModuleOrganizer graphical interface. Text legends of the module textures, genomic objects and repeat

Graphical display and optional parameters

A graphical display of the ModuleOrganizer results is illus-
trated in Figure 2 (Area 2). By default, each sequence
(e.g. SEQ_3) is represented by two lines: one corresponds
to a graduated ruler along the sequence (from 5 to 3’)
and the other consists of modules (boxes with different
textures). Identical modules are displayed with the same
texture to facilitate intra- and inter-sequence compar-
isons. A reverse module is indicated by a black triangle
(e.g. module 9 in SEQ_3) while a truncated module (e.g.
module 3 in SEQ_3) is shown by a dark grey diagonal line
within the texture. When an user clicks on a graphical ele-
ment, a menu with the detailed information (nature of the
genetic object and its location) is displayed (e.g. a detailed
information is shown for a repeat on SEQ_2 in Figure 2).
Similar pop-up menu (e.g. module 9 in SEQ_3) allows the

user to display the nucleotide sequence of a particular or
all copies of repeated modules (with their co-ordinates
along each sequence), which can be useful for further
analysis. It is noteworthy that the sequence order is based
on upgma-based tree (by default) instead of alphabetical
name order.

Above the graphical panel, four options are provided
allowing the user to dynamically add or remove elements
(from results or annotations) in the graph. The ‘Draw
annotations’ option displays or removes annotations on
graph based on the selected item thanks to the ‘Annota-
tions Menu’ menu. When genomic or repeat annotations
are displayed, one or two additional lines, corresponding
to genetic objects and repeat annotations from ‘Annota-
tions’ files, are added between the module and the ruler
lines (Figure 2, see SEQ_1 and SEQ_2 with respectively

Tempel and Talla Mobile DNA 2014, 5:9
http://www.mobilednajournal.com/content/5/1/9

two and one additional lines, in the context of ‘ALL
annotations’ item). The genomic annotations include six
different items: ‘Genes’, ‘Exons’, ‘Introns’, ‘5’ ‘3> UTRS/,
‘Pseudos’ (pseudogenes), ‘MiscRNAs’; that can be selected
independently. Their orientations are shown by an arrow
shape while repeat annotation orientations are indicated
by a black triangle. The ‘NO Annotation’ item removes all
annotations.

The ‘Draw Overlapping Modules’ menu displays or
removes detected modules based on their overlap or not
with visible annotations (genomic or repeat). ‘All Modules’
item draws modules wherever the annotations (Figure 2,
Area 2), while ‘Overlap with Annotations’ and ‘NO Over-
lap with Annotations’ (see Additional file 4), respectively
draws and removes the modules that overlap the annota-
tion positions.

‘Draw Modules present in at least M Sequences’ and
‘Draw Modules by Size’ sliders display modules located
within a minimal number of sequences and with a min-
imal length, respectively. Minimun and maximum val-
ues of the two sliders are automatically taken from the
ModuleOrganizer process with the ‘M Sequences’ ranges
from 1 to total number of sequences and the ‘Size’
ranges from minimal and maximal length of the detected
modules.

Under the graph, four buttons facilitate the modification
of the graphical view: ‘Zoom in’ and ‘Zoom out’ but-
tons increase and decrease by a factor 2 the graph width,
respectively. ‘Global view’ button adjusts the graph width
(including the graph elements) according to the largest
sequence. The last button, labeled ‘Enlarge Graph’, (or
‘Reduce Graph’ after a click on it) removes the parameter
area (Figure 2, Area 1) (or displays it) from the interface.

Finally, the ‘Save results’ combo-list saves the graph
(whole graph or viewed graph in a PNG format) for exter-
nal use. All graphical options can be changed and associ-
ated at any moment and the graph dynamically displays
the elements based on the user choices. Detailed informa-
tion about parameters and graphical options are available
through the ‘HELP’ button (Additional file 3).

A case study: the FoldBack4 transposable element family
of Drosophila melanogaster

FoldBack elements are a family of transposable elements
described in Drosophila melanogaster. Structurally, the
members of this dispersed repetitive family have long
inverted terminal repeats and a central loop between the
repeats. The lengths of these repeats and loops vary from
element to element [26,27]. The inverted repeats of all the
family members are homologous [27] and carry a peculiar
organization of sequences with highly conserved complex
sequences at the termini [28]. Several families of Fold-
Back, including the FoldBack4 (FB4) family, are known to
be non-autonomous transposable elements [26,27].

Page 5 of 8

For this study, 10 FB4 sequence elements ranging from
627 to 2266 bp were chosen. These elements are gen-
erally highly variable in their internal sequence, includ-
ing numerous insertions, deletions, and repetitions, but
share consensus palindromic extremities in all their copies
because they are necessary for the transposition [28]. With
a MinSizeModule settled to 25 bp, ‘Palindromic modules’
and ‘Truncated modules’ options selected, the Module-
Organizer algorithm discovered 23 modules (Figure 3A).
Palindromic structures of the FB4 sequences are described
by modules 1-5 that should correspond to Terminal
Inverted Repeat (TIR). Internal sequences are mainly
composed of the modules 8-10 which are repeated in tan-
dem, looking like minisatellites. Those are often present
in the internal sequence of non-autonomous transpos-
able elements [1,28]. According to the module composi-
tion, the upgma-based tree clusters the FB4 sequences in
4 distinct groups: Groupl = FB4_3, FB4_8, and FB4_4;
Group2 = FB4_1, FB4 9, and FB4_5; Group 3 = FB4_10
and FB4_11; Group4 = FB4_2 and FB4_7, allowing inter-
and intra-groups comparison of the detected modules.
Indeed, the reverse occurrence of modules 3 and 4 were
deleted in FB4_2 and FB4_7 (from Group4) and reverse
modules 2-5 were absent in FB4_10 and FB4_11 (from
Group3). These findings clearly suggest that partial dele-
tions of these palindromic structures would impair the
transposition of these FB4 sequences.

Through the Visual ModuleOrganizer interface, the
‘Draw Modules present in at least M Sequences’ slider was
settled to 9, allowing only the display of modules present
in at least nine of the ten FB4 sequences. As a result, the
palindromic modules (module 1 to 5) and the module 9
from the internal sequence are still displayed (Figure 3B),
indicating that those palindromic modules are evolu-
tionary conserved within the FB4 family and might be
essential for the transposition. This observation also puts
forward that the ‘Draw Modules present in at least M
Sequences’ option can be useful for comparative analysis
(insertions, deletions, repetitions, rearrangements, ...) of
modules in a given set of a sequence family. In a similar
way, when the ‘Draw Modules by Size’ slider is set to 58
(e.g the displayed modules are equal or longer than 58 bp),
only modules 1, 4, 5 and 15 are displayed in Figure 3C,
therefore allowing the identification of large conserved
modules.

Altogether, the case study of FB4 spotlights the abil-
ity of Visual ModuleOrganizer for comparative analysis of
highly complex and variant repeat structures in a given
set of sequences. These complex repeat features include
biological known repeat structures (palindromes, min-
isatellites, ...) that are usually not observable by standard
analysis tools such as VISTA [11], GATA [12], GraphDNA
[13], and Recon [14]. Indeed, it has been shown that
these software which combine multiple alignment with

Tempel and Talla Mobile DNA 2014, 5:9

http://www.mobilednajournal.com/content/5/1/9

Page 6 of 8

A TN < G I I 1 11 U101 —— |
1 | |
! tlIlO Elilﬂ {230
FB4 8
FB4 4
FBA_1
FB4 9 &
FB45 &
{ FB410 5
FB4. 11 5
FB4 2 5
{ FBA 7 5
f f
410
B Fea3 s THH - < WD I | —" [N
! Il | !
! !410 !‘IZI] iZ]D
Feas o THH - < W] B IS | ——— | (N K]
FBA4 5
FBA1 5
FB4. 9
FBAS 5
FB410 5
{ rea 11 o [THH €] <= 3
F T
FB4 2 3
{ rea7 s THH - < W £
I Il
! “110
C reas s 0 o€] ————
!] } Il
! fllln IB2D {230
(TR - S R o {< -
f 1 } }
a10 820 1230
CIRRY - o S e s s = o
! | } J Il
! 510 IBZU {230 i540
rea1 s T @ T =} T (|~
— ' + — + + | - + + ¥ + 4 1 + —t + — + ——t + —t | — + —
! ‘Illﬂ IEZU {230 1‘1640
reae o R {0 < T} =1 =] 7 (a~
I Il 1 1 | Il
! f‘llﬁ ‘EZD iZSﬂ {640 5050
CUEINEY S = (< >
! | Il Il 1 1
! {310 ZD i230 erQCI éﬂSD
reato s T T« T (<N -
410 820 1230
Fean > T T o -
! Il |
! &10 é20
Foaz o] (< E -
! Il |
{ ! 2‘10 é20
CTERNRY T e mn B
| N
T 1
a0
Legens: Y Eellz [3 e [[EEWe 7 WEEe [0 o v B 13 A
Cohs B EEmv [e A B FE3a 23 [Truncated module [JReverse module
Figure 3 Identification and comparative analysis of repeat DNA modules in FoldBack4 sequences using Visual ModuleOrganizer. From
the ten FoldBack4 sequences, a MinSizeModule of 25, ‘Palindromic modules’ and ‘Truncated modules’ options, the ModuleOrganizer algorithm
detects 23 modules. Graphical displays of the results: (A) default graphical options, (B) ‘Draw Modules present in at least M Sequences'’ slider sets to
9 and (C) 'Draw Modules by Size' slider sets to 58 bp.

Tempel and Talla Mobile DNA 2014, 5:9
http://www.mobilednajournal.com/content/5/1/9

graphical tools fail to retrieve a good organization of the
non-autonomous elements for a typical family such as
FB4 [18]. Therefore, ModuleOrganizer remains the sole
algorithm that is able to identify distinct structural repeats
such as duplicated, palindromic and truncated modules,
allowing the user to infer putative functional role of these
modules.

Conclusion

We have described Visual ModuleOrganizer, a novel
graphical interface with a new optimized implementa-
tion of the ModuleOrganizer tool. The key features of
these tools are: (1) detection of modules within larger
sequences and with efficient low memory usage; (2) user-
friendly handling of ModuleOrganizer thanks to a graph-
ical interface; and (3) dynamic graphical parameters that
tune the visualization of the results based on the user
needs. In addition, Visual ModuleOrganizer will be use-
ful to investigate evolutionary and comparative analysis
(modules insertions, deletions, rearrangements, ...) from
all type of DNA repeats (transposable elements, CRISPR,
minisatellites, ...). ModuleOrganizer remains applicable in
principle to any set of nucleic sequences sharing some
similarities and for which a multiple alignment fails to
correctly retrieve the architecture of conserved blocks in
the sequences. With the increasing number of sequence
data available in biological databases, these features in
the Visual ModuleOrganizer interface clearly provide new
opportunities for inter- and intra-sequence comparative
analysis of repeat DNA modules in an easy, user-friendly
manner within a reasonable time.

Additional files

Additional file 1: Example maximal repeat (MR) output file in a
tabular format. Each file shows six columns: the maximal repeat word, the
identification number in the suffix tree, the MR size, the occurrence
number, the number of sequences where the MR is present and the list of
start positions.

Additional file 2: Run time comparison between old and new
versions of ModuleOrganizer. The blue (red) line represents running
time process observed with old (new) version of ModuleOrganizer. The size
range of the sequences is from 10 Kbp to 1000 Kbp. Experienced and
expected results are displayed with plain and dotted lines, respectively.

Additional file 3: Screenshoot of the HELP interface.

Additional file 4: Module display when the ‘NO Overlap with
Annotations’ item is selected. Some modules (e.g. Module 1 and 2)
became invisible when the ‘NO Overlap with Annotations’ item is selected.

Abbreviations

CRISPR: Clustered regularly interspaced short palindromic repeats; FB4:
FoldBack4; MR: Maximal repeats; RAM: Random access memory; SVG: Scalar
vector graphics; UPGMA: Unweighted pair group method with arithmetic
mean.

Competing interests
The authors declare that they have no competing interests.

Page 7 of 8

Authors’ contributions

ST and ET conceived the study, analyzed the results and wrote the paper.
ST performed the computational implementations. All the authors read and
approved the final manuscript.

Acknowledgements
We thank our sources of funding (Aix-Marseille Université and CNRS).

Received: 16 December 2013 Accepted: 25 February 2014
Published: 28 March 2014

References

1. Bigot Y: Mobile genetic elements, protocols and genomic applications; 2012.
ISBN:978-1-61779-602-9.

2. Romanish MT, Nakamura H, Lai CB, Wang Y, Mager DL: A novel protein
isoform of the multicopy human naip gene derives from intragenic
alu sine promoters. PLoS One 2009, 4:5761.

3. Joly-Lopez Z, Forczek E, Hoen DR, N J, Bureau TE: A gene family derived
from transposable elements during early angiosperm evolution has
reproductive fitness benefits in arabidopsis thaliana. PLoS Genet
2012, 8:1002931.

4. LiY,LiCJX JinY: Domestication of transposable elements into
microrna genes in plants. PLoS One 2011, 6:19212.

5. Siddique A, Buisine N, Chalmers R: The transposon-like correia
elements encode numerous strong promoters and provide a
potential new mechanism for phase variation in the
meningococcus. PLoS Genet 2011, 7:1001277.

6. Hayward A, Ghazal A, Andersson G, Andersson L, Jern P: Zbed evolution:
repeated utilization of dna transposons as regulators of diverse
host functions. PLoS One 2013, 8(3):59940.

7. Rebollo R, Farivar S, Mager DL: C-gate - catalogue of genes affected by
transposable elements. Mob DNA 2012, 3(1):9.

8. Smit AFA, Hubley R, Green P: RepeatMasker Open-3.0. http://www.
repeatmasker.org

9. Pavlicek A, Kohany O, Jurka J: Repeat Mining: Basic Tools for Detection
and Analysis. In Analytical Tools for DNA, Genes and Genomes Nuts and
Bolts. Edited by Markoff A. Eagleville: DNA Press; 2005.

10. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M: Isfinder: the
reference centre for bacterial insertion sequences. Nucleic Acids Res
2006, 34(1):32-36.

11. Dubchak I, Poliakov A, Kislyuk A, Brudno M: Multiple whole-genome
alignments without a reference organism. Genome Res 2009,
19(4):682-9.

12. Nix DA, Eisen MB: Gata: a graphic alignment tool for comparative
sequence analysis. BMC Bioinformatics 2005, 6:9.

13. Thomas JM, Horspool D, Brown B, Tcherepanov V, Upton C: Graphdna: a
java program for graphical display of dna composition analyses.
BMC Bioinformatics 2007, 8:21.

14. Bao Z, Eddy SR: Automated de novo identification of repeat sequence
families in sequenced genomes. Genome Res 2002, 12:1269-1276.

15. Tempel S, Giraud M, Lavenier D, Lerman IC, Valin AS, Couéel, Amrani AE,
Nicolas J: Domain organization within repeated dna sequences:
application to the study of a family of transposable elements.
Bioinformatics 2006, 22:1948-54.

16. Bohne B, Zhou Q, Darras D, Schmidt C, Schartl M, Galiana-Arnoux D,

Volff JN: Zisupton-a novel superfamily of dna transposable elements
recently active in fish. Mo/ Biol Evol 2012, 29(2):631-45.

17. Marzo M, Bello X, Puig MXM, Ruiz A: Striking structural dynamism and
nucleotide sequence variation of the transposon galileo in the
genome of drosophila mojavensis. Mob DNA 2013, 4(1):6.

18. Tempel S, Rousseau C, Tahi F, Nicolas J: Moduleorganizerdetecting
modules in families of transposable elements. BVC Bioinformatics
2010, 11:474.

19. Gusfield D: Algorithms on Strings, Trees and Sequences: Computer Science
and Computational Biology: Cambridge University Press; 1997. ISBN
0-521-58519-8.

20. Valiméki W, Gerlach N abd, Dixit K, Makinen V: Compressed suffix tree-a
basis for genome-scale sequence analysis. Bioinformatics 2010,
23:629-630.

21. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi |, Lipman DJ, Ostell J,
Sayers EW: Genbank. Nucleic Acids Res 2013, 41(D1):36-42.

http://www.biomedcentral.com/content/supplementary/1759-8753-5-9-S1.xls
http://www.biomedcentral.com/content/supplementary/1759-8753-5-9-S2.png
http://www.biomedcentral.com/content/supplementary/1759-8753-5-9-S3.png
http://www.biomedcentral.com/content/supplementary/1759-8753-5-9-S4.png
http://www.repeatmasker.org
http://www.repeatmasker.org

Tempel and Talla Mobile DNA 2014, 5:9
http://www.mobilednajournal.com/content/5/1/9

22.

23.

24.

25.

26.

27.

28.

Kulikova T, Akhtar R, Aldebert P, Althorpe Nea: Embl nucleotide
sequence database in 2006. Nucleic Acids Res 2007, 35(1):16-20.

Gish W: AB-BLAST. http://blast.advbiocomp.com

Johnson M, Zaretskaya |, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL:
Ncbi blast: a better web interface. Nucleic Acids Res 2008, 36:5-9.
Flutre T, Duprat E, Feuillet C, Quesneville H: Considering transposable
element diversification in de novo annotation approaches. PLoS ONE
2011, 6(1):16526.

Brierley H, Potter S: Distinct characteristics of loop sequences of two
drosophila foldback transposable elements. Nucleic Acids Res 1985,
13(2):485-500.

Silber J, Bazin C, Lemeunier F, Aulard S, Volovitch M: Distribution and
conservation of the foldback transposable element in drosophila.
J Mol Evol 1989, 28(3):220-4.

Potter SS: Dna sequence of a foldback transposable element in
drosophilia. Nature 1982, 297:201-204.

doi:10.1186/1759-8753-5-9

Cite this article as: Tempel and Talla: Visual ModuleOrganizer: a graphical
interface for the detection and comparative analysis of repeat DNA
modules. Mobile DNA 2014 5:9.

Page 8 of 8

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

® Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

® Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

() BioMed Central

http://blast.advbiocomp.com

	Abstract
	Background
	Results
	Availability
	Keywords

	Results and discussion
	Data-processing improvements
	The visual ModuleOrganizer graphical interface
	Graphical display and optional parameters

	A case study: the FoldBack4 transposable element family of Drosophila melanogaster

	Conclusion
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4

	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References

