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Retrotransposition in tumors and brains
John L Goodier
Abstract

LINE-1s (L1s), the only currently active autonomous mobile DNA in humans, occupy at least 17% of human DNA.
Throughout evolution, the L1 has also been responsible for genomic insertion of thousands of processed
pseudogenes and over one million nonautonomous retrotransposons called SINEs (mainly Alus and SVAs). The 6-kb
human L1 has a 5′- untranslated region (UTR) that functions as an internal promoter, two open reading frames—
ORF1, which encodes an RNA-binding protein, and ORF2, which expresses endonuclease and reverse transcriptase
activities—and a 3′-UTR which ends in a poly(A) signal and tail. Most L1s are molecular fossils: truncated, rearranged
or mutated. However, 80 to 100 remain potentially active in any human individual, and to date 101 de novo
disease-causing germline retrotransposon insertions have been characterized. It is now clear that significant levels
of retrotransposition occur not only in the human germline but also in some somatic cell types. Recent publications
and new investigations under way suggest that this may especially be the case for cancers and neuronal cells.
This commentary offers a few points to consider to aid in avoiding misinterpretation of data as these studies
move forward.
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Retrotransposition of non-long terminal repeat (non-LTR)
long interspersed nuclear elements (LINE-1 s, or L1s), as
well as the mobilization in trans of non-autonomous short
interspersed nuclear elements (SINEs) and processed
pseudogenes, has built at least 50% of the human genome
and remains an ongoing source of gene mutation [1,2]. As
a type of “selfish DNA”, L1 activity was formerly thought
to occur predominantly in germ cells, where insertions
would pass to the next generation. However, in addition
to the massive germline expansion of L1s that occurred
during mammalian evolution, recent investigations have
documented ongoing retrotransposition in selected som-
atic cell types, including neural progenitor cells, stem cells,
early embryos, tumors and induced pluripotent stem cells
[3-7]. More than 20 years ago, Miki et al. [8] reported
the first instance of somatic retrotransposition, an L1
insertion into the adenomatous polyposis coli tumor sup-
pressor gene of a colorectal cancer. The advent of high-
throughput sequencing has made it possible to identify
numerous non-germline de novo insertions in various
kinds of cancer, as recently described in several high-
profile papers [6,9-13] (Table 1).
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Cancer-associated hypomethylation and elevated tran-
scription of L1s predicted increased retrotransposition in
tumors long before new insertions were detected by
next-generation sequencing [16]. It is also reasonable to
assume that insertions proliferate preferentially in tu-
mors because cancer cells divide more rapidly than their
normal cells of origin. Indeed, cell cycling, though not
strictly required for retrotransposition, may increase its
frequency [17-19]. Interestingly, investigations to date
have detected new insertion events almost exclusively in
tumors of epithelial cell types, some of which proliferate
and turn over quickly. Carreira et al. [20] speculated that
increased retrotransposon insertions in epithelial tumors
may relate to a greater “plasticity” of epithelial cells, which
are more easily reprogrammed to yield cancer or pluripo-
tent stem cells.
Recent high-throughput sequence studies have re-

ported tumor-specific insertions that vary greatly in
number between different tumors of the same type, ran-
ging from 0 in most instances to 106 in a single colorec-
tal tumor identified by Lee et al. [9]. The application of
different methodologies clearly accounts for some of this
variation. Furthermore, current sequence analysis pipe-
lines lack sensitivity to detect rare insertion events that
occur late in tumor development, thus underestimating
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Table 1 Summary of published evidence for tumor-specific somatic retrotranspositiona

Study Cancer type Tumor–
normal
pairs, n

Tumors with
somatic
insertions, n

Tumor-only somatic insertions, n Normal-only somatic insertions Method

Detected Validated as tumor-specific Detected Validated

By
PCR

By sequencing

3′ end only 3′ + 5′ ends

Iskow et al. [6] Lung 20 6 L1: 9 8/9 8 0 0 Pyrosequencing

Brain 10 0

Lee et al. [9] Glioblastoma 16 0 L1: 183 38/39 6 2 0 Paired-end WGS

Ovarian 9 5 Alu: 10 1/3

Colorectal 5 5 ERV1: 1 1/1 1

Prostate 7 6

Multiple myeloma 7 1

Normal (Trio) 3 0

Solyom et al. [10] Colorectal 16 13 L1: 107 69/107 34 35 12 0 L1-Seq

Shukla et al. [11] Hepatocarcinoma 19 5 L1: 17 12/17 2 10 21 1 RC-Seq

Alu: 27 0/13

SVA: 1 0/1

Ewing et al. [12]b Acute myeloid leukemia 24 0 0 Paired-end WGS

Breast 12 0 0

Colorectal adenocarcinoma 5 0 0

Glioblastoma 15 0 0

Lung 19 2 GRIP: 3 0/0

Ovarian 10 0 0
aERV1, Endogenous retrovirus1 (PABL_A type); L1-seq, Hemi-specific PCR coupled to Illumina sequencing [14]; RC-seq, Retrotransposon capture sequencing, involving hybridization of fragmented genomic DNA to
custom retrotransposon sequence capture arrays followed by deep sequencing [15]; Trio, mother, father and child; WGS, Whole-genome sequencing. bEwing et al. examined only gene retrocopy insertion polymorphisms
(GRIPs), which are processed gene transcripts present as retrotransposed insertions in one or more individuals but absent from the reference genome.
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the total number of tumor-specific insertions. On the
other hand, according to the scenario of Figure 1A,
claims for the tumor specificity of much de novo retro-
transposition and its absence in matched normal cells
might be illusory. This scenario assumes that retrotran-
sposition occurs at significant rates in normal somatic
cells. However, in non-tumor tissue sampled in bulk, an
individual new somatic insertion may be present in only
a single cell, or at most several cells, among the large
total population of cells sampled and consequently exist
in too small a copy number to be detected. An insertion
initially present within a normal cell is more easily
detected once that cell by chance clonally expands as
a tumor, which, upon sampling, high-throughput se-
quencing and PCR validation, would falsely appear to
possess a tumor-only event. Thus, although tumor-
specific de novo retrotransposition events may be underes-
timated, retrotransposition in normal cells is likely grossly
underestimated.
Solyom et al. [10] adopted three indirect approaches

to conclude that most, if not all, of the insertions they
studied occurred post-tumor initiation: (1) by finding an
L1 insertion to be absent in a second section of the same
tumor, (2) by detecting empty-site X chromosome alleles
in males with an X chromosome tumor insertion, and
(3) by querying the heterozygosity of single-nucleotide
polymorphisms (SNPs) flanking an L1 insertion site
(with the presence of both SNP alleles in the empty-site
chromosome implying that the insertion occurred after
the one-cell stage of the tumor). Because the tumor sam-
ples assayed in this study were not microdissected, how-
ever, all three pieces of evidence cited may be subject to
Figure 1 Bulk tissue vs. single-cell detection of somatic retrotranspos
normal tissue retrotransposition events. (B) Single-cell sampling can provid
numbers of unique de novo retrotransposon events in each cell are indicat
new unique insertions. Occasionally, a cancer stem cell (dark brown) gives
retrotransposon insertions present in the originating stem cell. New tumor-
(A) or single-cell (B) sampling for downstream sequencing analyses.
misinterpretation because of normal tissue present within
the tumor sample. Interestingly, Shukla et al. [11] vali-
dated by PCR a single de novo L1 insertion in preneoplas-
mic liver tissue that was absent in the corresponding
hepatocellular carcinoma, although they also considered
the possibility that chromosomal loss within the tumor
could have deleted the insertion.
Thus, tumor-specific retrotransposon insertions occur,

perhaps frequently in some tumors, but apparently vary
greatly in number between different types of tumors and
between individual tumors of the same cancer type. Al-
though 80 to 100 L1s are estimated to be potentially
active in any given human diploid genome [21], each
particular genome can harbor its own unique, active
L1s, or L1s shared between different individuals may
vary in activity. My “hot” L1 may not be your hot L1;
perhaps my mobilome has greater “mutational power”
than yours [22,23]. Add to this fact the variability in the
epigenetic state of individual active L1s, plus unknown
genetic variations in the many cellular factors that associ-
ate with the L1 to affect its life cycle [24-26], and the task
of assessing rates of cancer retrotransposition becomes
complicated indeed.
High-throughput sequencing methods can produce

false-positive results, underlining the need for validation
of a significant number of the total putative somatic in-
sertions found. As much as possible, it is important to
identify 5′ as well as 3′ junctions of an insertion to confirm
the presence of a poly(A) tail and a target site duplication
(TSD), the hallmarks of a true retrotransposition event.
A minor but significant number of L1s insert not by
target-primed reverse transcription (TPRT), the standard
ition. (A) Bulk tissue sampling can underestimate the number of
e truer estimates of rates of normal somatic cell retrotransposition. The
ed. A minor percentage of normal epithelial cells (light brown) contain
rise to a tumor (green). Every cell of the tumor will contain the de novo
specific events may also subsequently occur. Red circles indicate bulk
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model for L1 retrotransposition [27], but rather by an
endonuclease-independent mechanism. These insertion
events likely occur at preexisting DNA lesions and gener-
ate integrants lacking TSDs [28-30]. Interestingly, ap-
parent endonuclease-independent insertions have been
detected in significantly increased numbers in some
tumors (8 of 35 colorectal cancer insertions reported
by Solyom et al. [10]).
Obtaining unbiased estimates of de novo retrotranspo-

sition in normal as well as tumor cells is critical for un-
derstanding somatic mosaicism, cancer induction, tumor
heterogeneity, and the etiology of some neurological dis-
eases [31,32]. Evrony et al. [33] recently used multiple
displacement amplification of single neurons isolated
from the frontal cortex and caudate nucleus of three
normal individuals to confirm somatic neuronal retro-
transposition, but at a rate much lower (0.04 to fewer
than 0.6 unique insertions per neuron) than estimates
previously suggested by quantitative PCR (qPCR) ana-
lyses (a startling “theoretical” increase of about 80 L1
copies per hippocampal neuron compared with heart
and liver samples [34]). Using a high-throughput method
called RC-seq to analyze bulk DNA, Baillie et al. [15]
found almost 8,000 putative somatic L1 insertions in the
hippocampus and caudate nucleus of three individuals,
an insertion rate much lower than Coufal et al. [34]a.
qPCR techniques are increasingly being used to con-

clude elevated L1 genomic copy numbers in some cell
types or under some cellular conditions [34-39]. Typic-
ally, the apparent increase in retrotransposon insertions
is not verified by downstream sequencing. Apart from
the fact that small changes in protocol can alter the re-
sults of such sensitive qPCR analyses, an additional but
untested source of bias conceivably exists: that is, the
promiscuous reverse transcription (RT) of retrotrans-
poson RNAs “free-floating” in the cell and not engaged
in TPRT at a site of chromatin integration. Such ectopic
RT reactions might be primed by random complemen-
tary nucleic acids or perhaps by fold-back and annealing
of the L1 poly(A) tail to one of the ten homopolymeric
stretches of four to seven U residues that occur across
the length of the L1 RNA molecule. Fold-back self-
priming of RNA has been observed for a number of
RNA-dependent RNA polymerases, including reverse
transcriptases [40-42]. It has also been shown that RT
can initiate from internal sites within L1 RNA during
endonuclease-independent insertion [28]. One would ex-
pect copy numbers of orphan L1 cDNAs generated by
promiscuous RT to be higher in cells with elevated expres-
sion of L1 ORF2 or perhaps endogenous retroviral reverse
transcriptases; indeed, increased RT activity in some types
of neuronal and tumor cells has been reported [43-45].
Because these cDNAs are amenable to PCR amplification,
qPCR-based estimates of genomic L1 insertion copy
numbers in these cells using L1-specific primers would be
erroneously high. This source of bias, if true, is not in dis-
agreement with the cis-preference model for L1 retrotran-
sposition. This model states that a retrotransposition-
competent integration intermediate consists of L1 RNA
bound in cis by its own encoded ORF1 and ORF2 proteins
[46,47]. However, the total number of L1 protein [48] and
RNA molecules present in the cell likely greatly exceed in
number those bound in cis within bona fide insertion in-
termediates. These molecules can bind to each other in
trans and perhaps engage in RT.

Conclusions
The surprising discovery of frequent somatic retrotran-
sposition has important implications for human health.
To fully and accurately assess its extent, concerted ef-
forts are needed to sequence many single cells from a
large number of cell types (normal and cancerous) from
many individuals, with thorough validation by PCR of in-
dividual retrotransposon inserts and capillary sequencing
of the PCR products to confirm their identity (Figure 1B).
Single-cell, whole-genome amplification is a recent tech-
nology and is not without biases, including allelic and
locus dropouts, chimeric molecules, uneven amplifica-
tion due to local variations in G-C content, and in-
correct nucleotide insertions [33,49,50]. Such artifacts
complicate the identification of somatic retrotrans-
poson insertions. However, the ongoing development
of new protocols, such as MALBAC (multiple anneal-
ing looping-based amplification cycles [51]), promises
to reduce bias. Next-generation, single-cell sequencing
protocols should help to establish the impact that on-
going L1 retrotransposition manifests in brain biology,
cancer, and likely other human diseases where L1
mobilization has not yet been explored. It should also
become possible to trace the history of a single som-
atic retrotransposon back to its origin in a specific
cell type or at a specific stage of development.

Endnote
aSix RC-Seq libraries, each prepared from 2.5 μg of

DNA, yielded 7743 L1 insertions [15]. Since a human
diploid cell contains 6.6 pg of DNA, there were on aver-
age .003 unique L1 insertions per brain cell. If most in-
sertions were in neurons, the rate was 1 insertion per 30
to 150 neurons (the brain being variously estimated to
be 10-50% neurons [52]).
Abbreviations
ERV: Endogenous retrovirus; LINE: Long interspersed nuclear element;
LTR: Long-terminal repeat; ORF: Open reading frame; RC-seq: Retrotransposon
capture sequencing; SINE: Short interspersed nuclear element; SVA: SINE-R,
VNTR and Alu; TSD: Target site duplication; UTR: Untranslated region;
TPRT: Target-primed reverse transcription; WGS: Whole-genome sequencing.
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